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Abstract. The main result of this paper gives a numerically efficient method to bound the5
error that is made when approximating the output of a nonlinear problem depending on a unknown6
parameter (described by a probability distribution). The class of nonlinear problems under considera-7
tion includes high-dimensional nonlinear problems with a nonlinear output function. A goal-oriented8
probabilistic bound is computed by considering two phases. An offline phase dedicated to the com-9
putation of a reduced model during which the full nonlinear problem needs to be solved only a small10
number of times. The second phase is an online phase which approximates the output. This ap-11
proach is applied to a toy model and to a nonlinear partial differential equation, more precisely the12
Burgers equation with unknown initial condition given by two probabilistic parameters. The savings13
in computational cost are evaluated and presented.14
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1. Introduction. Numerical simulation is a key component of numerous do-18

mains: industry, environment, engineering, physics for instance. In some cases time19

is the limiting factor, and the numerical simulation should be very fast and accurate.20

For example, the control of the trajectory of a space satellite may require efficient real-21

time computations. Another example would be the iterative optimization algorithm22

used in numerical weather prediction, which requires numerous calls to a numerical23

atmosphere model, to be performed in a limited time. In both examples, the com-24

puting time is a key factor: it must be very short, either because the computation is25

repeated many times in a relatively short interval (many-query context) or because26

the result cannot wait (real-time context).27

In this paper we work in this context, namely providing fast numerical solutions28

to given problems. We are not focused on HPC (high performance computing), we are29

rather interested in accelerating existing numerical methods for nonlinear problems.30

31

We focus on the procedures of accelerating existing numerical models. These32

procedures are generally called “metamodelling”, “model reduction”, “dimension re-33

duction”. It consists in replacing the existing model, called the “full” model, by a fast34

approximation. There exist both stochastic and deterministic approaches to building35

such approximations. On the stochastic part we can mention polynomial chaos ap-36

proximation [18, 2, 9], Gaussian processes (including Kriging and RKHS –reproducing37

kernel Hilbert spaces) [8, 14], low-rank tensor methods [13], etc. which all provide38

cheap and fast approximations of the full model. On the deterministic side we can39

cite the reduced basis method [10], POD (proper orthogonal decomposition) [19], bal-40

anced truncation [11], etc. All these methods have in common that they provide a41

way to build a numerical model which is faster than the full model.42
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France alexandre.janon@math.u-psud.fr
†Univ. Grenoble Alpes, INRIA, France maelle.nodet@univ-grenoble-alpes.fr
‡Gipsa-lab, CNRS, Grenoble, France Christophe.Prieur@gipsa-lab.fr
§Univ. Grenoble Alpes, INRIA, France Clementine.Prieur@imag.fr

1

This manuscript is for review purposes only.

mailto:alexandre.janon@math.u-psud.fr
mailto:maelle.nodet@univ-grenoble-alpes.fr
mailto:Christophe.Prieur@gipsa-lab.fr
mailto:Clementine.Prieur@imag.fr


2 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

Of course, accelerating the model is not the only aim these methods have. It43

is crucial that they also provide accurate approximations of the full model. The44

approximation error, i.e. the comparison between the full model and the metamodel,45

should ideally be certified and known by the user of the metamodel. In practice, some46

metamodelling methods only provide limited validation and certification so that the47

user has to take a leap of faith because there is no quantified guarantee about the48

metamodel accuracy. However, it is possible in some cases to design metamodels which49

include a certified error bound. In this latter case, the user does not know exactly50

the approximation error, but the error is guaranteed to be lower than the provided51

bound. Moreover, the error bound computation is included in the metamodel, so that52

its computational burden stays small compared to the full model. For example, we can53

cite [12] where the authors provide such bounds in the framework of the reduced basis54

method (dimension reduction). Providing such error bound for nonlinear problems is55

the aim of this paper. We will clarify below precisely how we aim to do this and what56

differentiates us from current approaches.57

In the following, we are considering, for a given parameter µ in a parameter58

space P, the solution u(µ) ∈ X of an equation of the form M(µ, u(µ)) = 0, with59

M : P × X → Y , and X, Y two finite dimensional vector spaces to be specified60

further in Section 2. In many application cases, however, one is not interested in the61

solution u(µ) by itself, but rather in a quantity of interest, or model output, which is62

a functional of this solution. Taking this functional into account when performing the63

model reduction leads to a so-called goal-oriented method. For instance, goal-oriented64

basis choice procedures have been successfully introduced in the context of dynamical65

systems in [20, 3], where the basis is chosen so as to contain the modes that are66

relevant to accurately represent the output of interest, and in a general context in [1],67

where the basis is chosen so as to minimize the overall output error. All those papers68

showed that using an adapted basis could lead to a great improvement of reduction69

error. In [12], the authors consider, in the context of reduced basis, goal-oriented70

error estimation, that is, the description of a rigorous and computable error bound71

between the model output and the reduced one. In [5], the authors outperform the72

accuracy of the bound in [12] by accepting a small risk α ∈ (0, 1) of this bound to be73

violated. They provide a so-called probabilistic error bound.74

In the present paper, we extend the results in [5] by providing a probabilistic75

goal-oriented error estimation procedure for nonlinear problemsM(µ, u(µ)) = 0, and76

for very general metamodelling approaches. The main point for this generalization is77

the notion of finite difference adjoint of an operator introduced in Proposition 1 of78

