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GOAL-ORIENTED ERROR ESTIMATION FOR FAST
APPROXIMATIONS OF NONLINEAR PROBLEMS

ALEXANDRE JANON*, MAELLE NODET!, CHRISTOPHE PRIEUR!, AND CLEMENTINE
PRIEURS

Abstract. The main result of this paper gives a numerically efficient method to bound the
error that is made when approximating the output of a nonlinear problem depending on a unknown
parameter (described by a probability distribution). The class of nonlinear problems under considera-
tion includes high-dimensional nonlinear problems with a nonlinear output function. A goal-oriented
probabilistic bound is computed by considering two phases. An offline phase dedicated to the com-
putation of a reduced model during which the full nonlinear problem needs to be solved only a small
number of times. The second phase is an online phase which approximates the output. This ap-
proach is applied to a toy model and to a nonlinear partial differential equation, more precisely the
Burgers equation with unknown initial condition given by two probabilistic parameters. The savings
in computational cost are evaluated and presented.

Key words. Nonlinear problem; sensitivity analysis; numerical computation; many-query con-
text; probabilistic estimator

AMS subject classifications. 49Q12; 62F12; 65C20; 82C80

1. Introduction. Numerical simulation is a key component of numerous do-
mains: industry, environment, engineering, physics for instance. In some cases time
is the limiting factor, and the numerical simulation should be very fast and accurate.
For example, the control of the trajectory of a space satellite may require efficient real-
time computations. Another example would be the iterative optimization algorithm
used in numerical weather prediction, which requires numerous calls to a numerical
atmosphere model, to be performed in a limited time. In both examples, the com-
puting time is a key factor: it must be very short, either because the computation is
repeated many times in a relatively short interval (many-query context) or because
the result cannot wait (real-time context).

In this paper we work in this context, namely providing fast numerical solutions
to given problems. We are not focused on HPC (high performance computing), we are
rather interested in accelerating existing numerical methods for nonlinear problems.

We focus on the procedures of accelerating existing numerical models. These
procedures are generally called “metamodelling”, “model reduction”, “dimension re-
duction”. It consists in replacing the existing model, called the “full” model, by a fast
approximation. There exist both stochastic and deterministic approaches to building
such approximations. On the stochastic part we can mention polynomial chaos ap-
proximation [18, 2, 9], Gaussian processes (including Kriging and RKHS -reproducing
kernel Hilbert spaces) [8, 14], low-rank tensor methods [13], etc. which all provide
cheap and fast approximations of the full model. On the deterministic side we can
cite the reduced basis method [10], POD (proper orthogonal decomposition) [19], bal-
anced truncation [11], etc. All these methods have in common that they provide a
way to build a numerical model which is faster than the full model.
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2 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

Of course, accelerating the model is not the only aim these methods have. It
is crucial that they also provide accurate approximations of the full model. The
approximation error, i.e. the comparison between the full model and the metamodel,
should ideally be certified and known by the user of the metamodel. In practice, some
metamodelling methods only provide limited validation and certification so that the
user has to take a leap of faith because there is no quantified guarantee about the
metamodel accuracy. However, it is possible in some cases to design metamodels which
include a certified error bound. In this latter case, the user does not know exactly
the approximation error, but the error is guaranteed to be lower than the provided
bound. Moreover, the error bound computation is included in the metamodel, so that
its computational burden stays small compared to the full model. For example, we can
cite [12] where the authors provide such bounds in the framework of the reduced basis
method (dimension reduction). Providing such error bound for nonlinear problems is
the aim of this paper. We will clarify below precisely how we aim to do this and what
differentiates us from current approaches.

In the following, we are considering, for a given parameter p in a parameter
space P, the solution u(u) € X of an equation of the form M (u,u(p)) = 0, with
M:PxX —Y,and X, Y two finite dimensional vector spaces to be specified
further in Section 2. In many application cases, however, one is not interested in the
solution u(u) by itself, but rather in a quantity of interest, or model output, which is
a functional of this solution. Taking this functional into account when performing the
model reduction leads to a so-called goal-oriented method. For instance, goal-oriented
basis choice procedures have been successfully introduced in the context of dynamical
systems in [20, 3], where the basis is chosen so as to contain the modes that are
relevant to accurately represent the output of interest, and in a general context in [1],
where the basis is chosen so as to minimize the overall output error. All those papers
showed that using an adapted basis could lead to a great improvement of reduction
error. In [12], the authors consider, in the context of reduced basis, goal-oriented
error estimation, that is, the description of a rigorous and computable error bound
between the model output and the reduced one. In [5], the authors outperform the
accuracy of the bound in [12] by accepting a small risk « € (0,1) of this bound to be
violated. They provide a so-called probabilistic error bound.

In the present paper, we extend the results in [5] by providing a probabilistic
goal-oriented error estimation procedure for nonlinear problems M (u, u(p)) = 0, and
for very general metamodelling approaches. The main point for this generalization is
the notion of finite difference adjoint of an operator introduced in Proposition 1 of
Section 3.1.

The paper is organized as follows: in Section 2, we precise the objectives of our
study, that is the derivation of an offline/online probabilistic goal-oriented error esti-
mation procedure in a nonlinear context. In Section 3, we describe the different steps
of the procedure. More precisely, we introduce in Section 3.1, the notion of finite
difference adjoint of an operator, before extending in Section 3.2 the procedure in [5]
to nonlinear models and linear outputs. In Section 3.3, we prove that the results in
Section 3.2 can be extended to nonlinear models and nonlinear outputs. Section 3.4
provides the different steps for a practical efficient evaluation of the error bound. Some
numerical experiments are given in Section 4 where first a linear transport is consid-
ered and then the nonlinear Burgers partial differential equation. Section 5 contains
some concluding remarks and Appendix A collects the proof of some intermediate
results.

