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Introduction

We study in this paper some approximate Godunov schemes to compute shallow-water equations with a source term of topography, in a one-dimensional framework. All methods presented may be extended naturally to the 2D model. Shallow-water equations are based on conservation laws and provide an hyperbolic system. However, topography introduces some source term related to the unknown. Hence, analytic properties of the model of isentropic Euler equations are deeply modi ed, in comparison with the homogeneous case. For instance, a well-known problem is the occurence of other equilibrium states (or steady states), due to the presence of the source term. Several ways to compute conservation laws with source term have already been investigated. The main problem is the approximation of the source term and the numerical preservation of properties ful lled by the continuous system. Some Finite Volume method have been proposed, in particular the Well Balanced schemes, which can maintain all steady states. These schemes have been initially introduced by J.M. Greenberg and A.Y. Le Roux in 16] and 17] in the scalar case (see also [START_REF] Godunov | A di erence method for numerical calculation of discontinous equations of hydrodynamics[END_REF] and 2]). Well Balanced schemes have been recently extended to shallow-water equations with topography in 1] and 18] and friction in 6]. Since the Well Balanced scheme is based on an exact Riemann solver as the Godunov scheme (see 13]), its main drawbacks are its calculation cost and the need to compute the \exact" solution of the Riemann problem. Other Finite Volume methods to deal with source terms exist too, for instance based on the Roe scheme (see 23] and 12]), or based on another approximation of the source term, like in 20]. Some properties of the continuous model (Riemann invariants, jump relations, ...) are rst exposed, and a study of the Riemann problem is brie y recalled. Thereafter, some Godunov schemes are introduced to compute shallow-water equations, derived from the VFRoencv formalism (see 5]). Some applications of VFRoencv schemes are provided for the Euler equations (in 22], 5] and 11]), for shallow-water equations with a at bottom in 4] and for turbulent compressible ows 3]. The VFRoencv schemes are based on an arbitrary change of variable, and on a linearisation of each interface Riemann problem. In the homogeneous case, the numerical ux is de ned using the exact solution of the linearised Riemann problem and the conservative ux. However, the source term \breaks" the conservativity of the model. Thus, using a piecewise constant function to approximate the bottom, some approximate Riemann solvers are presented. The main advantages of this approach are the natural integration of the source term in the numerical methods and the use of a linearised Riemann problem, which minimizes the CPU time. Note that a scheme which exactly preserves a large class of steady states is obtained. In addition, a fractionnal step method is performed, based on the VFRoencv scheme introduced in 4]. This method enables to deal with vacuum and provides good results too. To complete this presentation, a higher order extension is provided, to increase the accuracy of the schemes when computing unsteady con gurations or ows at rest. Several numerical experiments are presented. All the test cases are one-dimensional, and are based on a non trivial topography. Indeed, applications of shallow-water equations are one-dimensional or two-dimensional con gurations. Hence, computational limitations are rather di erent from the gas dynamics and numerical experiments may be performed on mesh containing several hundreds nodes. The tests include subcritical and transcritical ows over a bump 15] and a drain with a non at bottom. The convergence towards steady states is measured. A vacuum occurence by a double rarefaction wave over a step is tested too. All the numerical tests con rm the good behaviour of the numerical methods, including the fractional step method. Eventually, some complementary tests with the Godunov and the VFRoe method are provided in appendix.

2 The shallow-water equations with topography

Governing equations

The shallow-water equations represent a free surface ow of incompressible water. The twodimensional system may be written as follows : h ;t + (hu) ;x + (hv) ;y = 0 (1a) (hu) ;t + (hu 2 ) ;x + (huv) ;y + g h 2 2 ;x = gh(Z f ) ;x (1b) (hv) ;t + (huv) ;x + (hv 2 ) ;y + g h 2 2 ;y = gh(Z f ) ;y (1c)

where h denotes the water height, u = t (u; v) the velocity, g the gravity constant and rZ f the bed slope (g and Z f (x; y) are given, and Z f must be at least C 0 (R 2 )) (see gure 1). This study is restricted to the computation by Finite Volume schemes (see 9]). Since the hyperbolic system (1) remains unchanged under frame rotation, this two-dimensional problem may be solved considering on each interface of the mesh the following system : h ;t + (hu n ) ;n = 0 (2a) (hu n ) ;t + hu 2 n + g h 2 2 ;n = gh(Z f ) ;n (2b) (hu ) ;t + (hu n u ) ;n = 0 (2c)

where u n = u:n, u = u: , n and the normal and the tangential vector to the interface (jjnjj = jj jj = 1), and ( ) ;n the derivate along the normal vector n.

The pure one-dimensional shallow-water equations may be written as follows : h ;t + (hu) ;x = 0 (3a) (hu) ;t + hu 2 + g h 2 2 ;x + ghZ 0 f (x) = 0: (3b)

We focus in this paper on the numerical resolution of the one-dimensional system (3). Let us note that h and hu (also denoted Q in the following) are the conservative variables. So, vacuum (or dry bed) may be represented by h = hu = 0, which implies that u is not de ned.

Remark 1. The change of variable from (h; Q) to (h; u) leads to the following equations for smooth solutions :

h ;t + Q ;x = 0 u ;t + u 2 2 + g(h + Z f ) ;x = 0:
where = (u 2 =2 + g(h + Z f )).

These equations enable to de ne some stationary smooth solutions as follows :

Q ;x = 0 and ;x = 0:

One may add to these equations Rankine Hugoniot relations (on smooth topography) for stationary shocks to complete the de nition of stationary states.