Section 3.1.79

The paper is organized as follows: in Section 2, we precise the objectives of our80

study, that is the derivation of an offline/online probabilistic goal-oriented error esti-81

mation procedure in a nonlinear context. In Section 3, we describe the different steps82

of the procedure. More precisely, we introduce in Section 3.1, the notion of finite83

difference adjoint of an operator, before extending in Section 3.2 the procedure in [5]84

to nonlinear models and linear outputs. In Section 3.3, we prove that the results in85

Section 3.2 can be extended to nonlinear models and nonlinear outputs. Section 3.486

provides the different steps for a practical efficient evaluation of the error bound. Some87

numerical experiments are given in Section 4 where first a linear transport is consid-88

ered and then the nonlinear Burgers partial differential equation. Section 5 contains89

some concluding remarks and Appendix A collects the proof of some intermediate90

results.91
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2. Problem statement. Let P ⊂ Rd denote a parameter space, and let P be a92

probability distribution on P. Let X (resp. Y ) be a finite dimensional vector space93

endowed with a scalar product 〈, 〉X (resp. 〈, 〉Y ). In the following, when there is no94

ambiguity, the dependence in the vector space for the scalar product will be omitted95

in the notation 〈, 〉. Let us consider a nonlinear function M : P ×X → Y . Given a96

parameter µ ∈ P, we denote by u(µ) ∈ X a solution to the equation:97

(1) M(µ, u(µ)) = 0,98

and we define the output by99

(2) s(µ) = 〈`, u(µ)〉X ,100

for a given ` ∈ X.101

We assume that for every µ ∈ P, Equation (1) admits a unique solution in X, so102

that the application s : P → R is well-defined. Denote N the dimension of X.103

In a many-query context, that is in a context requiring a potentially large number104

of evaluations of the output, it is common to call for model reduction. More precisely,105

let X̃ be a subspace of X, of dimension N such that N << N . We consider ũ : P → X̃106

an approximation (in a very wide sense of the term) of u : P → X. Let us define the107

approximate output s̃(µ) by108

s̃(µ) = 〈`, ũ(µ)〉X .109

The objective is then to provide some probabilistic error bound between s(µ) and110

s̃(µ). In other words, one accepts the risk of this bound ε(µ;α) being violated for a111

set of parameters having ”small” probability measure α ∈ (0, 1):112

P
(
|s(µ)− s̃(µ)| ≥ ε(µ;α)

)
≤ α.113

This quantity ε(µ;α) is a so-called “goal-oriented probabilistic error bound”.114

For sake of efficiency, the computation of the approximate output can be split115

into two phases:116

• an offline phase, dedicated to the construction of the reduced model ũ, during117

which one has to solve the full dimensional problem (1) only for a reasonably118

small number of parameters µ1, . . . , µκ;119

• an online phase, during which we evaluate the approximate output s̃(·) =120

〈`, ũ(·)〉 for all queried µ.121

In practice, for any µ ∈ P, the computational time of ũ(µ) is much smaller than the122

one of u(µ), hence this splitting into offline and online phases can be interesting in123

terms of overall computing time: the offline phase can be computationally expensive,124

provided that the number of queries is large enough and/or the online phase per query125

is fast enough.126

In this article, we will not focus on the ways of constructing efficient offline-online127

approximation procedures for u(µ), as in e.g., [12], [4], [16], [7]. Assumptions on the128

approximation procedure in use are very mild (see Section 3.4 and more specifically129

Lemma 6). Under these mild assumptions, we propose hereafter a new procedure to130

compute efficiently, using an online / offline decomposition, a goal-oriented proba-131

bilistic error bound ε(µ;α) which generalizes the error bound described in [5] (see also132

[6] for further results in control theory).133
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3. Probabilistic nonlinear error bound. In this section, we aim at providing134

a goal-oriented probabilistic error bound on the output. In [5], the authors propose135

such an error bound in the linear context, that is assuming that for any µ ∈ P, the136

operator M(µ, ·) : X → Y is affine (linear operator + a constant), and that the137

output is also linear. In the sequel we will call linear this case, as opposed to the138

nonlinear case where the model is not affine.139

By accepting a small risk α ∈ (0, 1) that this bound could be violated, the authors140

avoid the use of (often pessimistic) Lipschitz bounds. In this section, we extend the141

results in [5] to the nonlinear context: for any µ ∈ P, the operator M(µ, ·) : X → Y142

is not necessarily affine. In Section 3.2, the output is assumed to be linear, then in143