This manuscript is for review purposes only.



92
93
94
95
96

97

98

114
115
116
117
118
119
120

122
123
124
125
126

127
128
129
130
131
132
133

GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 3

2. Problem statement. Let P C R? denote a parameter space, and let P be a
probability distribution on P. Let X (resp. Y) be a finite dimensional vector space
endowed with a scalar product (,)x (resp. (,)y). In the following, when there is no
ambiguity, the dependence in the vector space for the scalar product will be omitted
in the notation (,). Let us consider a nonlinear function M : P x X — Y. Given a
parameter u € P, we denote by u(u) € X a solution to the equation:

(1) M(p,u(p)) =0,

and we define the output by

(2) s(p) = (6, ulp)) x,

for a given £ € X.

We assume that for every p € P, Equation (1) admits a unique solution in X, so
that the application s : P — R is well-defined. Denote N the dimension of X.

In a many-query context, that is in a context requiring a potentially large number
of evaluations of the output, it is common to call for model reduction. More precisely,
let X be a subspace of X, of dimension N such that N << N. We consider o : P — X
an approximation (in a very wide sense of the term) of u : P — X. Let us define the
approximate output s(u) by

s(p) = (€ ulp)x-

The objective is then to provide some probabilistic error bound between s(u) and
3(p). In other words, one accepts the risk of this bound e(u; ) being violated for a
set of parameters having ”small” probability measure « € (0,1):

P(ls(p) = 3(n)] > e(p; @) < v,

This quantity e(u; «) is a so-called “goal-oriented probabilistic error bound”.
For sake of efficiency, the computation of the approximate output can be split
into two phases:

e an offline phase, dedicated to the construction of the reduced model @, during
which one has to solve the full dimensional problem (1) only for a reasonably
small number of parameters piy, ..., fig;

e an online phase, during which we evaluate the approximate output 3(-) =
(¢,u(-)) for all queried pu.

In practice, for any p € P, the computational time of @(u) is much smaller than the
one of u(u), hence this splitting into offline and online phases can be interesting in
terms of overall computing time: the offline phase can be computationally expensive,
provided that the number of queries is large enough and/or the online phase per query
is fast enough.

In this article, we will not focus on the ways of constructing efficient offline-online
approximation procedures for u(u), as in e.g., [12], [4], [16], [7]. Assumptions on the
approximation procedure in use are very mild (see Section 3.4 and more specifically
Lemma 6). Under these mild assumptions, we propose hereafter a new procedure to
compute efficiently, using an online / offline decomposition, a goal-oriented proba-
bilistic error bound €(p; @) which generalizes the error bound described in [5] (see also
[6] for further results in control theory).
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4 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

3. Probabilistic nonlinear error bound. In this section, we aim at providing
a goal-oriented probabilistic error bound on the output. In [5], the authors propose
such an error bound in the linear context, that is assuming that for any p € P, the
operator M(u,-) : X — Y is affine (linear operator + a constant), and that the
output is also linear. In the sequel we will call linear this case, as opposed to the
nonlinear case where the model is not affine.

By accepting a small risk « € (0, 1) that this bound could be violated, the authors
avoid the use of (often pessimistic) Lipschitz bounds. In this section, we extend the
results in [5] to the nonlinear context: for any p € P, the operator M(p, ) : X - Y
is not necessarily affine. In Section 3.2, the output is assumed to be linear, then in
Section 3.3, the output may be nonlinear.

To derive an error bound, it seems natural to consider the so-called residual

(3) r(p) = M(p,u(p)) — M(p, u(p)), p € P.

In the sequel we explain why we need to define a new adjoint. To do so we recall
the computations of the linear case, in order to draw the parallel with the nonlinear
case and motivate the need for a new adjoint definition.

In the linear case, if the model M(y, -) is affine, let A(u) be the matrix representation
of M(p,-) with respect to the canonical basis of X: M(u,u) = A(u)u+b whereb € Y
is a given vector. We assume that for any u € P, A(u) is invertible. In that case, the
dimensions of X and Y are equal, i.e., N’ = S. For any matrix A let AT denote the
transpose of A. We can define w(p) € Y as the solution of the so-called dual problem:

(4) M* (p,w(p)) = AT (ww(p) =€

where ¢ € X is the one used in the definition of the linear output in (2), and with
M*(u, -) the linear adjoint of M(y,-). Let @ = {¢1, ..., ¢n} denote any orthonormal
basis of Y. We then have

s(n) —s(p) = 2
(5)

In order to adapt this procedure to the nonlinear context, we need to define a gener-
alization of the adjoint of M* : P x X x X x Y — X that still allows (5) with w(u)
defined by

(6) M (p, (), up), w(p)) = £
which generalizes (4). It is the purpose of Section 3.1 below.

