
HAL Id: hal-01290961
https://hal.science/hal-01290961

Submitted on 19 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Web interface generator for molecular biology
programs in Unix

Catherine Letondal

To cite this version:
Catherine Letondal. A Web interface generator for molecular biology programs in Unix. Bioinformat-
ics, 2001, 17 (1), pp.73-82. �10.1093/bioinformatics/17.1.73�. �hal-01290961�

https://hal.science/hal-01290961
https://hal.archives-ouvertes.fr

BIOINFORMATICS Vol. 17 no. 1 2001
Pages 73–82

A Web interface generator for molecular biology
programs in Unix

Catherine Letondal 1, 2

1Institut Pasteur, Service d’Informatique Scientifique, 28 rue du Docteur Roux, 75724
Paris Cedex 15, France and 2Laboratoire de Recherche en Informatique, URA 410
du CNRS, LRI - Bâtiment 490 - Université de Paris-Sud, 91405 Orsay Cedex, France

Received on May 16, 2000; revised on June 27, 2000; accepted on July 7, 2000

ABSTRACT
Motivation: Almost all users encounter problems using
sequence analysis programs. Not only are they difficult
to learn because of the parameters, syntax and seman-
tic, but many are different. That is why we have devel-
oped a Web interface generator for more than 150 molecu-
lar biology command-line driven programs, including: phy-
logeny, gene prediction, alignment, RNA, DNA and protein
analysis, motif discovery, structure analysis and database
searching programs. The generator uses XML as a high-
level description language of the legacy software param-
eters. Its aim is to provide users with the equivalent of a
basic Unix environment, with program combination, cus-
tomization and basic scripting through macro registration.
Results: The program has been used for three years by
about 15 000 users throughout the world; it has recently
been installed on other sites and evaluated as a standard
user interface for EMBOSS programs.
Availability: The program is freely available over the Inter-
net at the following URL: http://www.pasteur.fr/∼letondal/
Pise/.
Contact: pise@pasteur.fr

INTRODUCTION
In Unix, some programs are particularly problematic
for inexperienced users, as they assume basic skills
about the file system or the Unix documentation, such
as renaming, moving files or understanding directory
naming. Users often cannot see what they have done and
which files are available unless they ask for them. Users
are also sometimes required to edit files according to strict
syntactic rules or even to write small scripts. Finally, it is
often necessary to convert from a specific program format
into another program format, or to use part of a result as
input to another program.

It would certainly be useful to add a friendly interface
to each program, but this is totally unfeasible given the
increasing amount of new software coming out every
day. That is why we have decided to develop a software,

called Pise (Pasteur Institute Software Environment), that,
given an abstract definition of a program’s parameters,
can generate a Web-based interface. The software we have
written is not currently limited to Web interfaces: there are
other modules for Tcl/Tk (as a Web client), X11 graphic
interfaces or simple curses menus. However, it quickly
became apparent that the most useful interface would be a
Web interface, because they are widely available and users
are accustomed to them. This system addresses the issues
introduced above:

1. it provides a homogeneous interface to all the
programs, suppresses the syntactic complexity, and,
by giving explanations and access to documentation,
lowers the semantic complexity,

2. it helps to deal with files, to combine programs and
to register scripts.

In the first part of this paper, we present our model of the
interfaces to Unix programs and we briefly describe the
Web interface generator and its technical aspects. In the
second part we focus on the interactive features which,
for the main needs of these scientific applications, provide
users with the equivalent of a basic scripting environment.

HOMOGENEOUS INTERFACES TO
HETEROGENEOUS PROGRAMS
Unix program interface description
Although Unix provides a standard syntax for commands,
it is sometimes unused by scientific programs, which
are very often written by scientists themselves who do
not necessarily have a Unix background. Some programs
were designed in order to run the same way on different
platforms and therefore do not use a Unix-like style.
These are the reasons for a wide range of different
program appearances, from command-line with named or
positional parameters to menu-driven or parameter files
based programs.

c© Oxford University Press 2001 73

C.Letondal

Fig. 1. HTML field.