Section 3.3, the output may be nonlinear.144

To derive an error bound, it seems natural to consider the so-called residual145

(3) r(µ) =M(µ, ũ(µ))−M(µ, u(µ)), µ ∈ P.146

In the sequel we explain why we need to define a new adjoint. To do so we recall147

the computations of the linear case, in order to draw the parallel with the nonlinear148

case and motivate the need for a new adjoint definition.149

In the linear case, if the modelM(µ, ·) is affine, let A(µ) be the matrix representation150

ofM(µ, ·) with respect to the canonical basis of X: M(µ, u) = A(µ)u+b where b ∈ Y151

is a given vector. We assume that for any µ ∈ P, A(µ) is invertible. In that case, the152

dimensions of X and Y are equal, i.e., N = S. For any matrix A let A> denote the153

transpose of A. We can define w(µ) ∈ Y as the solution of the so-called dual problem:154

(4) M?(µ,w(µ)) = A>(µ)w(µ) = `155

where ` ∈ X is the one used in the definition of the linear output in (2), and with156

M?(µ, ·) the linear adjoint ofM(µ, ·). Let Φ = {φ1, . . . , φN } denote any orthonormal157

basis of Y . We then have158

(5)

s̃(µ)− s(µ) = 〈`, ũ(µ)− u(µ)〉 = 〈A>(µ)w(µ), ũ(µ)− u(µ)〉
= 〈w(µ), A(µ)ũ(µ)−A(µ)u(µ)〉 = 〈w(µ), r(µ)〉

=

N∑
i=1

〈w(µ), φi〉〈r(µ), φi〉.
159

In order to adapt this procedure to the nonlinear context, we need to define a gener-160

alization of the adjoint of M? : P ×X ×X × Y → X that still allows (5) with w(µ)161

defined by162

(6) M?(µ, ũ(µ), u(µ), w(µ)) = `163

which generalizes (4). It is the purpose of Section 3.1 below.164

3.1. Finite difference adjoint of an operator. To generalize (5) for nonlinear
problem, one wants to define an operator

M? : P ×X ×X × Y → X,

linear in the last variable, such that the following identity holds:

∀µ ∈ P,∀x1, x2 ∈ X,∀y ∈ Y ,
165

(7) 〈x1 − x2,M?(µ, x1, x2, y)〉 = 〈M(µ, x1)−M(µ, x2), y〉.166
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Let us underline that previous definitions of nonlinear adjoint do not readily allow for167

this property, such as, e.g., the one offered by Definition 2.1 in [15]:168

∀µ ∈ P,∀x ∈ X,∀y ∈ Y, 〈x,M?(µ, x, y)〉 = 〈M(µ, x), y〉.169

In our case the dependance in both x1, x2 is crucial, and missing in previous defi-170

nitions. In Proposition 1 below, we propose a new definition for the adjoint M? :171

P ×X ×X × Y → X and state its main properties.172

Proposition 1 (Finite difference adjoint). Assume that the operator M : P ×173

X → Y is continuously differentiable with respect to x for all x ∈ X. Let dM(µ, x) :174

X → Y denote the derivative of M with respect to x ∈ X. Let dM?(µ, x) : Y → X175

denote the (linear) adjoint of dM(µ, x). We now define the finite difference adjoint176

operator of M by177

(8) M?(µ, x1, x2, y) =

∫ 1

0

dM?(µ, x2 + s(x1 − x2))(y)ds178

for all (µ, x1, x2, y) ∈ P ×X ×X × Y .179

We then have the following properties:180

1. Assume that M(µ, ·) is linear, and let A(µ) denote its matrix representation181

with respect to the canonical basis of X, i.e.182

∀µ ∈ P, M(µ, x) = A(µ)x183

then184

∀µ ∈ P,∀x1, x2 ∈ X,∀y ∈ Y, M?(µ, x1, x2, y) = A(µ)T y.185

2. For all µ ∈ P, and for all x1, x2 ∈ X, M?(µ, x1, x2, ·) is linear.186

3. Identity (7) is satisfied by M?.187

Proof of Proposition 1 The proof is postponed to the appendix. �188

Lemma 2. Let us now consider the adjoint problem described by (6):189

Find w(µ) solution of M?(µ, ũ(µ), u(µ), w(µ)) = `.190

This problem is always linear. Let us assume that, for all µ ∈ P, it admits a solution.191

Then equality (5) still holds true for all linear outputs: s(µ) = 〈`, u(µ)〉 and s̃(µ) =192

〈`, ũ(µ)〉, where r(µ) is defined in (3), and {φ1, . . . , φN } denotes any orthonormal193

basis of Y .194

Proof of Lemma 2 Item 2 in Proposition 1 claims that M? is linear in its fourth195

argument, thus the adjoint problem described in (6) is linear. We assume that for all196

µ ∈ P it admits a solution w(µ).197

Following the beginning of the proof of Theorem 1.1 in [5], we expand the residual198

in the basis Φ:199

(9) r(µ) =

N∑
i=1

〈r(µ), φi〉φi.200

Then:
s̃(µ)− s(µ) = 〈l, ũ(µ)− u(µ)〉.

As w(µ) is solution of (6), we get:

s̃(µ)− s(µ) = 〈M?(µ, ũ(µ), u(µ), w(µ)), ũ(µ)− u(µ)〉.
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Then, applying Identity (7) we obtain:

s̃(µ)− s(µ) = 〈M(µ, ũ(µ)))−M(µ, u(µ)), w(µ)〉 = 〈r(µ), w(µ)〉.