3.1. Finite difference adjoint of an operator. To generalize (5) for nonlinear
problem, one wants to define an operator

M PxXxXxY = X,
linear in the last variable, such that the following identity holds:
VM S P,V$1,$2 € X,Vy € Y,

(7) <$1 - xQ,M*(ﬂ,-Tl,'IQ,y» = <M(,LL,ZZ’1) - M(Maz2)5y>'
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GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 5

Let us underline that previous definitions of nonlinear adjoint do not readily allow for
this property, such as, e.g., the one offered by Definition 2.1 in [15]:

Yu e P,Ve e X,Vy €Y, (x, M*(p,x,y)) = (M(u,x),y).

In our case the dependance in both z1,xs is crucial, and missing in previous defi-
nitions. In Proposition 1 below, we propose a new definition for the adjoint M* :
P x X x X xY — X and state its main properties.

ProposITION 1 (Finite difference adjoint). Assume that the operator M : P x
X =Y is continuously differentiable with respect to x for all x € X. Let dM(p, x) :
X — Y denote the derivative of M with respect to x € X. Let dM*(u,z) : Y — X
denote the (linear) adjoint of dM(u,x). We now define the finite difference adjoint
operator of M by

1
(8) M* (21, 29, ) — / AM* (1,23 + s(z1 — 22))(y)ds

for all (p,x1,22,y) EP X X x X x Y.
We then have the following properties:
1. Assume that M(pu,-) is linear, and let A(n) denote its matriz representation
with respect to the canonical basis of X, i.e.

Ve P, M(p,z)=Alp)z
then
V€ PVay,mp € X,Vy €Y, M*(,m1,22,y) = A(n)"y.

2. For all p € P, and for all x1,x5 € X, M*(u, x1,x2,-) is linear.
3. Identity (7) is satisfied by M*.

Proof of Proposition 1 The proof is postponed to the appendix. [

LEMMA 2. Let us now consider the adjoint problem described by (6):
Find w(u) solution of M*(u,w(p), u(p), w(w)) = £.

This problem is always linear. Let us assume that, for all u € P, it admits a solution.

Then equality (5) still holds true for all linear outputs: s(p) = (€, u(u)) and s(p) =
(€, u(p)), where r(w) is defined in (3), and {¢1,...,0x} denotes any orthonormal
basis of Y.

Proof of Lemma 2 Item 2 in Proposition 1 claims that M* is linear in its fourth
argument, thus the adjoint problem described in (6) is linear. We assume that for all
w € P it admits a solution w(p).

Following the beginning of the proof of Theorem 1.1 in [5], we expand the residual
in the basis ®:

N
9) r(p) = 3 (r(), 6) i
Then:

s(p) = s(p) = {u(p) — ulp))-
As w(u) is solution of (6), we get:

8(p) = s(p) = (M (p, a(p), ulp), wp)), ulp) — u(p))-

This manuscript is for review purposes only.
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6 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

Then, applying Identity (7) we obtain:

8(p) = s(p) = (M(p, u(p)) = M(p, u(p)), wp)) = (r(p), w(p)).

At last, considering the expansion (9), and as the basis ® is orthonormal, we get:

N

$(u) = s(u) =Y _(r(w), di)(w(p), ¢;). O

=1

3.2. Probabilistic error bound for a nonlinear model with linear output.
This section is devoted to the statement of our probabilistic error bound, in the context
where the model is nonlinear and where the output is linear.

We now introduce some notation necessary to the statement of our bound. Recall
that ® = {¢;,...,¢n} denotes any orthonormal basis of Y. Let K < N be a

“truncation index”. For any ¢ € {1,..., K}, we define:
Dz(ﬂ'a (ﬁ) = <w(/-/’)7¢1>a /anln(q)) = mlnDz(Mvi))v Bzmax(q,) = HlaXDl(/.L, q))
neEP neP

The probabilistic error bound depends on the residual defined by (3):

r(p) = M, u(p)) = M(p, u(p)) = M, a(p))-
Our aim is to propose a probabilistic upper bound for |s(u(p)) — s(u(w))|. For
N

this, let us consider the right-hand term in (5): Z(r(u), i) (w(p), ¢i). In order to
i=1

bound this term, up to the truncation argument K, it seems natural to define, for

any u € P, and for any 1 <i < K:

= { B 00,000

ow _ ﬁzmzn(@) if <T(u)a¢z> >0
Bf (.ua @) - { ﬁlmam(¢) else

K
As we want a bound for Z(T(M), iy (w(w), di)|, we finally define:
i=1
K K
T (s B, @) = D {r(1), 60) B (1, @), TL™ (1, K, @) = 3 (1), 6) B (1, @),
i=1 i=1

and
Ti(p, K, ®) = max (|17 (p, K, ®)| , |1 (1, K, ®)]) .

To deal with the terms above the truncation argument, we define:

) |

N

Z <7“(/J>, ¢z><w(u)a ¢z>

Ty(K,®) = E, (
i=K+1

Our main result is then:

This manuscript is for review purposes only.
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GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 7

THEOREM 3. Let o € (0,1). We have

P(ls(p) = s(p)| =z e(p; @) <
where the error bound e(u; ) is defined by

Ty(K, ®
clpia) = Ty (. K, @) + 2,

REMARK 1. The result of Theorem 3 is a generalization of Theorem 1.1 in [5] to
nonlinear operators M.

REMARK 2. Choice of the basis P.
The result of Theorem 3 is true for any orthonormal basis ® of Y. For efficiency
reasons, we would like to choose ® so that the parameter-independent part To(K, ®)
is the smallest possible, for a fized truncation index K € N*.