The Riemann problem on a at bottom

Assuming that the river bed is at (ie Z 0 f (x) = 0), the system (3) becomes homogeneous. Hence, we obtain a conservative system, which lead to the following Riemann problem :

8 > > > > > < > > > > > : h ;t + Q ;x = 0 Q ;t + Q 2 h + g h 2 2 ;x = 0 (h; Q)(x; 0) = ( (h L ; Q L ) if x < 0; (h R ; Q R ) if x > 0:
(5)

This problem, which is also the Riemann problem for isentropic Euler equations (for a particular state law) may be classically solved. Its solution is a similarity solution (ie a function of x=t) composed by three constant states, (h L ; Q L ), (h 1 ; Q 1 ) and (h R ; Q R ) separated by two Genuinely Non Linear elds associated eith eigenvalues u c and u + c (where c = p gh). The intermediate state (h 1 ; Q 1 ) may be computed using through the 1-wave :

u 1 = 8 < : u L 2( p gh 1 p gh L ) if h 1 < h L ; u L (h 1 h L ) r g h 1 + h L 2h 1 h L if h 1 > h L : (6) 
and through the 2-wave :

u 1 = 8 < : u R + 2( p gh 1 p gh R ) if h 1 < h R ; u R + (h 1 h R ) r g h 1 + h R 2h 1 h R if h 1 > h R : (7) 
The latter two curves are derived from the Riemann invariants (when h 1 < h L and h 1 < h R ) for rarefaction waves and from the Rankine Hugoniot relations (when h 1 > h L and h 1 > h R ) for shock waves. Note that the intermediate velocity u 1 is de ned only if : u R u L < 2( p gh R + p gh L ):

(8) Otherwise, h 1 and Q 1 become null, and u 1 is unde ned.

The Riemann problem with a piecewise constant topography

Following the idea developed by A.Y. Le Roux in 18], the topography is described by a piecewise constant function. Therefore, adding the \partial" di erential equation concerning Z f , the following Riemann problem may be obtained :

8 > > > > > > > < > > > > > > > : Z f;t = 0 h ;t + (hu) ;x = 0 Q ;t + Q 2 h + g h 2 2 ;x + gh(Z f ) ;x = 0 (h; Q; Z f )(x; 0) = ( (h L ; Q L ; Z f L ) if x < 0; (h R ; Q R ; Z f R ) if x > 0: (9) 
Note that this Riemann problem does not correspond to the Riemann problem associated with the system (3), since the topography is not smooth. The jump of topography along the curve x=t = 0 introduces a problem for the de nition of the product of distributions, focusing on non smooth solutions (see 7] and 8] for more details). So, the jump relations across the discontinuity x=t = 0 are not de ned. Assuming that h > 0 and restricting to smooth solutions, the system (9) may be written :

Z f;t = 0 (10a) h ;t + Q ;x = 0 (10b) u ;t + u 2 2 + g(h + Z f ) ;x = 0: (10c) 
We note = (u 2 =2+g(h+Z f )) in the following. One may deduce the conservation law on entropy for non viscous smooth solutions :

;t + (Q ) ;x = 0 (11) = h u 2 2 + g h 2 2 + ghZ f : (12) 
Moreover, system [START_REF] Eymard | Finite Volume Methods[END_REF] provides the Riemann invariants through the stationary wave. Since the wave located at x=t = 0 is a contact discontinuity, we assume that the Rankine Hugoniot relations identi es with the Riemann invariants. Thus, the Riemann problem (9) admits a Linearly Degenerated eld of speed 0 such that : Q] ] = 0 (13a) ] ] = 0 (13b) where ] ] represents the jump of across the wave. Two Genuinely Non Linear elds also compose the solution of the Riemann problem [START_REF] Maso | De nition and weak stability of non conservative products[END_REF], which are the same as in the at bottom case. Hence, to connect a state W to a state W a through the wave u c, one may use the following relations (a rarefaction wave occurs when h < h a , and a shock wave occurs when h > h a ) :

Z f = Z f a (14a) u = 8 < : u a 2( p gh p gh a ) if h < h a ; u a (h h a ) r g h + h a 2hh a if h > h a : (14b) 
In the same way, to connect a state W to a state W b through the wave u + c, one may use the following relations (a rarefaction wave occurs when h < h b , and a shock wave occurs when h > h b ) :

Z f = Z f b (15a) u = 8 < : u b + 2( p gh p gh b ) if h < h b ; u b + (h h b ) r g h + h b 2hh b if h > h b : (15b) 
Moreover, to connect a state W to a state W c through the stationary wave, one uses the Riemann invariants :

Q = Q c (16a) = c (16b)
Note that the exact resolution of the Riemann problem ( 9) is not obvious, though all elds and associated Riemann invariants and jump relations are known. Indeed, contrary to a \classical" Riemann problem (Euler equations for instance), the three waves of this Riemann problem are not ordered and a GNL wave may be superposed with the LD wave (see 18]).

We will discuss below two families of schemes which are intended to provide a convergent approximation of the above mentionned system. The rst series is based on straightforward approximate Godunov schemes which account for topography. The second series is based on the fractional step method.

Single step methods

We present in this section several ways to solve the shallow-water equations with source term by Finite Volume schemes (see 9] and 24] for instance). The description of the methods computed herein is split in two steps : the Finite Volume scheme provided by integration of (3) and the solver at each interface.

An approximate Godunov-type scheme

We introduce herein a Finite Volume scheme following the idea proposed by J.M. Greenberg, A.Y. Le Roux et al in 16] and 17].

Focusing on system (3), it consists in using a piecewise bottom, at on each cell, in the \continuous" framework (see 18] and 6]). Thus, the source term ghZ 0 f (x) is reduced to a sum of Dirac mass occuring on each interface 7]. Hence, since the Finite Volume formalism is based on the integration of the system (3) on a cell ]x i 1=2 ; x i+1=2 t n ; t n+1 , the source term does not appear explicitly (contrary to the scheme investigated in 12] for instance). As mentionned above, such an approximation of the topography introduces a a stationary wave at the interface of each local Riemann problem. Though the Well Balanced scheme of J.M. Greenberg and A.Y. Le Roux is based on the exact solution of ( 9), we focus here on approximate Riemann solvers. These Riemann solvers are based on an approximate solution of the problem (9), and the numerical ux is computed from the conservative ux and the approximate solution at each interface. Let us note W = t (Z f ; h; Q) the conservative variable, F(W) = t (0; Q; hu 2 +gh 2 =2) the associated conservative ux and x i and t the space and time steps. We denote W n i the approximation de