At last, considering the expansion (9), and as the basis Φ is orthonormal, we get:

s̃(µ)− s(µ) =

N∑
i=1

〈r(µ), φi〉〈w(µ), φi〉. �

3.2. Probabilistic error bound for a nonlinear model with linear output.201

This section is devoted to the statement of our probabilistic error bound, in the context202

where the model is nonlinear and where the output is linear.203

We now introduce some notation necessary to the statement of our bound. Recall204

that Φ = {φi, . . . , φN } denotes any orthonormal basis of Y . Let K ≤ N be a205

“truncation index”. For any i ∈ {1, . . . ,K}, we define:206

Di(µ,Φ) = 〈w(µ), φi〉, βmini (Φ) = min
µ∈P

Di(µ,Φ), βmaxi (Φ) = max
µ∈P

Di(µ,Φ).207

The probabilistic error bound depends on the residual defined by (3):208

r(µ) =M(µ, ũ(µ))−M(µ, u(µ)) =M(µ, ũ(µ)).209

Our aim is to propose a probabilistic upper bound for |s(ũ(µ))− s(u(µ))|. For210

this, let us consider the right-hand term in (5):

N∑
i=1

〈r(µ), φi〉〈w(µ), φi〉. In order to211

bound this term, up to the truncation argument K, it seems natural to define, for212

any µ ∈ P, and for any 1 ≤ i ≤ K:213

βupi (µ,Φ) =

{
βmaxi (Φ) if 〈r(µ), φi〉 > 0
βmini (Φ) else

214

215

βlowi (µ,Φ) =

{
βmini (Φ) if 〈r(µ), φi〉 > 0
βmaxi (Φ) else

216

As we want a bound for

∣∣∣∣∣
K∑
i=1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣, we finally define:217

Tup1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉βupi (µ,Φ), T low1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉βlowi (µ,Φ),218

and219

T1(µ,K,Φ) = max
(
|Tup1 (µ,K,Φ)| ,

∣∣T low1 (µ,K,Φ)
∣∣) .220

To deal with the terms above the truncation argument, we define:221

T2(K,Φ) = Eµ

(∣∣∣∣∣
N∑

i=K+1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣
)
.222

Our main result is then:223
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Theorem 3. Let α ∈ (0, 1). We have224

P (|s(µ)− s̃(µ)| ≥ ε(µ;α)) ≤ α225

where the error bound ε(µ;α) is defined by226

ε(µ;α) = T1(µ,K,Φ) +
T2(K,Φ)

α
.227

Remark 1. The result of Theorem 3 is a generalization of Theorem 1.1 in [5] to228

nonlinear operators M.229

Remark 2. Choice of the basis Φ.230

The result of Theorem 3 is true for any orthonormal basis Φ of Y . For efficiency231

reasons, we would like to choose Φ so that the parameter-independent part T2(K,Φ)232

is the smallest possible, for a fixed truncation index K ∈ N∗.233

To our knowledge, minimizing T2(K,Φ) over orthonormal bases of Y is an opti-234

mization problem for which no efficient algorithm exists. However, we can minimize235

an upper bound of T2(K,Φ).236

We define a self-adjoint, positive semi-definite operator G : Y → Y by:237

(10) ∀ϕ ∈ Y, Gϕ =
1

2
Eµ (〈r(µ), ϕ〉r(µ) + 〈w(µ), ϕ〉w(µ)) .238

Let λ1 ≥ λ2 ≥ . . . λN ≥ 0 be the eigenvalues of G. Let, for i ∈ {1, 2 . . . ,N}, φGi be
an unit eigenvector of G associated with the ith eigenvalue, and

ΦG = {φG1 , . . . , φGN }.

We can state that:239

Lemma 4 (Theorem 1.2. in [5]). It holds240

T2(K,ΦG) ≤
N∑
K+1

λ2
i .241

This lemma explains the heuristic choice of Φ = ΦG. Indeed, if G is smooth242

enough, its eigenvalues will decrease quickly and T2(K,ΦG) should be small.243

We are now in position to prove our main result.244

Proof of Theorem 3 We start from the result of Lemma 2:245

s̃(µ)− s(µ) =

N∑
i=1

〈r(µ), φi〉〈w(µ), φi〉.246

Then, we can argue as in the proof of Theorem 1.1 in [5]. By construction of
T1(µ,K,Φ) one gets: ∣∣∣∣∣

K∑
i=1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣ ≤ T1(µ,K,Φ).

Thus, for any α ∈ (0, 1),

P

(
|s̃(µ)− s(µ)| > T1(µ,K,Φ) +

T2(K,Φ)

α

)
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≤ P

(
|s̃(µ)− s(µ)| >

∣∣∣∣∣
K∑
i=1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣+
T2(K,Φ)

α

)

≤ P

(∣∣∣∣∣
N∑

i=K+1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣ > T2(K,Φ)

α

)
.

where in the last inequality, Lemma 2 has been used. Then, by Markov Inequality,
using α ∈ (0, 1), and by definition of T2(µ,K,Φ) we get:

P

(∣∣∣∣∣
N∑

i=K+1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣ > T2(Φ)

α

)

≤
Eµ

(∣∣∣∑Ni=K+1〈r(µ), φi〉〈w(µ), φi〉
∣∣∣)

T2(K,Φ)
α

= α. �

3.3. Corollary: error bound for a nonlinear output. In this section we247

provide an extension of Theorem 3 to the context of a nonlinear output S(µ). To do248

so we consider the following problem:249

Problem 1.