To our knowledge, minimizing To(K, ®) over orthonormal bases of Y is an opti-

mization problem for which no efficient algorithm exists. However, we can minimize
an upper bound of To(K, ®).
We define a self-adjoint, positive semi-definite operator G: Y — Y by:

(10) VoY, G = 1B, ((rl), @r(n) + (), p)uw(n).

Let Ay > Xy > ... Ay > 0 be the eigenvalues of G. Let, fori € {1,2...,N}, ¢1-G be
an unit eigenvector of G associated with the i eigenvalue, and
6 = (67, o5
We can state that:
LEMMA 4 (Theorem 1.2. in [5]). It holds

N
To(K,29) < ) | A
K+1

This lemma explains the heuristic choice of ® = ®. Indeed, if G is smooth
enough, its eigenvalues will decrease quickly and To (K, ¢I>G) should be small.

We are now in position to prove our main result.
Proof of Theorem 3 We start from the result of Lemma 2:

N

$(w) = s(p) =Y _(r(w), i) (w(p), é:)-

i=1
Then, we can argue as in the proof of Theorem 1.1 in [5]. By construction of
Ty (i, K, ®) one gets:

K

=1

< Tl(.uaK,Q)'

Thus, for any « € (0,1),

P (Ig(u) —s(u)| > Ty(u, K, ®) + w)

«

This manuscript is for review purposes only.
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<P <|§(u) = s(w)] > Z<r(u),¢i><w(ﬂ),¢i> n TZU;@))
N
<P ( Z (r(p), ¢i)(w(p), ¢i)| > Tg(i@’)) .
i=K+1

where in the last inequality, Lemma 2 has been used. Then, by Markov Inequality,
using a € (0,1), and by definition of T (u, K, ®) we get:

N
P( > (r(w), i) (w(p), ¢i)| > T2(<f’)>
i=K+1

)

247 3.3. Corollary: error bound for a nonlinear output. In this section we
248 provide an extension of Theorem 3 to the context of a nonlinear output S(u). To do
249 so we consider the following problem:

B, (|30 ke (1), 00) (w(p), )
<

T2 (K, ®)
a

=«a. O

ProBLEM 1.
250 Find v(p) such that H(p,v(p)) =0

where H : Px X — Y is a (not necessarily linear with respect to the second argument)
function, and consider the following output:

251 where [ is a (not necessarily linear) function from'Y to R.

252

253 In the context of this section, our main result is based on

254 LEMMA 5. Problem 1 can be written in the framework of a non necessarily linear
255 model M : P X (X xR) =Y and of a linear output s(u) = (£, u(p)) with £ € X x R.

256 Proof of Lemma 5 The idea consists in augmenting the state vector v(u) with the
257 output S(u):

258 Mm(g%)(ﬁg>eXxR

259  where u(p) € X denotes the first component of u(u) (corresponding to v(u)) and
260 u(p) € R its last component (corresponding to S(u)). We then define M : P x (X x
261 R) =Y by:

. wln = [ Hw ()
e Mps ulp)) (fww»—mm>’
and consider the following linear output:
. 0
5() = $() = i) = (o)) with = (] ) X xR

This manuscript is for review purposes only.
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GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 9

Problem 1 is then equivalent to:
find w(p) such that M (u,u(p)) = 0 with the output s(u) = £

This concludes the proof of Lemma 5. [
By combining Lemma 5 with Theorem 3, we get an error bound in the context of
a nonlinear output S(u). This gives a solution to Problem 1.

Computation of the finite difference adjoint of M.

Except in some particular cases there exists no explicit formulation of the adjoint
of M in the context of Proposition 1. To illustrate this purpose, let us consider the
case where H is linear (with respect to the second argument), with B(u) denoting its
matrix representation with respect to the canonical basis of X. For sake of simplicity,
let us fix X = RY. Even in that case, as the output is nonlinear, the operator M
is also nonlinear. We want to provide an explicit formulation for the adjoint of the
operator M, starting from (8). We first consider dM (g, -). For v € RN*! recall that:

M () (v) = Tim 2400 F V) = M)

a—0 «

which leads immediately to:

_ B(p)v _( B(x) (0)
a0 = (g, )= (i &)
so that dM(u, u) is the following matrix, defined by blocks:
_( B (0)

where the top left block has size N' x A/, the top right block A/ x 1, the bottom left
IxN (as f: RN - R) and the bottom right lives in R. Then we have, for 2,2’ € RV

M (piz,a',) = Al(BW” WA (da

e <
S~

(0) -1
_ (BWO(EWW%ﬂ@—fDmW>()
(0) -1

The above formula cannot be simplified, in general. Except in special cases, the
integral over (0,1) therefore must be numerically computed. In Section 4 we will
consider both cases, analytical (Section 4.1) or numerical computation (Section 4.2).

Below we provide examples for which an explicit formulation for the integral

1
/ df (' + a(x — 2')) da) " is available.
0

EXAMPLE 1 (Special case N’ = 1). In the special case where N' = 1 we can change
variable in the integral:

/1df(m'+a<w—x’>)dazw

0 z—a

Although this case is exceedingly simple (because for any numerical problem N> 1),
this kind of simplification can happen in other cases, as we will see below.

This manuscript is for review purposes only.
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285 EXAMPLE 2 (Special cases /f explicit). In some cases the above integral can

2

0

6 also be explicitly computed. We give a few nonlinear examples below.