1 xi R x i+1=2
x i 1=2 W(x; t n )dx. So, the Finite Volume scheme may be written as follows :

W n+1 i = W n i t x i F W i+1=2 (0 ; W i ; W i+1 ) F W i 1=2 (0 + ; W i 1 ; W i ) (17) 
where W i+1=2 (x=t; W i ; W i+1 ) is the (exact or approximate) solution of the Riemann problem ( 9) with L = i and R = i + 1. As mentionned above, the source term only contributes to the computation of the (exact or approximate) solutions W i+1=2 (x=t; W i ; W i+1 ) but it does not appear explicitly in the expression of the scheme [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF]. However, the approximation of the topography by a piecewise constant fonction implies that the numerical ux is not continuous through each interface of the mesh, contrary to the homogenous and conservative case. So, whereas the numerical ux associated with equation (3a) has to be continuous (since this equation is homogenous and conservative), the numerical ux associated with equation (3b) becomes discontinuous in the non at bottom case, according to the relations [START_REF] Garcia-Navarro | On numerical treatment of the source terms in the shallow water equations[END_REF]. In order to obtain a constant numerical ux for equation (3a), we will have, in some cases, to modify the scheme [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF] (see (21) for instance). Note that the Finite Volume scheme (17) associated with the exact interface Riemann solver (ie the Well-Balanced scheme presented in 18]) is able to maintain all steady states. Moreover, let us emphasize that the scheme ( 17) may be easily extended to a multi-dimensional framework (indeed, the formalism presented is very similar to Finite Volume schemes).

The VFRoencv formalism

Since the Well Balanced scheme [START_REF] Greenberg | Analysis and approximation of conservation laws with source terms[END_REF]) is based on an exact Riemann solver as the Godunov scheme [START_REF] Garcia-Navarro | On numerical treatment of the source terms in the shallow water equations[END_REF]), its main drawbacks are its calculation cost and the need to compute the exact solution of the Riemann problem [START_REF] Maso | De nition and weak stability of non conservative products[END_REF]. Thus, the state W i+1=2 (x=t; W i ; W i+1 ) is computed by approximate Riemann solvers. All the Riemann solvers presented here may be derived from the VFRoencv formalism 5, 11]. The VFRoencv schemes are based on the exact solution of a linearised Riemann problem. Their construction may be split in three steps. The rst step consists in writting the initial system under a non-conservative form, by an arbitrary change of variable Y (W ) (we denote by W (Y ) the inverse change of variable). Afterwards, the Riemann problem ( 9) is linearised averaging the convection matrix : 8 > < > :

Y ;t + B( b Y )Y ;x = 0 Y (x; 0) = ( Y L = Y (W L ) if x < 0 Y R = Y (W R ) if x > 0 ( 18 
)
where

B(Y ) = (W ;Y (Y )) 1 F ;W (W(Y )) W ;Y (Y ) and b Y = Y L + Y R 2 .
As a result, the Riemann problem (9) becomes a linear Riemann problem, which is solved exactly.

Denoting ( e l k ) k=1;2;3 and ( e r k ) k=1;2;3 respectively left and right eigenvectors of B( b Y ), ( f k ) k=1;2;3 eigenvalues of B( b Y ), the exact solution Y (x=t; Y L ; Y R ) of ( 18) is de ned by :

Y (x=t; Y L ; Y R ) = Y L + X x=t< f k t e l k : Y ] ] R L e r k = Y R X x=t> f k t e l k : Y ] ] R L e r k : (19) 
where ] ] R L = R R . Thus, the solution written related to the conservative variable is

W (x=t; W L ; W R ) = W (Y (x=t; Y L ; Y R )) :
(20) On a conservative and homogeneous framework, the numerical ux is de ned by the conservative ux computed with the approximate solution at the interface x=t = 0. However, the Riemann problem (9) provides a stationary wave at the interface, which introduces a jump of the numerical ux across it (which appears even when the exact solution of ( 9) is computed). We emphasize that the source term of topography gZ 0 f (x) appears naturally and explicitly in the expression of intermediate states computed by the following schemes.

The VFRoe (Z

f ; h; Q) scheme
We consider rst the conservative variable W = t (Z f ; h; Q). Note that this solver corresponds to the initial VFRoe scheme 22]. The main interest of this interface Riemann solver is the discrete continuity of Q through the stationary wave, in agreement with the Riemann invariant (13a). If we develop the system (3), we can write the convection matrix (which identi es with the jacobian matrix of the numerical ux F ;W (W)) :

B(Y ) = 0 @ 0 0 0 0 0 1 c 2 c 2 u 2 2u 1 A :
Eigenvalues of the matrix B(Y ) are :

1 = 0; 2 = u c; 3 = u + c: The associated matrix of right eigenvectors is : = 0 @ c 2 u 2 0 0 c 2 1 1 0 u c u + c 1 A :
If we refer to the exact solution [START_REF] Le Roux | Discr etisation des termes sources raides dans les probl emes hyperboliques[END_REF] of the linearised Riemann problem (9), we can write :

W 0 + ; W L ; W R = W 0 ; W L ; W R + Z f ] ] R L c2 ũ2 0 @ c2 ũ2 c2 0 1 A where ũ = u( b Y ) and cc( b Y )
. This implies that the discharge Q is continuous through the stationary wave, according to relation (13a). So, the scheme associated to h is conservative. By the same way, one may write the relations to connect a state W to a state W a through the u c wave :

W = W a + 1 2 c Z f ] ] R L c ũ + (c + ũ) h] ] R L c Q] ] R L c ! 0 @ 0 1 ũ c1
A and the relations to connect a state W to a state W b through the u + c wave :

W = W b + 1 2 c Z f ] ] R L c ũ + (c ũ) h] ] R L c + Q] ] R L c ! 0 @ 0 1 ũ + c1 A :
3.4 The VFRoencv (Z f ; 2c; u) scheme

We consider herein the change of variable Y (W ) = t (Z f ; 2c; u). The choice of variable Y was motivated by the form of Riemann invariants associated with waves of speed u c and u + c which are respectively u + 2c and u 2c (see ( 6) and ( 7)). Moreover, in the at bottom case (5), variable t (2c; u) provides a symmetrical convection matrix and the condition to maintain a positive intermediate sound speed is formally the same as the condition of vacuum occurence [START_REF] Colombeau | Multiplication of distributions[END_REF] (see for more details 10] and 4]).