Parameter attributes. Parameters may be typed and
described by a common set of attributes. Types include
string, integer, float, list (0,1 or multiple choices), data
input, results and biology specific types, like sequence
data. Parameters may be grouped into paragraphs. Simple
dependencies may be described, like a parameter not
having to be handled given specific conditions. The
attributes of parameters are:

Presentation attributes:

— prompt displayed on the form, size of the field, level
of use, displayed default values, comments, paragraph
grouping.

Control attributes:

— mandatory, scale for integers or float, default values,
pre-conditions. Controls may be used to describe
complex dependencies between parameters.

Command building:

— code to convert a value into the command syntax,
position on the command line or in a file.

Results:

— pattern of output files names; an attribute may describe
types of output files for the purpose of combination
of programs: these types are free and application
oriented.

The following example shows the definition of the
-quicktree parameter in the Clustalw program:

<parameter ismandatory="1" issimple="1" type="Excl">

<name>quicktree</name>

<attributes>

<prompt>

Toggle Slow/Fast pairwise alignments (-quicktree)

</prompt>

<vlist>

<value>slow</value> <label>Slow</label>

<value>fast</value> <label>Fast</label>

</vlist>

<vdef><value>slow</value> </vdef>

<comment>

<value>

slow: by dynamic programming (slow but accurate)

</value>

<value>

fast: method of Wilbur and Lipman

(extremely fast but approximate)

</value>

</comment>

<group>2</group>

<format>

<language>perl</language>

<code>($value eq "fast")? "-quicktree": " " </code>

</format>

<precond>

<language>perl</language>

<code>($actions =~ /align/)</code>

</precond>

</attributes>

</parameter>

Figure 1 shows the corresponding generated HTML
field:

A little programming. . . . Some attributes require a little
programming:

1. some code is needed to perform the string conver-
sion from value to the actual command syntax (as
the format attribute in the example above);

2. boolean expressions may define simple dependen-
cies between parameters (as the precond attribute
above, specifying that this parameter should not be
taken into account unless the $actions variable is
equal to ‘align’);

3. complex controls may be performed on entered
values.

In practice, for the Web interface builder, the language
is perl, because the CGI is written in that language
and small pieces of code may be dynamically evaluated.
As the code to be evaluated is under the Web interface
maintainer’s responsibility, there is no security issue here.

Formal description. The above description has been
formalized as an XML DTD (http://www.pasteur.fr/
∼letondal/XML/pise.dtd). Among the advantages of
this approach, are the simplicity of the parsers and the
availability of many tools, including edition and validation
tools. This makes the addition of a new domain specific
type of parameter rather easy. As an example, there is
a specific type of input for molecular sequences (DNA
or proteins), which is dealt with at the CGI level (for
file format conversions): this specific type has a special
attribute, seqfmt that describes the formats that are
accepted by the programs for molecular sequence files.
The following example shows the definition of such a
parameter.

<parameter ismandatory="1" issimple="1" type="Sequence">

<name>infile</name>

<attributes>

<attribute>

<seqfmt>

<value>8</value>

74

Web interface generator for molecular biology programs

make-sx

non perl makers

...

makers

parser

definitions
program

user
interfaces

make-html

make-__

make-__make-ipshmake-seqlabmake-cgi

make-perl

software
administrator

Pise
programmer

interface
programmer

end user

XML definition

grammar (DTD)

perl module

SeqLab files
.configCGIHTML

interface
X11
Sx

interface
conversationnal
IPSH

Web interface

perl-based makers

Fig. 2. General architecture.

<value>3</value>

<value>4</value>

<value>15</value>

<value>100</value>

</seqfmt>

</attribute>

</attributes>

</parameter>

Technical aspects
The preceding description is the only part of the software
that is to be understood and mastered by the Web interface
maintainer when defining the attribute set for a new
program. The following explains how the Web interface
builder is implemented.