1. f additive: f: RN — R,z — flx) = Zfz(»%) where f; are R — R differ-
i=1
entiable functions. In that case, the previous change of variable still applies,
and we get:

1 1
/dfT(x'+a(m—x’))da=/ (fi(z} + a(xy — 2)),...) da
0 0

_ <f1(x1)—f1(m’1) _ fN(JJN)—fN(xﬁv)>

/ LA /
r] — ) TN — Thy
287 For example:
N
(a) f:RY SRz flz)= sz
i=1

1
/ dfT (2" + oz — o)) do = (z1 + 2, 22 + b,y 2n + 2y)
0

N
(b) fiRY SRz f(z) =) €™
=1

1 Ty ) TN _ ST
/dfT(x'+a(xz’))doz—<e el,...,e ¢ >
0

r1 — T TN — Ty,

N 1/2
2. [ RV SRz f(z) = (me)
i=1

/1 dfT (2" + a(z — 2')) da
01

1
= /0 . 1/2(1"1+o¢(x17x’1),...)doz
(2 @)+ ala —a)?)
288 which can therefore be explicitly computed as a function of x and x’ coordi-
289 nates:
290
1 1
291 (xhail/z —zv/ca ! + §7a*3/2 + aiy/ea™t — ézvgb'yafg'/z + zida"1/?

1 1
292 +zivVa+b+cat— ixib&f?’ﬂ —ziVa+b+ecat + gxgbda*?’m)

293 i=1,.. N
294 where:

N N N
295 a= Z(zz —a'5)?, b:2in(:17,; —2'y), c:Zx'?,

i=1 i=1 i=1
296

, b+ 2/ac b+2a+2vVa+b+cya
297 ’y:lnfﬁ:ln Ja
a

This manuscript is for review purposes only.
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Dual error bound in the context of a nonlinear output. . Let us come back to our
initial purpose, that is the extension of our procedure to the context of a nonlinear
output. The adjoint problem writes:

M. ut) w) = ¢ = (] ) € X xR

In a general context, the existence of a solution to this problem is not trivial, and
may fail. However, if the operator H is linear, even if the output is nonlinear, as the
adjoint problem writes equivalently:

1
BT (n)w + /0 df "(u+s(@—u))wds = 0 } N equations 7
—w = 1 } 1 equation

the unicity of the solution is provided as soon as B(u) is invertible. In other words,
w is equal to:

1
wW=B""(n) / df " (@ + s(u — 1)) ds.
0

3.4. Efficient bound evaluation in a many-query or real-time context.
In practice, the error bound €(y; &) used in Theorem 3 can not be directly evaluated,
and one has to define a computable approximation €(y;a). Our approximation is
justified and commented in [5] Section 1.3, and we recall it here for sake of self-
containedness. We end this section with Lemma 6, which gives sufficient conditions
to ensure efficient computation of our online error bound.

Estimation of ®. We consider a finite subset of parameters Z C P, randomly
sampled from the probability distribution P, and we estimate the linear operator
G :Y — Y by a linear operator G : Y — Y defined as:

Vo €Y,Gyp = 2#% Z ((r(p), @)r (1) + (w(p), e)w(p))

and we take as {¢;}i=1, . x the unit eigenvectors of G associated with its K largest
eigenvalues. The computation of these eigenvectors can be entirely processed during
the offline phase (see [5, Section 1.3] for more details).

Computation of T;(u, K, ®). Recall that

Ty (. K, ®) = max (|17 (n, K, @), |17 (1. K, ®)|)

with
K
Tlup(ﬂa K, (I)) = Z(T(N)v ¢i>/6?p(.u’a {)) )
7,[_{1
Tllow (1, K, ®) = Z<T(M)7 ¢i>6£0w (1, ®).

1

.
Il

The B(u, ®) constants can be approximated using a simple discrete minimization
(ie., replacing P by a discrete sample = in the minimum/maximum defining 3**(®)
and ™" (®)). In some cases, one can use a continuous optimization method to solve
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these minimum/maximum problems. It is clear that all these computations can be
done during the offline phase.

We now discuss the computation of the K scalar products (r(u), ¢;) (i =1,..., K)
with an offline/online procedure.

LEMMA 6. Let {y1,...,ys} denote an orthonormal basis of Y and {x1,...,zx}
denote an orthonormal basis of X. Assume that M : P x X =Y is defined by:

N S
(11) M </~Lﬂzlel> :ij(ﬂuvla”'uv/\/)yj'
i—1 j=1

where for all j =1,...,8, m; is a function from P x RV to R.
Assume moreover that: ¥j=1,...,8,Vu € P, V(v,...,0n) € RV,

Tj
(12) M (w1, on) = Y Qi(vn, - un) ()
k=0
with
hiy:P—R, Vke{0,...,T}
and
(13) Qkj(v1,.. ., 0n) = Z Gj .k H v
a=(a1,...,an )€l k eV,
where:
N T
iy CNY, T= Ly, #I=M
(14) jL:Jl k=1
Vo C{1,....N}, mE;(#{Va} =1L
We set
T = max Tj
j=1,...,8

Recall that N << N is the dimension of X. Let

R = max max « at+N-1
7046[ leVy ! N -1

Then, it is possible to compute all the scalar products {r(p), ¢;) (i =1,..., K) with an
offline/online procedure whose online phase has a cost of the size

O(T xMxLxR)

REMARK 3. The decomposition

T;
mj(/J“alula"'alUN) = ZQk,j(U17"'7UN)hk(/~‘L)
k=0

with
hiy:P—=R, Vke{0,...,T}

plays an analogous role to the “affine parameter dependence” that is commonly as-
sumed in the linear litterature (see, e.g., [12], page 1526).
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GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 13

REMARK 4. Let us emphasize that, in the previous result, the cost does not depend
on the high dimension N. Therefore if we assume that T, M, L and R << N, then
it is possible to compute the K scalar products, with an offline/online procedure with
a small cost (with respect to N).