The system (3) may be written related to Y as follows : Z f;t = 0 (2c) ;t + u(2c) ;x + cu ;x = 0 u ;t + c(2c) ;x + uu ;x + gZ f;x = 0: Note that this system is de ned only if h > 0 and focusing on smooth solutions. The convection matrix B(Y ) is : The solution provided by the linearised Riemann problem verify through the stationary wave :

B(Y ) = 0 @ 0 0 0 0 u c g c u
Y 0 + ; Y L ; Y R = Y 0 ; Y L ; Y R + Z f ] ] R L ũ2 c2 0 @ c2 ũ2 gc gũ 1 A :
The relation between a state Y and a state Y a through the u c wave may be written :

Y = Y a + g 2(ũ c) Z f ] ] R L + c] ] R L u] ] R L 2 ! 0 @ 0 1 1 1 A
and the relation to connect a state Y to a state Y b through the u + c wave is :

Y = Y a + g 2(ũ c) Z f ] ] R L + c] ] R L + u] ] R L 2 ! 0 @ 0 1 1 1 A :
One may easily note that the discharge Q computed by the VFRoencv (Z f ; 2c; u) solver is di erent on both sides of the interface. Hence, the scheme ( 17) is not conservative according to the equation (3a). To avoid this problem, a new Finite Volume approximation of (3a) may be introduced :

h n+1 i = h n i t 2 x i (Q i+1=2 + Q + i+1=2 ) (Q i 1=2 + Q + i 1=2 ) (21) 
where Q i+1=2 and Q + i+1=2 refer respectively to values at the left and the right side of the interface x i+1=2 . The scheme obtained from this approximate Riemann solver is able to deal with vacuum in the at bottom case, according to tests provided in 4]. Moreover, some numerical results are provided in the last section with occurence of dry area on a non trivial topography.

The VFRoencv (Z f ; Q; ) scheme

This approximate Riemann solver follows the same formalism as above. We consider herein the variable Y (W) = t (Z f ; Q; ) (with Q = hu and = u 2 =2 + g(h + Z f )). However, we may remark that this change of variable is not inversible, which may cause some problems to de ne the numerical ux. The choice of Y is related to the form of the Riemann invariants associated with the null velocity wave (13). The system (3) written related to Y is : Z f;t = 0 Q ;t + uQ ;x + h ;x = 0 ;t + gQ ;x + u ;x = 0: As a result, the convection matrix B(Y ) is :

B(Y ) = 0 @ 0 0 0 0 u h 0 g u 1 A :
As above, eigenvalues of matrix B(Y ) are : 1 = 0; 2 = u c; 3 = u + c: If is the matrix of right eigenvectors, we may write : = 0 @ 1 0 0 0 c c 0 g g 1 A :

The approximate Riemann problem to solve is the same as [START_REF] Greenberg | Analysis and approximation of conservation laws with source terms[END_REF], whose solution Y (x=t; Y L ; Y R ) is de ned in [START_REF] Le Roux | Discr etisation des termes sources raides dans les probl emes hyperboliques[END_REF]. We have the following relation through the stationary wave :

Y (0 + ; Y L ; Y R ) = Y (0 ; Y L ; Y R ) + 0 @ Z f ] ] R L 0 0 1 A : 13 
Thus, the solution computed by this Riemann solver is in agreement with the Riemann invariants (13a) and (13b). Hence, this approximate Riemann solver associated with the scheme ( 17) is able to maintain a large class of steady states, ie those based on the Riemann invariants (13) (see remark 4). A state Y may be connected to a state Y a through the u c wave by :

Y = Y a + 1 2c Q] ] R L + c ] ] R L 0 @ 0 c g 1 A
and a state Y is connected to a state Y b through the u + c wave by :

Y = Y b + 1 2c Q] ] R L + c ] ] R L 0 @ 0 c g 1 A
Remark 2. The convection matrix B(Y ) may be written in a symmetrical form, as follows :

B(Y ) = 0 @ 0 0 0 0 u h 0 g u 1 A = 0 @ 1 0 0 0 1 0 0 0 h=g 1 A 1 0 @ 0 0 0 0 u h 0 h hu=g 1 A
Remark 3. Note that the system [START_REF] Eymard | Finite Volume Methods[END_REF] provides a pseudo-conservative form for smooth solutions.

Thus, one could use this form to de ne a Finite Volume scheme from it (with the VFRoencv (Z f ; Q; ) solver for instance). However, one can easily verify that, even in the at bottom case, the Rankine Hugoniot relations are not equivalent. Indeed, noting v = u ( the shock speed), the jump relations provided by the (real) system in the at bottom case (5) are : hv] ] = 0 (22) hv v] ] + gh h] ] = 0 (23) whereas the jump relations provided by the pseudo-conservative system [START_REF] Eymard | Finite Volume Methods[END_REF] in the at bottom case write :

hv] ] = 0 (24) v v] ] + g h] ] = 0 [START_REF] Toro | Riemann solvers and numerical methods for uid dynamics[END_REF] which are not equivalent to the previous relations.