Find v(µ) such that H(µ, v(µ)) = 0250

where H : P×X → Y is a (not necessarily linear with respect to the second argument)
function, and consider the following output:

S(µ) = f(v(µ))

where f is a (not necessarily linear) function from Y to R.251

252

In the context of this section, our main result is based on253

Lemma 5. Problem 1 can be written in the framework of a non necessarily linear254

model M : P × (X ×R)→ Y and of a linear output s(µ) = 〈`, u(µ)〉 with ` ∈ X ×R.255

Proof of Lemma 5 The idea consists in augmenting the state vector v(µ) with the256

output S(µ):257

u(µ) =

(
v(µ)
S(µ)

)
=

(
u(µ)
u(µ)

)
∈ X × R258

where u(µ) ∈ X denotes the first component of u(µ) (corresponding to v(µ)) and259

u(µ) ∈ R its last component (corresponding to S(µ)). We then define M : P × (X ×260

R)→ Y by:261

M(µ, u(µ)) =

(
H(µ, u(µ))

f(u(µ))− u(µ)

)
,262

and consider the following linear output:

s(µ) = S(µ) = u(µ) = 〈`, u(µ)〉 with ` =

(
0
1

)
∈ X × R.
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Problem 1 is then equivalent to:

find u(µ) such that M(µ, u(µ)) = 0 with the output s(µ) = `

This concludes the proof of Lemma 5. �263

By combining Lemma 5 with Theorem 3, we get an error bound in the context of264

a nonlinear output S(µ). This gives a solution to Problem 1.265

266

Computation of the finite difference adjoint of M.267

Except in some particular cases there exists no explicit formulation of the adjoint268

of M in the context of Proposition 1. To illustrate this purpose, let us consider the269

case where H is linear (with respect to the second argument), with B(µ) denoting its270

matrix representation with respect to the canonical basis of X. For sake of simplicity,271

let us fix X = RN . Even in that case, as the output is nonlinear, the operator M272

is also nonlinear. We want to provide an explicit formulation for the adjoint of the273

operatorM, starting from (8). We first consider dM(µ, ·). For v ∈ RN+1, recall that:274

dM(µ, u)(v) = lim
α→0

M(µ, u+ αv)−M(µ, u)

α

which leads immediately to:275

dM(µ, u)(v) =

(
B(µ)v

df(u)(v)− v

)
=

(
B(µ) (0)
df(u) −1

)(
v
v

)
so that dM(µ, u) is the following matrix, defined by blocks:

dM(µ, u) =

(
B(µ) (0)
df(u) −1

)
where the top left block has size N ×N , the top right block N × 1, the bottom left276

1×N (as f : RN → R) and the bottom right lives in R. Then we have, for x, x′ ∈ RN :277

M∗(µ, x, x′, ·) =

∫ 1

0

(
B>(µ) df>(x′ + α(x− x′))

(0) −1

)
(·) dα

=

(
B>(µ) (

∫ 1

0
df(x′ + α(x− x′)) dα)>

(0) −1

)
(·)

The above formula cannot be simplified, in general. Except in special cases, the278

integral over (0, 1) therefore must be numerically computed. In Section 4 we will279

consider both cases, analytical (Section 4.1) or numerical computation (Section 4.2).280

Below we provide examples for which an explicit formulation for the integral281 ∫ 1

0

df(x′ + α(x− x′)) dα)> is available.282

Example 1 (Special case N = 1). In the special case where N = 1 we can change
variable in the integral:∫ 1

0

df(x′ + α(x− x′)) dα =
f(x)− f(x′)

x− x′

Although this case is exceedingly simple (because for any numerical problem N > 1),283

this kind of simplification can happen in other cases, as we will see below.284
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Example 2 (Special cases

∫
f explicit). In some cases the above integral can285

also be explicitly computed. We give a few nonlinear examples below.286

1. f additive: f : RN → R, x 7→ f(x) =

N∑
i=1

fi(xi) where fi are R → R differ-

entiable functions. In that case, the previous change of variable still applies,
and we get:∫ 1

0

dfT (x′ + α(x− x′)) dα =

∫ 1

0

(f ′1(x′1 + α(x1 − x′1)), . . .) dα

=

(
f1(x1)− f1(x′1)

x1 − x′1
, . . . ,

fN (xN )− fN (x′N )

xN − x′N

)
For example:287

(a) f : RN → R, x 7→ f(x) =
N∑
i=1

x2
i

∫ 1

0

dfT (x′ + α(x− x′)) dα = (x1 + x′1, x2 + x′2, . . . , xN + x′N )

(b) f : RN → R, x 7→ f(x) =

N∑
i=1

exi

∫ 1

0

dfT (x′ + α(x− x′)) dα =

(
ex1 − ex′

1

x1 − x′1
, . . . ,

exN − ex′
N

xN − x′N

)