As shown in Figure 2, interface builders (e.g.
make-html, make-cgi, etc. . .) rely on a perl module
generated from the XML description of a program. This
module contains all the information needed to generate
the HTML form and the CGI script. Other interface
builders relying on another language (Java, Tcl, . . .) could
also be developped.

HTML design. We ran some usability tests with a dozen
users grouped in pairs, one person telling the other what
s/he intended to do, the other person describing what s/he
was seeing. Among a lot of useful information, like where
to put the submit button, how to indicate on-line help,
these tests showed that it is necessary to design two levels
of use:

1. a simple level, without fancy capabilities, giving
access only to the mandatory parameters that do not

reset submitreset submit

input data
entered either
by text area
or by a local
file

parameters

explanations of the
parameters

expect value

matrix

browse

explanations of the

PROGRAM description PROGRAM description

link to the advanced form
Control parameters
Output parameters

Control parameters

Output parameters

advanced formfor beginners

another simple
parameter field

pull-down menu
(Excl param type)

(Switch param type)

local file
cut and paste
text area for

data
cut and paste
data

text area for

emailemail

Fig. 3. HTML design: simple and advanced form layout.

have a predefined default value, as well as the input
data;

2. an advanced level, giving access to as many parame-
ters as available in the program, no matter how com-
plex they are. Parameters may be grouped into para-
graphs. There is a link from the beginner level form
to the advanced one. Documented default values are
provided or pre-selected in choices lists.

The on-line help consists of comments at the end of
the HTML document. Parameter headings link to the
appropriate part of this section.

As can be seen in Figure 3, except the file upload
facility added in the advanced form, our form design
relies on basic HTML and we deliberately do not use any
frames, applets or even JavaScript on the client side. This
facilitates access by everyone.

CGI design.

Immediate vs delayed results. As some analyses can
be very long—over several days—and owing to the
synchronous aspect of a CGI based Web interface, it was
necessary to design a delayed results delivery mecha-
nism, e.g. sending results by email. We have decided to
distinguish two cases:

1. short analyses (�60 s), where the results are imme-
diately available;

2. long analyses (>60 s), where the response has to be
sent by email.

75

C.Letondal

script programbrowser

program
termination'DONE'signal

CGI display
status and
return

script knows that
CGI is gone

submit

submit

CGI

url

(clustalw example)

slow programs > 60 sec

fast programs < 60 sec

Results:

program
termination

Unix command:

'CIAO'
signal

controls
tmp files mgt
script generation

CGI presents results page
and return

script writes HTML
results page

clustalw.out
clustalw.aln

clustalw -infile

60 seconds

controls
tmp files mgt
script generation

60 seconds

script write HTML
results page
and results by email

clustalw -infile
Unix command:

available later.
Results will be

+ results

Fig. 4. CGI design: client/server synchronization.

Figure 4 shows how the two different cases are handled
by exchanging Unix signals between the CGI and the
generated script.

In the case of delayed results, the user can choose:

1. to be notified by an email containing only the URL
of the results page (this is the preferred method);

2. to receive all the results by separate emails (default);

3. to receive results as MIME attachments.

The 60 s threshold is somewhat arbitrary and could be
more flexible: in Javamatic (Phanouriou and Abrams,
1997), the user may specify a time threshold after which
the server returns a URL.

Redundant submissions. As some analyses take a lot of
CPU resources, it is very important to prevent similar
submissions (easily detected by a checksum on the
submitted data). There are two cases to be distinguished:

1. the user has clicked twice on the Submit button;

2. the job is not done after a certain time, and the user
submits it again (just in case);

The first case is handled during the ‘interactive’ period
within the first 60 s (see above): both submissions are
cancelled, and a message is displayed explaining the
problem and asking the user to resubmit. In the second
case, the first job is not killed. A message is displayed
explaining that a similar job has been submitted, and that
the user should wait for the results.

User data management issues.

1. Security: the result files are stored in a temporary
directory, whose name is built on two concatenated
numbers: PID and time. The resulting temporary
url thus behaves like a key. The server log files,
where these temporary urls are listed, should be read
protected.