Remark 4. According to remark 1 and relations [START_REF] Garcia-Navarro | On numerical treatment of the source terms in the shallow water equations[END_REF] (assuming that the Riemann invariants and the Rankine Hugoniot relations identify through le LD eld), one can de ne the following discrete steady states :

Q] ] i+1 i = 0 (26a) ] ] i+1 i = 0:
(26b) Moreover, these states strictly include steady states with u 0 :

u i = 0 (27a) h + Z f ] ] i+1 i = 0: (27b)
Remark 5. Steady states [START_REF] Van Leer | Toward the ultimate conservative di erence scheme V. A second order sequel to Godunov's method[END_REF] are exactly preserved by the VFRoencv (Z f ; Q; ). Moreover, all

VFRoencv schemes presented here preserve exactly steady states (27).

We turn now to the second class of methods based on the splitting method.

Fractional step method

We present now a new scheme, based on a fractional step method (see 24], 21] and 26]). The system (3) is split in two parts. The rst one is the conservative and homogenous system of P.D.E. :

h ;t + (hu) ;x = 0 (28a) (hu) ;t + hu 2 + g h 2 2 ;x = 0: (28b)
The second one is the system of O.D.E. : h ;t = 0 (29a) (hu) ;t = ghZ 0 f (x): (29b) The e ects of the source term are decoupled from the conservative system. So, a robust method may be applied to compute the system (28) (ensuring positivity of h), and a classical method is used to solve the O.D.E. (29).

The VFRoencv (2c; u) scheme

To compute the (strictly) hyperbolic, conservative and homogenous system (28), we propose the VFRoencv (2c; u) scheme (see 10] and 4]). This system may be written in terms of non conservative variable Y (W) = t (2c; u). Hence comes : @Y @t + B(Y ) @Y @x = 0 with:

B(Y ) = u c c u : Matrix B(Y ) is symmetric.
The intermediate state is given by (we set here Ŷ = Y ) :

u s = u c] ] R L (30a) c s = c u] ] R L 4 (30b) 
where ] ] R L represents R L , for each interface Riemann problem. Note that the linearization has been made around the state (2c,u). Vacuum arises in the intermediate state of linearized Godunov solver if and only if initial data makes vacuum occur in the exact solution of the Riemann problem associated with the non linear set of equations (see the condition ( 8)). Actually, when focusing on the solution of the Riemann problem, vacuum may only occur when initial data is such that two rarefaction waves develop. Riemann invariants are preserved in that case, hence u +2c (respectively u 2c) is constant in the 1-rarefaction wave (respectively the 2-rarefaction wave). Due to the speci c form of the linearized system written in terms of non conservative variable Y , one gets from a discrete point of view : u R 2c R = u s 2c s (31a) u L + 2c L = u s + 2c s :

(31b) Thus, the linearized solver is well suited to handle double rarefaction waves in the solution of the exact Riemann problem. Hence, the discrete condition to ensure the positivity of c s is :

u R u L < 2( p gh R + p gh L )
which exactly identi es with the continuous condition (8).

The fractional step method

The Finite Volume scheme which computes the homogenous system (28) may be written as follows :

W n+ 1 2 i = W n i t x i F W i+ 1 2 (0; W i ; W i+1 ) F W i 1 2 (0; W i 1 ; W i ) (32) 
where W i+ 1 2 (x=t; W i ; W i+1 ) is the solution of the Riemann problem at the interface x i+ 1 2 , approximated by the VFRoencv (2c; u) solver. The system of O.D.E. ( 29) is approximated by an explicit Euler method for the time part, and by a centered discretisation for the space part :

h n+1 i = h n+ 1 2 i Q n+1 i = Q n+ 1 2 i t x i gh n+ 1 2 i Z f i+1 Z f i 1 2 : (33)
Note that the property of the VFRoencv (2c; u) scheme concerning the occurence of vacuum is not modi ed by step (33). Some numerical results with dry area provided in the following con rm the good behaviour of the fractional step method over vacuum. Note that neither steady states [START_REF] Van Leer | Toward the ultimate conservative di erence scheme V. A second order sequel to Godunov's method[END_REF] nor steady states (27) are maintained by the whole algorithm. This phenomenon is well known and will be discussed in the following, based on some numerical experiments, to emphasize that the algorithm is able to converge towards steady states.

Remark 6. In the at bottom case, the fractional step method (32)-(33) and the VFRoencv (Z f ; 2c; u) scheme presented before provide the same algorithm.

Remark 7. The two steps may be recast in one single step form, as follows :

h n+1 i = h n i t x i Q i+ 1 2 Q i 1 2 Q n+1 i = Q n i t x i hu 2 + gh 2 =2 i+ 1 2 hu 2 + gh 2 =2 i 1 2 t x i gh n+1
i Z f i+1 Z f i 1 2 where ( ) i+ 1 2 denotes the variable computed by the VFRoencv (2c; u) scheme at the interface x i+ 1 2 .

A higher order extension

All schemes previously presented are derived from \ rst order" methods. We introduce in this section an extension to obtain more accurate results and to increase rate of convergence (related to the mesh size). This method is based on a linear reconstruction on each cell by the method introduced by B. Van Leer in 25], namely MUSCL (Monotonic Upwind Schemes for Conservation Laws). This formalism is usually applied in a conservative and homogenous framework (see 11] for numerical measures with some VFRoencv schemes on Euler system, with non smooth solutions). However, the source term of topography deeply modi es the structure of the solutions. When applied to the shallow-water equations on a at bottom, the MUSCL method would limit the slope of variables h and u for instance. However, the source term of topography must be taken into account. Indeed, refering to a steady state such that h + Z f C ste and u 0, a classical MUSCL reconstruction breaks the balance of the state. Since a general class of steady states are de ned by Q and constant (see remark 4), one may require that the reconstruction does not modify these states. Moreover, the method must be able to deal with vacuum. We present here a slope limiter which veri es these requirements. For a sake of simplicity, all variables used in this section are supposed to be time-independant. Indeed, the MUSCL method is applied at each time step, ie t is locally xed to t n at the n th time step. Moreover, though this MUSCL method may be computed on irregular meshes, we restrict this presentation to constant space step x. Some notations are rst introduced. Let f i g i2Z a variable, constant on each cell, where a cell is I i = x i 1=2 ; x i+1=2 ]. Let x i = (x i+1=2 + x i 1=2 )=2 and i ( ) the (constant) slope associated to i on the cell I i . Let lin i (x), x 2 I i , the function de ned on I i by : lin i (x) = i i (x x i ) x 2 I i : Thus, to compute numerical ux at an interface x i+1=2 , the initial data become lin i (x i+1=2 ) and lin i+1 (x i+1=2 ) of the local Riemann problem instead of i and i+1 . This step is the same as in the classical framework. The modi cation of the algorithm to take into account the topography is thus restricted to the choice of variables for which the MUSCL reconstruction is applied to and to the computation of the slope i . The rst variable is the momentum Q. A classical minmod slope limiter is used (see for instance 19]) :