REMARK 5. Note that it is possible to work with the K scalar products themselves,
without any approrimation, especially in the case where the polynomial decomposition
presented above is not valid. In that case, the cost of the online phase is O (N), which
is still better than the full problem, whose complezity is O (N'®) with o > 2 in most
cases.

In the polynomial case, Lemma 6 above allows to reduce the cost of the online phase
to a cost which does not depend on the high dimension N anymore.

Proof of Lemma 6 The proof is postponed to Appendix A.2. [
Approximation of T5(K, ®). A Monte-Carlo estimator of To(K, ®) is used:

T2 (K. ®) = 5= 3 [500) = s(0) = 300 60) (). )

WEE i=1

where Z is a sample of P.

As this quantity is pu-independent, it can be computed for once during the offline
phase. The error analysis, which is related to the central limit theorem, is discussed
in [5, Section Al.

Computable error bound We now rely on Proposition 3 and set:

. Ty(K,®
(i) = Ty (. K, @) + 20,

It is an estimator for the error bound €(y; ) in Theorem 3.
4. Numerical experiments.

4.1. First experiments with a toy model. We now apply our error bound
on a non-homogeneous linear transport equation with a nonlinear output. We use the
results of the corollary (Section 3.3).

4.1.1. Toy model. Let u. = u.(x,t) be the solution of the linear transport
equation:

8ue( f+ Oue
ot oY TGy

for all (x,t) € (0,1) x (0, 1), satisfying the initial condition:

(z,t) = sin(x) exp(—x)

Ue(z,t =0)=x(1—x) Vze€[0,1],
and boundary condition:
uc(x =0,t) =0 Vtel0,1].

The parameter p is chosen in P = [0.5, 1] and P is endowed with the uniform measure.
We choose a number of timesteps Ny and a number of space points N, we set A; =
1/N; and A, = 1/N,, and we introduce our discrete unknown u = (u}');=o,.... N, :n=0,....N, J}
We note here that the considered PDE is an hyperbolic evolution equation, and
that we perform the reduction on the space-time unknown u, of dimension N =
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(Nz +1) - (Ny + 1). This is different from reducing the space-discretized equation at
each time step.
The u vector satisfies the discretized initial-boundary conditions:

(15) Vi, ud =il (1 —iA,)

(16) Vn, ujg =0

and the first-order upwind scheme implicit relation:

n+1 n+l _nl

" —ul !
(17) Vi, n 2% S 25 Y uqu B sin(iA,) exp(—iA,).
At Aac

Let B(p) (resp. ¢) be the matrix (resp. the vector) so that (15),(16) and (17) are
equivalent to:

(18) B(u)u = ¢ € RY with N = N, x N;.

We consider the different outputs of interest of Example 2 in Section 3.3:
2
e Square output: s(u) = (u%;)
e Exponential output: s(u) = exp (u%;)

e Triple exponential output: s(u) = exp <3u%;)
In the following, we take A; = 0.02 and A, = 0.05.

4.1.2. Reduction. The approximation @ of u is computed by using a “reduced
basis” approach [12]. To be more specific, @ is the solution of:

7' B(u) Zi = 7',

where Z is an appropriate matrix found by Proper Orthogonal Decomposition (POD)
(see [17] for instance). The Z matrix is the matrix of an orthogonal set of n vectors
in X =RV , endowed with the Euclidian scalar product. The n number is called the
reduced basis size. The larger n is, the more precise the approximation 4 = wu is, but
also the the more expensive the computation of w is, so that a compromise must be
found.

__ The Z matrix is computed using a POD snapshot of size 70, and N = 20 retained
(bZG vectors. We took a very low risk level a = 0.0001.

4.1.3. Results. In Figure 1, we plotted, as functions of the reduced basis size,
the true error and the error bound means on a sample of 200 random parameter values,
for the three different output cases (square, exponential and triple exponential).

The graphs show that our error bound remains accurate and sharp with respect
to the true error, despite the highly-nonlinear output functions that have been chosen
(yet, it seems almost unaffected by the degree of nonlinearity in the output).

4.2. Burgers experiment. In this section, we are interested in the discretized
Burgers’ equation, as an example of nonlinear model.
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: -
Bound on non-corrected output
“““ True error on non—corrected output ‘

Bound on non-corrected output
True error on non-corrected output

10° L L L . . L 107 . . N L L N
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Reduced-basis size Reduced-basis size

T T
Bound on non-corrected output
“““ True error on non—corrected output

6 7
Reduced-basis size

Fic. 1. Comparison between the mean error bound and the true error, for different reduced
basis sizes, in the square (top left), the exponential (top right) and the triple exponential
(down) output case.

4.2.1. Description of the model and output of interest. We are looking
for u = u(t, x) satisfying:

du  19(u?)

ot ' 2 Ox
u(t,r =0)=1 Vt

u(t =0, ) = cos?(ax) + B

where the parameter vector p = (a, 8) belongs to [0,1] x [0, 1].