2. f : RN → R, x 7→ f(x) =

( N∑
i=1

x2
i

)1/2

∫ 1

0

dfT (x′ + α(x− x′)) dα

=

∫ 1

0

1(∑N
i=1(x′i + α(xi − x′i))2

)1/2
(x′1 + α(x1 − x′1), . . .) dα

which can therefore be explicitly computed as a function of x and x′ coordi-288

nates:289
290 (

x′iγa
−1/2 − x

√
ca−1 +

1

2
γa−3/2 + x′i

√
ca−1 − 1

2
x′ibγa

−3/2 + x′iδa
−1/2

291

+xi
√
a+ b+ ca−1− 1

2
xibδa

−3/2−x′i
√
a+ b+ ca−1 +

1

2
x′ibδa

−3/2
)
i=1,...,N

292
293

where:294

a =

N∑
i=1

(xi − x′i)2, b = 2

N∑
i=1

xi(xi − x′i), c =

N∑
i=1

x′
2
i ,295

296

γ = ln
b+ 2

√
ac√

a
, δ = ln

b+ 2a+ 2
√
a+ b+ c

√
a√

a
297
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GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 11

Dual error bound in the context of a nonlinear output. . Let us come back to our
initial purpose, that is the extension of our procedure to the context of a nonlinear
output. The adjoint problem writes:

M?(µ, ũ(µ), u(µ), w(µ)) = ` =

(
0
1

)
∈ X × R.

In a general context, the existence of a solution to this problem is not trivial, and
may fail. However, if the operator H is linear, even if the output is nonlinear, as the
adjoint problem writes equivalently: B>(µ)w +

∫ 1

0

df>(u+ s(ũ− u))w ds = 0 } N equations

−w = 1 } 1 equation
,

the unicity of the solution is provided as soon as B(µ) is invertible. In other words,
w is equal to:

w = B−>(µ)

∫ 1

0

df>(ũ+ s(u− ũ)) ds.

3.4. Efficient bound evaluation in a many-query or real-time context.298

In practice, the error bound ε(µ;α) used in Theorem 3 can not be directly evaluated,299

and one has to define a computable approximation ε̂(µ;α). Our approximation is300

justified and commented in [5] Section 1.3, and we recall it here for sake of self-301

containedness. We end this section with Lemma 6, which gives sufficient conditions302

to ensure efficient computation of our online error bound.303

Estimation of ΦG. We consider a finite subset of parameters Ξ ⊂ P, randomly304

sampled from the probability distribution P , and we estimate the linear operator305

G : Y → Y by a linear operator Ĝ : Y → Y defined as:306

∀ϕ ∈ Y, Ĝϕ =
1

2#Ξ

∑
µ∈Ξ

(〈r(µ), ϕ〉r(µ) + 〈w(µ), ϕ〉w(µ))307

and we take as {φi}i=1,...,K the unit eigenvectors of Ĝ associated with its K largest308

eigenvalues. The computation of these eigenvectors can be entirely processed during309

the offline phase (see [5, Section 1.3] for more details).310

Computation of T1(µ,K,Φ). Recall that311

T1(µ,K,Φ) = max
(
|Tup1 (µ,K,Φ)| ,

∣∣T low1 (µ,K,Φ)
∣∣)312

with 
Tup1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉βupi (µ,Φ) ,

T low1 (µ,K,Φ) =

K∑
i=1

〈r(µ), φi〉βlowi (µ,Φ) .

The β(µ,Φ) constants can be approximated using a simple discrete minimization313

(ie., replacing P by a discrete sample Ξ in the minimum/maximum defining βmax(Φ)314

and βmin(Φ)). In some cases, one can use a continuous optimization method to solve315
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12 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

these minimum/maximum problems. It is clear that all these computations can be316

done during the offline phase.317

We now discuss the computation of the K scalar products 〈r(µ), φi〉 (i = 1, . . . ,K)318

with an offline/online procedure.319

Lemma 6. Let {y1, . . . , yS} denote an orthonormal basis of Y and {x1, . . . , xN }320

denote an orthonormal basis of X. Assume that M : P ×X → Y is defined by:321

(11) M

(
µ,

N∑
i=1

vixi

)
=

S∑
j=1

mj(µ, v1, . . . , vN )yj .322

where for all j = 1, ...,S, mj is a function from P × RN to R.323

Assume moreover that: ∀ j = 1, . . . ,S, ∀µ ∈ P, ∀(v1, . . . , vN ) ∈ RN ,324

(12) mj(µ, v1, . . . , vN ) =

Tj∑
k=0

Qk,j(v1, . . . , vN )hk(µ)325

with
hk : P → R, ∀k ∈ {0, . . . , T}

and326

(13) Qk,j(v1, . . . , vN ) =
∑

α=(α1,...,αN )∈Ij,k

qj,k,α
∏
l∈Vα

vαll327

where:328

(14)
Ij,k ⊂ NN , I =

N⋃
j=1

Tj⋃
k=1

Ij,k, #I = M

Vα ⊂ {1, . . . ,N}, max
α∈I

#{Vα} = L

329

We set
T = max

j=1,...,S
Tj

Recall that N << N is the dimension of X̃. Let

R = max
α∈I

max
l∈Vα

αl

(
αl +N − 1
N − 1

)
Then, it is possible to compute all the scalar products 〈r(µ), φi〉 (i = 1, . . . ,K) with an
offline/online procedure whose online phase has a cost of the size