2. Lifecycle of the results: the distribution includes
maintenance scripts for file cleaning. At the Pasteur
Institute, the results are stored for 5 days, but this
decision belongs to the local software or system
administrators.

SCRIPTING BY THE WEB
As we have observed, without the help of a Web system
(client and server), biologists have trouble getting the best
of all the scientific tools that are available to them. A Web
system for scientific applications should therefore aim to
fulfil the basic needs of users, which we identify as being:

1. getting the same kind of results as those obtained
by stand-alone programs, although not in the same
way;

2. combining programs to perform complete analyses;

3. customizing and storing procedures to automate
standard or well-proven analyses.

Files
In our system, we have tried to keep the power of a Unix
environment and to lower the file manipulation burden for
the biologist:

• all the file manipulations required to run the program
may be described in the XML specification; for
instance, the following shows a format attribute
(whose aim is to build the command line), with a Unix
mv command for changing a filename:

76

Web interface generator for molecular biology programs

SubmitSubmit Email:ResetReset Email:

Program neighbor form

The output file outfile is given as input
file to another program.

(3)

Program dnadist results

Print data:

Bootstrap seed:
Outgroup:

dnapars.outfile

(1) (2)

Kimura

Jin & Nei

Distance matrix:

dnadist.out

(4)

pyramids
molphy
neighbor

Run

outfile

Alignment:

Distance:

Transition/tranversion ratio:

Program dnadist form

Fig. 5. Piping menus.

<attribute>

<format>

<language>perl</language>

<code>

"seqboot < seqboot.params;

mv outfile infile;"

</code>

</format>

</attribute>

• the actual output files described in the program defi-
nition as interesting to the user—namely all the files
produced by the biology program, are shown as hy-
pertext links on the results HTML page; the following
example shows an attribute, filenames, which indi-
cates that all the output files ending by phy, msf or
pir suffixes are to be presented to the user.

<parameter type="Results">

<name>aligfile</name>

<attribute>

<filenames>*.phy *.msf *.pir

</filenames>

</attribute>

</parameter>

Combining programs
In scientific applications, as well as in many Unix tools,
a program’s output may be fed into another program’s
input. This feature, often implemented by the well-known
Unix pipeline mechanism, or more simply by intermediate
files, has been designed in a way suitable for an hypertext
system.

As shown in the Figure 5, an output file presented on the
results page (2), outfile may be redirected to another
program’s interface: neighbor (3), by means of a menu
displayed next to the file name (4), which includes all the
programs that could take this file as input (neighbor,
molphy and pyramids).

This pipeline feature is rather popular, for it gives an
opportunity to explore new programs and eliminates all

the file manipulations that would be required to achieve
the same thing directly in Unix. The graph of all the
possible paths may be seen at this address: http://www.
pasteur.fr/∼letondal/Pise/gensoft-map.html.

The Tables 4, 5 and 6 in the Appendix gives the actual
use that has been logged over 1 year. They show that:

1. some programs would have been used more rarely
if not presented in a connection menu seqgen or
bionj);

2. some programs are ‘visited’ through a connec-
tion menu, but not always used (distquart,
buildmodel or homology): users may be just
curious to see what kind of analysis they would
perform, but do not need them at this specific time;

3. the pipeline mechanism is mostly used when there is
a data format issue: it is not easy to edit a matrix file,
so the program that computes and outputs such a file
is very often run first and piped to the one which
takes the matrix as input.

This mechanism is implemented by an attribute associated
to the parameters at both ends of the pipeline.

1. first end of the pipeline (in program dnapars
definition): an output file is defined as being from
type dist matrix.

<parameter type="Results">

<name>outfile</name>

<attributes>

<attribute>

<pipe>

<pipetype>dist matrix </pipetype>

</pipe>

</attribute>

</attributes>

</parameter>

2. last end of the pipeline (in program neighbor
definition): an input file is given the same type.

<parameter type="InFile">

<name>infile</name>

<attributes>

<attribute>

<pipe>

<pipetype>dist matrix

</pipetype>

</pipe>

</attribute>

</attributes>

</parameter>

77

C.Letondal

3.