We discretize the above equation by using an upwind scheme. We choose a number
of timesteps N; and a number of space points N, and we set A; = 1/N; and A, =
1/Ny, and we look for (u');n, where i =0,...,N;, —1land n=0,..., N, — 1 so that:

n+1 n n+1 n+1
U — U, U, —U;_ .
e e o Zl—0 vi>1
At Aa;
ug =1 Vn

u) = cos? (i) + Bil, Vi
The output functional of interest is given by the ¢ vector defined by:

én_{ i I(i,n) € {|Ny x No/3] — 1, [Ny x Ny /5] — 1}
© 7] 0 else.
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where I(i,n) =n* N, + 4, and |y| denotes the floor of y.

4.2.2. Reduction. As for the toy model, the reduction is performed on the full
space-time state vector (u;'); . We also choose a Z matrix by a POD procedure, then

define the reduced state vector (4 )., as:

(a?)l,n(u) = argrﬂinveRamge(Z) | |M(M’ U) ‘ |2

||? denotes the Euclidean norm.

where Range(Z) is the column space of Z, and || -
4.2.3. Numerical experiments. Table 1 gives the name and description of

the various parameters used in the numerical code. Table 2 describes the various

experiments that have been performed and links to the associated figures.

Parameter H Description \ Usual range
N, Number of space discretization points 10 - 80
N; Number of time steps 10 - 20
Niost Monte-Carlo sample size 100
Nenap Size of the POD training sample set 70
Ny Index K for the estimation of T} using basis ¢¢ 8
Npasis Size of the POD basis 3-10
A Time step A =1/N,
Ay Space step A, =1/N,
TABLE 1

Descriptions of the numerical parameters.

Experiment label || Ny | Nz | Niest | Nsna N, Figure
| [ N [ N | [ Nonap [ Ny |

(a) t10x 210 || 10 | 10 | 100 | 70 | 8 2
(b) 20 x 210 || 20 | 10 | 100 | 70 | 8 2
(c)t10x 220 || 10 | 20 | 100 | 70 | 8 3
(d)t20x 220 || 20 | 20 | 100 | 70 | 8 3
(e)t10 x 240 || 10 | 40 | 100 | 70 | 8 4
(f) 20 x 240 || 20 | 40 | 200 | 150 | 12 4
(g) t10x 280 || 10 | 80 | 100 | 70 | 8 5
(h) £20 x 280 || 20 | 80 | 200 | 150 | 12 5

TABLE 2
Numerical setup of the different experiments.

Figures 2, 3, 4 and 5 present the true error and the error bound for a size of the
POD truncated basis varying from 3 to 10, with N, = 10,20, N, = 10, 20, 40, 80 and
other parameters described in Table 2.

To quantify the computing gain we define and compute the following speed up
ratios. The first ratio ry is fitted to study real-time problems computing gain:

_ full pb computing time

~ online computing time

Indeed for real-time problem the offline cost is not an issue, and one is really interested
in the online accelaration.
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10 . . , : : 10 T T T T . T
Bound on non-corrected output ——— Bound on non-corrected output
“““““ True error on non—corrected output ++++ True error on non-corrected output
107 E
10°F E
107 E
107°F £
10° L L L L s | 107 . L L L L L
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Reduced-basis size

Fic. 2. True error (dashed line) and error
(left) and (b) €20 x 210 (right).

Reduced-basis size

line) for experiments (a) t10 x 10

10 T T T T

Bound on non-corrected output
++++++ True error on non—corrected output

10° L L L L L L

: : :
—— Bound on non-corrected output
+++++++ True error on non—corrected output

6 7
Reduced-basis size

Fic. 3. True error (dashed line) and error
(left) and (d) t20 x 20 (right).

10 T T T T T
Bound on non-corrected output
rue error on non-corrected output
10" F
1072 B
10°F
104 E
107 F 3
1o 3 4 5 6 7 8 9 10
Reduced-basis size
Fic. 4. True error (dashed line) and error

(left) and (f) t20 x x40 (right).

10° L L L L L L

6 7
Reduced-basis size

bound (plain line) for experiments (c) t10 x x20

10 T T T T

T
Bound on nen-comedted cutput
Trus smor on non-corredted cutput

108 L L L L

6 7 B 9
Reduced-basis size

bound (plain line) for experiments (e) t10 x x40
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Bound on non-corrected output
True error on non-corrected output

s L L L L L L
9 Cl 7
Reduced-basis size

Reduced-basis size

Fi1G. 5. True error (dashed line) and error bound (plain line) for experiments (g) t10 x 80
(left) and (h) t20 x x80 (right).

On the contrary, for many-query problems, the total computing time is the quantity
of interest, and we shall therefore define and compute the second speed-up ratio ro:

K x full pb computing time

~ offline + K x online computing time

with K = 1000.

The larger the speed ratios, the more efficient the use of a reduction procedure is. In
our experiments, the computing time were real elapsed times computed using Matlab
tic and toc functions. We summarize in Tables 3 and 4 the full, online and offline
costs, as well as the speed up ratios, for the various experiments described in Table 1.

Experiment name (a) (b) (c) (d)
t10 x 10 | t20 x 10 | t20 x 210 | 20 x 220

full pb comp. time 9.4 17.2 16.2 40.2
offline comp. time 114.3 202.2 196.8 437.3
online comp. time 6.3 9.4 9.0 15.6
speed-up ratio rq 1.5 1.8 1.8 2.6
speed-up ratio ro 1.5 1.8 1.8 2.5

’ Figure H 2 ‘ 2 3 3

TABLE 3

Table of costs, for a size of the truncated POD equal to 8.