i (Q) = ( s i+1=2 (Q) min jQ i+1 Q i j; jQ i Q i 1 j = x if s i 1=2 (Q) = s i+1=2 (Q); 0 else; ( 34 
)
where s i+1=2 ( ) = sign ( i+1 i ): Such a slope limiter is TVD (Total Variation Diminishing) in the following sense : Property 1. Let an open subset of R (here = R).

Let us de ne the total variation of a function v 2 L 1 loc ( ) : jjvjj = sup Z v div dx; 2 C 1 0 ( ); jj jj L 1 ( ) 1 :

If v cst and v lin are the functions which respectively represent the constant and linear piecewise approximations of v :

v cst (x) = v i i 2 Zsuch that x 2 I i ; v lin (x) = v lin i i 2 Zsuch that x 2 I i ;
then v lin de ned by the minmod slope limiter veri es :

jjv lin jj jjv cst jj:

The linear reconstruction on Q based on (34) veri es property 1. As mentionned above, stationary states must be preserved by the method, in order to permit convergence in time to steady states. To satisfy this requirement, one may choose to apply the reconstruction on and to verify the property 1 for . However, the change of variable from (h; Q) to (Q; ) is not inversible. Thus, the slope limitation is made on the water height, but the computation of the slope i (h) is modi ed to take into account . Let us rst de ne :

i (h) = 8 > > > > < > > > > : s i+1=2 (h + Z f ) min h i ; if s i 1=2 (h + Z f ) j(h + Z f ) i+1 (h + Z f ) i j; = s i+1=2 (h + Z f ) j(h + Z f ) i (h + Z f ) i 1 j = x 0 else. ( 36 
)
The term h i in the minimum enables the method to deal with vacuum. The pro le of does not appear in the computation of i (h) (though and g(h + Z f ) identify when u 0). Hence, when the source term is locally non null (ie Z f i 1 6 = Z f i or Z f i 6 = Z f i+1 ), i (h) must be modi ed, according to values of i 1 , i and i+1 . Since the slope limiters are based on a TVD requirement for the linear reconstruction, we impose a TVD-like condition on , for the computation of i (h). Let be the function :

(Z f ; h; Q) = Q 2 2h 2 + g(h + Z f ):
All methods presented in this paper use the following values, 8i 2 Z:

i = Z f i ; h i i (h) x 2 ; Q i i (Q) x 2 ; i = Z f i ; h i ; Q i (= i ); + i = Z f i ; h i + i (h) x 2 ; Q i + i (Q)
x 2 : Following these notations, i is the value of at the center of each cell I i , i is the value of at the right of each interface x i 1=2 and + i is the value of at the left of each interface x i+1=2 , i 2 Z. The computation of numerical ux at an interface x i+1=2 needs + i and i+1 . Following notations previously introduced, let Z cst f , h cst and Q cst be the piecewise constant approximations and let Z lin f , h lin and Q lin be the piecewise linear approximations. Thus, one can easily verify that jj (Z lin f ; h lin ; Q lin )jj is not less or equal to jj (Z cst f ; h cst ; Q cst )jj. Hence, the reconstructions (34) and (36) do not imply that veri es property 1. An idea to solve this problem should be limiting \strongly" h (ie computing i (h) = 0) if (Z lin f ; h lin ; Q lin ) does not verify the TVD requirement. However, this condition may be considered too restrictive. Thus, we introduce the following condition : 0 j i i j j i i 1 j=2; 0 j + i i j j i+1 i j=2;

(37) illustrated by gure 2. 00 00 11 11
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Figure 2: a TVD-like reconstruction for Condition (37) imposes a TVD-like condition on . Indeed, assuming that i , i and + i ful ll condition (37) 8i 2 Z, if denotes the linear interpolation computed from i , i and + i 8i 2 Z, then veri es the following TVD property :

jj jj jj (Z cst f ; h cst ; Q cst )jj;
which may be seen as the counterpart of (35).

We recall now all the steps of the algorithm used to compute slopes i (h) and i (Q), 8i 2 Z:

1. Computation of i (Q) : i (Q) = ( s i+1=2 (Q) min jQ i+1 Q i j; jQ i Q i 1 j = x if s i 1=2 (Q) = s i+1=2 (Q); 0 else: 2. Computation of i (h) : if Z f i 1 = Z f i = Z f i+1
, then the minmod slope limiter is applied to compute i (h) :

i (h) = ( s i+1=2 (h) min jh i+1 h i j; jh i h i 1 j = x if s i 1=2 (h) = s i+1=2 (h); 0 else; else, i (h) is rst computed by a classical minmod limiter on h + Z f : i (h) = 8 > > > > < > > > > : s i+1=2 (h + Z f ) min h i ; if s i 1=2 (h + Z f ) j(h + Z f ) i+1 (h + Z f ) i j; = s i+1=2 (h + Z f ); j(h + Z f ) i (h + Z f ) i 1 j = x 0 else;
but if condition (37) is not ful lled, then we reset i (h) to i (h) = 0:

Let us emphasize that, when i (h) is set to 0, conditions (37) may not be veri ed (because of the limitation on Q). Some numerical results are described in the following and point out the good behaviour of the slope limiter obtained. This slope limiter is combined with a second order Runge-Kutta integration wrt time.