O (T ×M × L×R)

Remark 3. The decomposition

mj(µ, v1, . . . , vN ) =

Tj∑
k=0

Qk,j(v1, . . . , vN )hk(µ)

with
hk : P → R, ∀k ∈ {0, . . . , T}

plays an analogous role to the “affine parameter dependence” that is commonly as-330

sumed in the linear litterature (see, e.g., [12], page 1526).331
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Remark 4. Let us emphasize that, in the previous result, the cost does not depend332

on the high dimension N . Therefore if we assume that T , M , L and R << N , then333

it is possible to compute the K scalar products, with an offline/online procedure with334

a small cost (with respect to N ).335

Remark 5. Note that it is possible to work with the K scalar products themselves,336

without any approximation, especially in the case where the polynomial decomposition337

presented above is not valid. In that case, the cost of the online phase is O (N ), which338

is still better than the full problem, whose complexity is O (Nα) with α ≥ 2 in most339

cases.340

In the polynomial case, Lemma 6 above allows to reduce the cost of the online phase341

to a cost which does not depend on the high dimension N anymore.342

Proof of Lemma 6 The proof is postponed to Appendix A.2. �343

Approximation of T2(K,Φ). A Monte-Carlo estimator of T2(K,Φ) is used:344

T̂2(K,Φ) =
1

2#Ξ

∑
µ∈Ξ

∣∣∣∣∣s̃(µ)− s(µ)−
K∑
i=1

〈r(µ), φi〉〈w(µ), φi〉

∣∣∣∣∣ ,345

where Ξ is a sample of P.346

As this quantity is µ-independent, it can be computed for once during the offline347

phase. The error analysis, which is related to the central limit theorem, is discussed348

in [5, Section A].349

Computable error bound We now rely on Proposition 3 and set:350

ε̂(µ;α) = T1(µ,K,Φ) +
T̂2(K,Φ)

α
.351

It is an estimator for the error bound ε(µ;α) in Theorem 3.352

4. Numerical experiments.353

4.1. First experiments with a toy model. We now apply our error bound354

on a non-homogeneous linear transport equation with a nonlinear output. We use the355

results of the corollary (Section 3.3).356

4.1.1. Toy model. Let ue = ue(x, t) be the solution of the linear transport357

equation:358
∂ue
∂t

(x, t) + µ
∂ue
∂x

(x, t) = sin(x) exp(−x)359

for all (x, t) ∈ (0, 1)× (0, 1), satisfying the initial condition:360

ue(x, t = 0) = x(1− x) ∀x ∈ [0, 1],361

and boundary condition:362

ue(x = 0, t) = 0 ∀t ∈ [0, 1].363

The parameter µ is chosen in P = [0.5, 1] and P is endowed with the uniform measure.364

We choose a number of timestepsNt and a number of space pointsNx, we set ∆t =365

1/Nt and ∆x = 1/Nx and we introduce our discrete unknown u = (uni )i=0,...,Nx;n=0,...,Nt .366

We note here that the considered PDE is an hyperbolic evolution equation, and367

that we perform the reduction on the space-time unknown u, of dimension N =368
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14 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

(Nx + 1) · (Nt + 1). This is different from reducing the space-discretized equation at369

each time step.370

The u vector satisfies the discretized initial-boundary conditions:371

(15) ∀i, u0
i = i∆x(1− i∆x)372

373

(16) ∀n, un0 = 0374

and the first-order upwind scheme implicit relation:375

(17) ∀i, n
un+1
i+1 − uni+1

∆t
+ µ

un+1
i+1 − u

n+1
i

∆x
= sin(i∆x) exp(−i∆x).376

Let B(µ) (resp. φ) be the matrix (resp. the vector) so that (15),(16) and (17) are377

equivalent to:378

(18) B(µ)u = φ ∈ RN with N = Nx ×Nt.379

We consider the different outputs of interest of Example 2 in Section 3.3:380

• Square output: s(µ) =
(
uNtNx

)2

381

• Exponential output: s(µ) = exp
(
uNtNx

)
382

• Triple exponential output: s(µ) = exp
(

3uNtNx

)
383

In the following, we take ∆t = 0.02 and ∆x = 0.05.384

4.1.2. Reduction. The approximation ũ of u is computed by using a “reduced385

basis” approach [12]. To be more specific, ũ is the solution of:386

ZtB(µ)Zũ = Ztφ,387

where Z is an appropriate matrix found by Proper Orthogonal Decomposition (POD)388

(see [17] for instance). The Z matrix is the matrix of an orthogonal set of n vectors389

in X = RN , endowed with the Euclidian scalar product. The n number is called the390

reduced basis size. The larger n is, the more precise the approximation ũ ≈ u is, but391

also the the more expensive the computation of ũ is, so that a compromise must be392

found.393

The Z matrix is computed using a POD snapshot of size 70, and N = 20 retained394

φ̂Gi vectors. We took a very low risk level α = 0.0001.395

4.1.3. Results. In Figure 1, we plotted, as functions of the reduced basis size,396

the true error and the error bound means on a sample of 200 random parameter values,397

for the three different output cases (square, exponential and triple exponential).398