5. Conclusion. A class of nonlinear problems depending on a probabilistic vec-
tor has been considered, and a numerically efficient method has been designed to
compute the error estimation, when approximating the output error. This method is
based on two phases. The offline phase requires to compute the solution of a high-
dimensional problem, and the online phase is based on the computation of the solution
of a reduced-order problem. This approach has been applied to a toy model and to
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Experiment name (e) () (2) (h)
t10 x 240 | t20 x x40 | ¢10 x 280 | t20 x 280

full pb computing time 33.4 311 174.8 1500
offline computing time 329.0 2274 1205 8789
online computing time 7.6 17.2 8.0 16.9
speed-up ratio rq 4.4 18.1 21.9 88.8
speed-up ratio 7o 4.2 16.0 19.0 58.4

Figure I 4 ] 4 5 5

TABLE 4

Table of costs, for a size of the truncated POD equal to 8.

a nonlinear partial differential equation, namely the Burgers equation parametrized
by two probabilistic coefficients. An application of this numerical method to other
mathematical problems is under investigation, more precisely, it could be fruitful to
investigate the impact of this new result in control theory (as done in [6] for a linear
problem). Perspectives in environmental modelling, among other domains where the
sensitivity analysis is crucial, are also worth considering.
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498 Appendix A. Postponed proofs.

499 A.1. Proof of Proposition 1. We prove each item of Proposition 1 separately.

1. If M(p,-) is linear, then dM (pu, x) = A(u) for all z € X and p € P, therefore
the adjoint is simply the matrix transpose: dM*(u,z) = A(u)T, so that

1
M (o) = [ ATz ds = AT
0

500 2. As for all z € X the adjoint operator z — dM*(x)(z) is linear in z, M* is
501 clearly linear in z as well.
3. Let us prove (7). For all p € P,xz,y € X,z € Y we have:

(@ =y M 2,p,2) = (z—y, / AM*(y + 5(z — ) (2) ds)
1

_ / (dM(y + s(z — y)) (@ — y), 2) ds
1

- </ dM(y + sz — )@ — y) ds, 2)
0
= (M(z) — M(y),z)

502 This concludes the proof of Proposition 1. [J

503 A.2. Proof of Lemma 6. Let us recall the formula for the residual:
504 (19) r(p) = M(p, u(pw))

505 so that the scalar products we need to compute are, for all i:

506 (20) (r(p), di) = (M(p, u(p)), ¢i)

507 Here we describe the online/offline procedure to compute

508 (21) (M(p,v), ¢5)

509 where v € X and W € P are given.
510  We also make all the asumptions of Lemma 6 regarding the decomposition of M and
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511 mys. Using the decomposition 11 we have

ot
iy
[\

S
(22) (M(p,v), ¢i) = Z my (14, 0) (y;, b:)

We then decompose v onto a basis {f1,..., fx} of X C X. First we write each fr in
the basis {z1,...,xa} of X:
N
fu = Z friwi
i=1

513 Then we write v:
N N N

514 (23) v= Zv’kfk = ZZf;”v;cxz
k=1 k=1 i=1

so that we can write:

ot
ot

N N
516 (24) v = va, with v; = Z frivk
i=1 k=1

ot
~

Formula (13) requires v; to the power «;, so we use the multinomial formula to get:

N @ N
518 (25) ot = (Z f;e,alvg) = > ( %l ) 1T (. fe)?
k=1

BEB(N,a;) k=1

519 using the multinomial indices and coefficients:

N
B(N,ay) ={B = (B1,..-,An) €NV, > B =y}
520 (26) k=1

(%)=
g Bil...Bn! BN

521  We replace (12) and (13) in (22):

B!

S
(M), 00) = D) Qe (0)he () (y;, 6)

=1 k=0

= XSIZ > qaka(Hvz ) 1)y, 6:)

j=1k=0a€cl; leV,

<.

522 (27)

Now we set:
Gika=0ifaecI\I,orif k>1T;

523 to get
S T
<M(M7 7 Zzzq],ka <H U[ > hk y]a¢1>
594 (28) ];1 =0a€l leV,
th Z (H Uf”) ZQj,k,a<yja¢i>
=0 a€cl \IEV, j=1
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During the online phase we are given p and v. The following quantities are indepen-
dent of p and v, therefore can be computed during the offline phase:

S
(29) Goki =Y _ Gikalyj¢:) forall ke {0,...,THie{l,....N},a €V,

=1

and the online computation then writes:

(30) <M<M7 U)a d)z) = Z hk(u) Z (H 'U;xz> Gmk,i

k=0 acl \leV,

Let us now proceed to the complexity of this computation, that is its operation count.
First we consider the computation of v}, using equation (25):

ot = Z < Og ) ﬁ(kak,z)ﬁk

BEB(N,O(L) k=1

N

The product H(v,;fk’l)ﬁ’f costs (up to a multiplicative constant) 81 + ...+ Oy = o
k=1

multiplications, so that the computation of v;" costs (up to a multiplicative constant)

#B(N,q;) x aq operations. We know that

#pva) = (R

so if we set

R = max max « at+N-—1
~acl lev, ¢ N-1

then the cost of computating v;*' is (up to a multiplicative constant) bounded by R.
Looking back to (30) and using notations (14), the total operation count for the online
phase is bounded by:

const. xT'x M xLx R

This concludes the proof of Lemma 6. [
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