Numerical results

Though several VFRoencv schemes have been previously discussed, only numerical results performed by the VFRoencv (Z f ; 2c; u) scheme with the higher order extension and by the fractional step method are presented here (some complementary tests are provided in appendix). Some experiments tested herein come from a workshop on dam-break wave simulation 15]. Most of them deal with steady states on non trivial bottom. The ability of the methods to compute dry area is tested too. Let us emphasize that all the numerical results have been obtained without any \clipping" treatment (ie non-physical values like negative water height are not arti cially set to 0).

The rst four tests are performed with the same topography. The channel length is l = 25m. The bottom Z f is de ned as follows :

Z f (x) =
( 1; 2 1; 15(x 10) 2 if 8 m < x < 12 m; 0 else:

Only initial and boundary conditions are modi ed.

All tests cases are computed with a CFL number set to 0; 4.

Flow at rest

The initial condition of this test case is a ow at rest. Thus, numerically, it ful lls conditions (27), where h > 0. Since we compute a ow at rest, we impose h + Z f = max(Z f ; 0; 15) m and Q = 0 m 2 =s all along the mesh, which is composed by 300 nodes. As expected, the VFRoencv scheme exactly preserves the steady state ( gures 3 and 4). Moreover, though it is not plotted here, we may emphasize that the behaviour of this scheme stays as good as in this case when the initial conditions are h + Z f = 0; 5 m (no dry cells) or h = 0 m (no water). The fractional step method (FSM) does not maintain h+Z f and Q constant on the wet cells. The slope of topography introduces a convection of water. The fractional step method nonetheless converges towards the right solution when the mesh is re ned. The interest of the next three tests (extracted from 15]) is to study the convergence of this scheme towards a steady state. All these tests are performed on 300 cells. The boundary conditions are a positive imposed discharge Q in on the left bound, and a imposed height h out on the right bound (except in the case of a supercritical ow). The initial condition is set to h = h out and Q = 0. All results are plotted at T MAX = 200 s (and CFL = 0; 4). To discuss results, several pro les are plotted, namely h, Q, and . Moreover, to illustrate the quantitative convergence of the methods, the normalised time variation in L 2 -norm is plotted too (see gure 6 for instance) : time t in seconds for x-axis and ln jjh n+1 h n jj L 2 jjh 3 h 2 jj L 2 for y-axis.

Subcritical ow over a bump

Here, the boundary conditions are h out = 2 m and Q in = 4; 42 m 2 =s. The two solutions provided by the VFRoencv scheme and the fractional step method seem very close to each other, according to gure 5 (they are in agreement with the analytic solution). However, gures 7 and 8 focus on -norm some di erences between the two methods : whereas Q and seem to be constant in the case of the VFRoencv scheme, the fractional step method makes occur oscillations near variations of topography. The two pro les on gure 6 are superposed, and show that the two methods converge to steady state.

Transcritical ow over a bump

The boundary conditions are Q in = 1; 53 m 2 =s and h out = 0; 66 m. The analytic solution of this test is smooth, with a decreasing part, beginning at the top of the bump, with a critical (sonic) point on the decreasing part of h. Figure 9 shows that results provided by the VFRoencv scheme and the fractional step method are similar and the critical point implies no problem (though methods are based on approximate Godunov schemes). According to gure 10, the time variation of the VFRoencv scheme decreases more slowly than the one of the FSM. On gures 11 and 12, one may remark that results performed by the VFRoencv scheme are more accurate, since Q and seem almost constant. this test case at t = +1 is a state at rest on the left part of top of the bump with h + Z f = 0; 2 m and Q = 0 m 2 =s and a dry state (ie h = 0 m and Q = 0 m 2 =s) on the right side of the bump. Results are presented at several times : t = 0, 10, 20, 100 and 1000 s on gures 13, 15 and 16. Note that, since a dry zone is expected at the downstream side of the bump, variable is not de ned in this zone (thus, results plotted on gure 16 in this zone must not be taken in account). Figure 13 represents the water height computed by the VFRoencv scheme (\plus") and the fractional step method (\circle"). Results at intermediate times are slightly di erent, but denote the same behaviour. However, if the nal time T MAX is increased, the fractional step method computes, at the left of the bump, a level of water slightly lower than the level expected, namely h+Z f = 0; 2 m. This numerical phenomenon has already been pointed out by A.Y. LeRoux 18]. It is due to the non preservation of discrete steady states (27) by the fractional step method. Note however that, when the mesh is re ned, the level computed tends to h + Z f = 0; 2 m. Results performed by the VFRoencv scheme are good, the expected steady state is well approximated, as shown on gures 13, 15 and 16. Furthermore, the time variation is decreasing for both methods.

Vacuum occurence by a double rarefaction wave over a step

This numerical test is di erent from previous tests. Indeed, we do not study here the convergence towards a steady state but the ability of the numerical scheme to compute vacuum (ie dry bed). Moreover, the topography is not smooth (which indeed is not in agreement with initial assumptions). This test is based on a test proposed by E.F. Toro 15], but we introduce here a non trivial topography : Z f = 1 m if 25=3 m < x < 12; 5 m, and Z f = 0 m otherwise (the total length is still 25 m). The initial water height is initialised to 10 m and the initial discharge is set to 350 m 2 =s if x < 50=3 m and to 350 m 2 =s otherwise. Several times are presented : 0 s, 0; 05 s, 0; 25 s, 0; 45 s and 0; 65 s. In the case of a at bottom, the solution would be composed by two rarefaction waves, with a dry zone occuring between the two waves. Here, since the the topography is not at, the two algorithms introduce waves, located on the jumps of topography (see gures 17 and 18, where sign \plus" represents the VFRoencv scheme and the sign \circle" represents the fractional step method). Moreover, one may note that results computed by the two methods are close to each other, but more di usive for the FSM method (since no MUSCL reconstruction has been performed for this algorithm). Some Finite Volume schemes have been studied in this paper to compute shallow-water equations with topography. Some relations of the system have been recalled, in the case of a piecewise constant function to approximate the topography. So, according to this approximation, several Finite Volume schemes have been introduced, based on the VFRoencv formalism 5], 11], namely the VFRoencv schemes, in variable (Z f ; h; Q), (Z f ; 2c; u) and (Z f ; Q; ). All the previous schemes are able to maintain steady states with u 0 and the latter one can preserve a larger class of steady states. Moreover, a fractional step method based on the VFRoencv (2c; u) scheme (initially proposed in 4]) is presented. A higher order extension is also exposed, based on the minmod slope limiter, which takes into account steady states.