1.

2.

4.

5.

.6

Submit EmailResetreadseq

Custom HTML form

dnapars

fitch

drawtree

seqgen drawgram
Program drawgram results

Form to reuse your procedure later

Register the whole procedure

letondal@pasteur.fr

Commands that will be executed on these data:
dnapars, fitch, drawgram

Alignment:

Model:

Bootstrap:

Global rearrangements:

Angle of labels:

Tree style : Phenogram

345692397

Jin & Nei

dnapars parameters:

fitch parameters:

drawgram parameters:

55.0

Macro invocation

Programs executed.

Fig. 6. Web macro registration.

Customizing and registering Web macros
The system offers two ways to save and reuse the user’s
work. The first one is to save a form pre-filled with
the user’s values. This is achieved by using the HTML
generator to generate a form with the user’s values instead
of the standard ones.

The second one is to save an entire procedure as a macro.
This is useful whenever the user has chained several
programs with data pipelines. On the results page, the
user is presented with a ‘Register the whole procedure’
button, that builds a script which is able to redo the actions
performed by him/her.

As shown in Figure 6, the set of actions to be regis-
tered in this procedure is defined by the entire dataflow
chain of piped programs, which starts from the initial form
dnapars) followed by the intermediate programs having
been piped sequentially (fitch) until the last one where
registration has been requested (drawgram). Therefore,
only one branch of the tree formed by the user’s explo-
rations among the programs is stored, from root to leaf
(here: steps 1, 3 and 6 are registered). No specific action is
required from the user to start the registration.

The registered procedure is available to the user as a
custom CGI perl script, which is stored on the server
for a limited amount of time—as decided by the local
system administrator. This CGI may be activated from a
custom HTML form, that may be either bookmarked or
saved. In this form, the user only has to provide mandatory
parameters and to fill in initial data.

The registered macro relies on a perl API which is
able to drive jobs launched on the Web server. This API
uses XML parsing tools which makes it possible to get all
the data concerning the context of each job (parameters,
piped files, . . .) from the HTML results pages, which are
XHTML complaint. Table 1 shows the main methods of
this perl module.

Table 1. perl API for Web jobs

$job=pisejob->new("command"); Create a new job for this
command

$job->args("param", "value"); set parameter param to value
$job->param_type("param"); return the type of this parameter
$jobid = $job->submit; submit the job
if ($job->terminated($jobid))... test if job has terminated
$job->get_results($jobid); get URLs of program’s results
$job->output($result); return the result as a string
$job->save($result, $file); save this result in $file
$job->get_pipes ($result); get programs that may take this

result as input
$job->piped_file_type($result); type of this result for feeding

another program’s input

This API is also intended for programmers who might
be interested in automating their analyses, for it constitutes
an easier level of use than the existing Unix program inter-
face: they do not have to worry about the parameter syntax,
and may easily combine programs. Several programmers
at the Pasteur Institute have already shown interest in this
scripting API; the main reason is that it offers the possi-
bility to analyze and filter results. Local users can save the
Perl script generated by the macro registration facility and
use it as a basis to develop more complex scripts with the
above API. This method is easier and faster than writing a
script from scratch.

STATISTICS OF USE
Table 2 summarizes the use of this service over the last
19 months (from October 1998 to May 2000). This use
has increased a lot during this last year; almost half of the
jobs have been submitted during the last 8 months. Some
figures must be taken with caution: the number of users,
for instance, is computed after email addresses that are
required to submit a job. Since there is no semantic check
of the email for external users, the only fact we can rely
upon is that, whenever the user enters a fake address, s/he
will not be able to receive results, which applies only for
long jobs. A very rough estimation gives a rate of about
10% errors in email addresses.

The success ratio (submitted jobs/number of POST
requests) gives the number of jobs that have passed the
controls performed by the CGI: mandatory parameters,
allowed values, or more complex controls described in
parameters’ definitions. This ratio does not mean at all
that the program has succeeded, nor that the input data are
correct. This is unfortunately a major issue, and one of the
main causes of errors, that we are trying to fix by a format
converter for molecular sequence data.