Numerical tests are performed with the VFRoencv (Z f ; 2c; u) scheme (with the higher order extension in space and a second order Runge-Kutta time integration) and the \ rst order" fractional step method (other tests are provided in appendix). Most of the test cases, extracted from 15], simulate the convergence in time to a steady states. The numerical schemes provide as accurate results as most of schemes tested in 15], without any signi cant di erence between the two schemes (except for some steady states which are not strictly preserved by the fractional step method). Moreover, occurence of vacuum (dry area) on non trivial topography is also tested. The good behaviour of the two methods may be noted too in these cases, though no \clipping" treatment has been performed (ie no non-conservative treatment of negative water heights has been computed).

Considering results performed by the Well-Balanced scheme, the accuracy expected is shown on some tests. This scheme has been compared with the VFRoencv (Z f ; 2c; u) scheme and numerical results con rm the good behaviour of the latter scheme. However, the Well-Balanced scheme is (several times) more expensive than a usual Godunov method, since the resolution of the Riemann problem is not obvious and many con gurations must be considered (this essential di culty is due to the stationary wave). Indeed, the CPU time required by the higher order VFRoencv (Z f ; 2c; u) scheme is between 10 and 100 times lower than the CPU time required by the \ rst" order Well-Balanced scheme.

We have presented too the VFRoe scheme (in variable (Z f ; h; Q)), with some results provided in appendix. The behaviour of this scheme is as good as the VFRoencv (Z f ; 2c; u) scheme. However, contrary to the VFRoencv (Z f ; 2c; u) scheme, this method fails to deal with occurence of a critical point, provided by an upstream boundary condition. Such a drawback has been emphasized too with the R.J. LeVeque scheme 20].

An interesting extension of the method presented here is to take into account a variable section S(x; h) in the one-dimensional framework. The same technique may be used to approximate the corresponding source term. the Well-Balanced scheme is due to iterative methods (Newton, dichotomy, ...) used to compute the exact solution of each interface Riemann problem. Indeed, these methods stop when the relative error is 10 5 or when the number of iterations is larger than 500.

A.2 Transcritical ow over a bump

The solution of this test case is a regular pro le for the water height, with a subcritical ow upstream of the bump and a supercritical ow downstream of the bump (see test 6.3). The 
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A Comparison with the Well-Balanced scheme

This appendix is devoted to the numerical comparison of the VFRoencv Z f ; 2c; u) scheme with the Well-Balanced scheme presented in 18]. Note that the VFRoencv scheme is computed with the higher order extension and a second order Runge-Kutta method whereas the Well-Balanced scheme tested is the original \ rst" order scheme. Two tests are presented : a subcritical ow over a bump and a trancritical ow over a bump. The same topography is used for both tests : 

A.1 Subcritical ow over a bump

This test computes a transient ow, which tends to become a steady subcritical ow (see test 6.2).

The imposed boundary conditions are Q in = 4; 42 m 2 =s and h out = 2 m. The initial conditions are Q(t = 0; x) = 0 m 2 =s and h(t = 0; x) = h out m. Figure 19 represents the water height. Results performed by the two schemes are very close to each other. The normalised variation is plotted on gure 20. The x-axis is the time and the y-axis is ln jjh n+1 h n jj L 2 jjh 3 h 2 jj L 2 . One can remark that the two pro les are similar and both methods provide a stationary result. This con rms the good behaviour of the VFRoencv scheme. Figures 21 and22 present Q and . Whereas gure 21 shows that the two methods provide almost the same result, one can denote that the two pro les are slightly di erent. The analytic solution is = 22; 04205. The slightly di erent value provided by approximation of the expected steady solution. Moreover, gure 24 shows that the two schemes compute almost stationary solutions at t = T MAX . Figure 25 shows that variable Q is accurately computed by both methods. Moreover, gure 26, which represents variable , denotes a slight di erence between the two methods, as it has already been noticed in the previous test case. This appendix con rms the good behaviour of the VFRoencv (Z f ; 2c; u) scheme. Indeed, results provided by this method with the higher order extension are very close to those provided by the Well-Balanced scheme for the two presented test cases. Moreover, the CPU time required by the VFRoencv scheme (with a second order Runge-Kutta time integration and the higher order extension) is between 10 and 100 times lower than the CPU time required by the \ rst" order Well-Balanced scheme (no accurate CPU measurement might be done, because di erent computers and di erent languages have been used to program the methods ; no optimization has been searched for the Well-Balanced scheme ; the accuracy and the CPU time of the Well-Balanced scheme deeply depends on the achieves convergence of iterative methods in the exact interface Riemann solver).

B Comparison with the VFRoe (Z f ; h; Q) scheme

We present here a numerical test performed with the VFRoe (Z f ; h; Q) scheme, with the higher order extension previously presented and a second order Runge-Kutta time approximation. The test case performed is the subcritical ow over a bump (see test 6.2). Let us recall the con guration of this test. The topography is : gure 27. Moreover, the time variation decreases with the same slope on gure 28. Figures 29 and30 show that the VFRoe scheme and the VFRoencv scheme both compute almost constant values of Q and , in agreement with the analytic solution (the relative error in L 1 -norm is around 10 5 . Thus, the VFRoe scheme provide too accurate results on this test case. As the high-resolution Godunov method proposed by R.J. LeVeque in 20], the VFRoe scheme fails to deal with occurence of transcritical ow by an inlet condition (see test 6.3), even with the higher order extension.