Users are defined as ‘advanced users’ whenever they
have run an advanced job, even if only once; related
figures are therefore probably over estimated.

78

Web interface generator for molecular biology programs

Table 2. Statistics of use within the last 19 months

Number of Total % Total % Different Jobs Success
different number advanced number of advanced programs by by ratio within

programs used of jobs jobs users users user user last year

253 169 065 56.5 15 044 59.8 2.3 11.2 76.1%
(7.0)

Table 3. Daily and monthly current statistics (today)

Daily number of jobs Monthly number of users Number of different programs used monthly

400 1850 175

LESSONS LEARNED
User feedback
In addition to the few usability tests performed at the
beginning of the design, the service has evolved as a result
of the observations of the log files, reporting of errors
and user emails (about 150 messages as of today). We
encourage users to signal errors and possible improvments
by a help feature that enables the user to send a message
pre-filled with all the job’s context data and completed by
his/her own text. The user receives a copy of this email,
which in our opinion is rather important, to give the feeling
that something has really happened. We try to answer
almost every message. A lot of errors have been corrected
thanks to these messages, including errors in the scientific
software itself, which are exposed to heavy use through
this service.

Developers feedback
One of the aims of this service is to promote bioinformatic
research and software development, by providing biolo-
gists with access to new algorithms. This explains why
feedback from software authors is generally positive.

RELATED WORK
The idea of integrating applications into the Web is not a
new one (Lonczewski, 1995; van Doorn and Eliëns, 1995).
In the field of molecular biology, there are numerous
online services, either to search databases or to perform
sequence analyses, such as phylogeny, protein structure
prediction, and so on (see the more than 900 links in
Pasteur database of resources for biologists).

Web-based interface generators
Application wrappers for using the Web as a program
interface, such as Javamatic (Phanouriou and Abrams,
1997), AppLab (Senger, 1999) or W2H (Senger et al.,

1998) usually rely on a high-level description of the
command-line driven program that is fed to an interface
builder. The first two systems referenced above consist
of an applet generator that dynamically builds a graphic
client issuing requests on a server to run applications.
AppLab uses CORBA IDLs as a high-level program
description language. Both present the same advantage
as our system: no account is needed to perform com-
putations; no knowledge about command-line syntax is
necessary. W2H was first designed as a WWW interface
to the GCG package (Devereux et al., 1984) and has
features for handling user sessions and preferences. The
interface is more sophisticated: it includes file manage-
ment and application menus, as well as database searches
and graphical outputs. None of these provides program
combination or macro registration features.

Dataflow, program combination
What we have called program combination, or pipelines,
is so useful for biologists that there are at least two other
systems that implement such an idea: the NCSA Biology
WorkBench (Subramaniam, 1998) and (The BioNaviga-
tor, provided by eBioinformatics, unpublished data). In the
latter, only programs that can process selected input are
presented to the user in the ‘WorkBench’. Both systems
provide a very good integration of database searches and
data input: data may be easily extracted from search result
lists, and combined with file upload or cut and pasted
data. The main drawback of these two approaches is, in
our opinion, the cost for users to understand each system
model before being able to use it: both systems require
the user to log in and to start a session, or a project, and to
anticipate the steps of a well defined protocol; that is prob-
ably why both systems provide a demo. We have preferred
a more ‘natural’ approach: performing a task involving
multiple steps does not need any planning or session

79

C.Letondal

Table 4. Pipes consumers

Total uses of Number of actual Total How many Biggest
Piped program connection menu submissions from submissions of % providers provider
(to) to this program the piped program this program (from)

neighbor 4742 5283 7714 68.5 3 dnadist (2405)
drawtree 4694 5241 8101 64.7 20 neighbor (1391)
consense 3197 3507 3595 97.6 20 neighbor (936)
drawgram 3192 3831 5022 76.3 18 neighbor (1000)
boxshade 1648 1953 7691 25.4 8 clustalw (1579)
seqgen 1267 708 904 78.3 18 clustalw (320)
fitch 939 1040 1711 60.8 3 protdist (509)
molphy 935 537 2601 20.6 7 protdist (520)
dnadist 932 877 6410 13.7 5 clustalw (889)
loadseq 734 779 1616 48.2 1 loadseq (734)
clustalw 690 541 21 840 2.5 14 loadseq (295)
bionj 659 628 868 72.4 3 protdist (346)
seqsblast 648 345 412 83.7 4 blast2 (356)
distquart 632 248 267 92.9 10 clustalw (372)
protdist 619 571 6728 8.5 7 clustalw (570)
mview blast 463 328 544 60.3 6 fasta (335)
buildmodel 459 178 394 45.2 12 clustalw (269)
dnapars 436 372 2834 13.1 5 clustalw (408)
kitsch 403 467 787 59.3 3 protdist (243)
pyramids 397 328 622 52.7 3 protdist (266)
drawpyr 377 423 425 99.5 1 pyramids (377)
mview alig 329 451 635 71.0 8 clustalw (302)
prettyalign 300 281 297 94.6 7 clustalw (241)
maeval 289 117 270 43.3 2 mafold (288)
Puzzle 253 254 2747 9.2 5 clustalw (228)
homology 248 116 397 29.2 6 clustalw (220)
patser 243 138 138 100.0 2 consensus (241)
protpars 212 199 3358 5.9 6 clustalw (187)
fastdnaml 199 174 2562 6.8 4 clustalw (186)
predator 199 104 1045 10.0 4 loadseq (89)
blast2 158 91 6252 1.5 4 readseq (85)
grailclnt 105 52 806 6.5 1 grailclnt (105)
con filter 104 61 62 98.4 1 consensus (104)
clustalw convert 104 81 472 17.2 5 clustalw (90)
total others 1344 1245 37 604 3.3

registration and is simply suggested through pipeline
menus. In the same way, our macro registration feature—
which has no equivalent in these systems—does not
require any action from the user, it is just available when
needed. As stated in (Sugiura and Koseki, 1998), users
generally tend never to use such features as program com-
bining or macro definition if their cost is greater than that
of simply doing the task. Finally, on the practical side, and
to our knowledge, these systems are not freely available,
and thus not extensible at will to any biology application.

Customization, Web macro registration
There has been a lot of research on customization but our
approach is more application-oriented. We already have
an interface builder to generate the HTML and CGI parts

of the interface: using it to have the users dynamically
generate their customized forms was just a step further.

Previous work on macros (Sugiura and Koseki, 1998;
Miller and Myers, 1997) focuses more on document
authoring or sometimes on navigation adaptation than on
action registration. Our macro feature is similar to some
database search systems which enable the user to build
views and to store complex queries. Like such systems,
we do not provide a general macro registration mechanism
for the Web, which could be based on generic Web
programming languages like WebL (Kistler and Marais,
1998). In our system, a registered procedure thus simply
consists in successive calls of CGIs including intermediate
HTML result parsings, where XML proved to be a very
good tool.

80

Web interface generator for molecular biology programs

Table 5. Pipes producers

Initial program Total uses of the connection menu from this To how different many Biggest client
(from) program clients

clustalw 7531 33 boxshade (1579)
protdist 4321 9 neighbor (2282)
dnadist 3722 9 neighbor (2405)
neighbor 3541 4 drawtree (1391)
protpars 1475 4 drawtree (621)
loadseq 1273 12 loadseq (734)
consense 1242 4 drawtree (466)
dnapars 1216 4 consense (664)
Puzzle 778 13 drawtree (256)
fastdnaml 748 4 drawtree (253)
fitch 740 4 drawtree (330)
bionj 670 4 drawtree (267)
blast2 544 5 seqsblast (356)
pyramids 439 2 drawpyr (377)
seqgen 371 24 distquart (98)
consensus 345 2 patser (241)
fasta 335 1 mview blast (335)
blast2 293 5 seqsblast (229)
mafold 288 1 rnaeval (288)
kitsch 255 4 drawtree (100)
molphy 218 4 consense (84)
buildmodel 198 5 hmmscore (89)
readseq 152 6 blast2 (85)
clustalw16 133 21 drawtree (17)
clustalw convert 117 18 clustalw (32)
grailclnt 105 1 grailclnt (105)
total others 1100 70

CONCLUSION AND FUTURE DIRECTIONS
In this paper, we have presented Pise, a system that, given
a description of a program, its parameters and input or
output files, generates a Web interface. This Web-based
interface stands as a Unix command wrapper, whose role
is to build the command line for the given program,
formatted with the appropriate parameters, and to manage
the results. The main originality of our system is the ability
to connect related programs in order to perform more
complex scripts. We have shown that, according to the
statistics of use, this system actually helps biologists to
perform their tasks.

We still have to evaluate and adapt advanced features
such as macro registration: for now, it consists of a
procedure that will redo the same processing as that
already performed, with another initial input. There could
be more flexibility, such as leaving more parameters
open or putting some well defined branching conditions
between each step.

The software described here is available under GPL
at the following address: http://www.pasteur.fr/∼letondal/
Pise. Pise has already been successfully installed at other
sites. A collaboration with the EMBOSS project has

Table 6. Summary

Total number of pipes 32 150
Total number of command that give input to another 76
Total number of command that take input from another 93
Total number of users 3535
Mean of pipes by user 9.09 (MaX: 494)

proven that Pise could interface EMBOSS programs,
which are now run from the Pasteur Web server on a daily
basis.

ACKNOWLEDGEMENTS
We are grateful to the persons who helped to make this
software easier to install and to use by giving suggestions,
and particularly to Stephane Bortzmeyer, Nicolas Joly and
Alan Bleasby.

APPENDIX
Statistics on program combinations
Table 4 lists the programs that were selected from the
pipe menus, with information about source programs and
actual submissions. The number of actually submitted jobs

81

C.Letondal

coming from a pipe menu may be greater than the pipe
menu selection, since a job may be resubmitted several
times from the same form (from October 14, 1998 to May
15, 2000).

Table 5 shows which programs give access to other ones
by a pipe menu. This table describes the use of the pipe
menus only, not the actual run of the piped job.

REFERENCES
Devereux,J., Haeberli,P. and Smithies,O. (1984) A comprehensive

set of sequence analysis programs for the VAX. Nucleic Acids
Res., 12, 387–395.

van Doorn,M. and Eliëns,A. (1995) Integrating applications and the
World Wide Web. Proceedings of WWW3 Darmstadt, Germany.

Kistler,T. and Marais,H. (1998) WebL—a programming language
for the Web. Proceedings of WWW7 Brisbane, Australia.

Lonczewski,F. (1995) using a WWW browser as an alternative user
interface for interactive applications. Proceedings of WWW3
Darmstadt, Germany.

Miller,R.C. and Myers,B.A. (1997) Creating dynamic World Wide
Web pages by demonstration. Carnegie Mellon University
School of Computer Science Technical Report CMU-CS-97-131
and Human Computer Interaction Institute Technical Report
CMU-HCII-97-101.

Phanouriou,C. and Abrams,M. (1997) Transforming command-line
driven systems to Web applications. Proceedings of WWW6
Santa Clara, California, USA.

Senger,M. (1999) AppLab: CORBA-Java based application wrap-
per. CCP11 Newsletter, issue 8.

Senger,M., Flores,T., Glatting,K.-H., Hotz-Wagenblatt,A. and
Suhai,H. (1998) W2H: WWW interface to the GCG sequence
analysis package. Bioinformatics, 14, 452–457.

Subramaniam,S. (1998) The biology WorkBench: a seamless
database and analysis environment for the biologist. Bioinformat-
ics, Proteins, 32, 1–2.

Sugiura,A. and Koseki,Y. (1998) Internet scrapbook: automating
Web browsing tasks by programming-by-demonstration. Pro-
ceedings of WWW7 Brisbane, Australia.

82