The graphs show that our error bound remains accurate and sharp with respect399

to the true error, despite the highly-nonlinear output functions that have been chosen400

(yet, it seems almost unaffected by the degree of nonlinearity in the output).401

4.2. Burgers experiment. In this section, we are interested in the discretized402

Burgers’ equation, as an example of nonlinear model.403
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Fig. 1. Comparison between the mean error bound and the true error, for different reduced
basis sizes, in the square (top left), the exponential (top right) and the triple exponential
(down) output case.

4.2.1. Description of the model and output of interest. We are looking404

for u = u(t, x) satisfying:405 
∂u

∂t
+

1

2

∂(u2)

∂x
= 0

u(t, x = 0) = 1 ∀t
u(t = 0, x) = cos2(αx) + βx

406

where the parameter vector µ = (α, β) belongs to [0, 1]× [0, 1].407

We discretize the above equation by using an upwind scheme. We choose a number408

of timesteps Nt and a number of space points Nx, and we set ∆t = 1/Nt and ∆x =409

1/Nx, and we look for (uni )i,n, where i = 0, . . . , Nx − 1 and n = 0, . . . , Nt − 1 so that:410 
un+1
i − uni

∆t
+ un+1

i

un+1
i − un+1

i−1

∆x
= 0 ∀i ≥ 1

un0 = 1 ∀n
u0
i = cos2(αi∆x) + βi∆x ∀i

411

The output functional of interest is given by the ` vector defined by:412

`ni =

{
1 if I(i, n) ∈ {bNt ×Nx/3c − 1, bNt ×Nx/5c − 1}
0 else.

413
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16 A. JANON, M NODET, C. PRIEUR AND C. PRIEUR

where I(i, n) = n ∗Nx + i, and byc denotes the floor of y.414

4.2.2. Reduction. As for the toy model, the reduction is performed on the full415

space-time state vector (uni )i,n. We also choose a Z matrix by a POD procedure, then416

define the reduced state vector (ũni )i,n as:417

(ũni )i,n(µ) = argminv∈Range(Z)||M(µ, v)||2418

where Range(Z) is the column space of Z, and || · ||2 denotes the Euclidean norm.419

4.2.3. Numerical experiments. Table 1 gives the name and description of420

the various parameters used in the numerical code. Table 2 describes the various421

experiments that have been performed and links to the associated figures.422

Parameter Description Usual range

Nx Number of space discretization points 10 – 80
Nt Number of time steps 10 – 20
Ntest Monte-Carlo sample size 100
Nsnap Size of the POD training sample set 70
Nφ Index K for the estimation of T1 using basis φG 8
Nbasis Size of the POD basis 3 – 10

∆t Time step ∆t = 1/Nt
∆x Space step ∆x = 1/Nx

Table 1
Descriptions of the numerical parameters.

Experiment label Nt Nx Ntest Nsnap Nφ Figure

(a) t10× x10 10 10 100 70 8 2
(b) t20× x10 20 10 100 70 8 2
(c) t10× x20 10 20 100 70 8 3
(d) t20× x20 20 20 100 70 8 3
(e) t10× x40 10 40 100 70 8 4
(f) t20× x40 20 40 200 150 12 4
(g) t10× x80 10 80 100 70 8 5
(h) t20× x80 20 80 200 150 12 5

Table 2
Numerical setup of the different experiments.

Figures 2, 3, 4 and 5 present the true error and the error bound for a size of the423

POD truncated basis varying from 3 to 10, with Nt = 10, 20, Nx = 10, 20, 40, 80 and424

other parameters described in Table 2.425

To quantify the computing gain we define and compute the following speed up
ratios. The first ratio r1 is fitted to study real-time problems computing gain:

r1 =
full pb computing time

online computing time

Indeed for real-time problem the offline cost is not an issue, and one is really interested
in the online accelaration.
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Fig. 2. True error (dashed line) and error bound (plain line) for experiments (a) t10 × x10
(left) and (b) t20 × x10 (right).

Fig. 3. True error (dashed line) and error bound (plain line) for experiments (c) t10 × x20
(left) and (d) t20 × x20 (right).

Reduced-basis size
3 4 5 6 7 8 9 1010-6

10-5

10-4

10-3

10-2

10-1

100

Bound on non-corrected output
True error on non-corrected output

Fig. 4. True error (dashed line) and error bound (plain line) for experiments (e) t10 × x40
(left) and (f) t20 × x40 (right).
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Reduced-basis size
3 4 5 6 7 8 9 1010-5

10-4

10-3

10-2

10-1

100

Bound on non-corrected output
True error on non-corrected output

Fig. 5. True error (dashed line) and error bound (plain line) for experiments (g) t10 × x80
(left) and (h) t20 × x80 (right).

On the contrary, for many-query problems, the total computing time is the quantity
of interest, and we shall therefore define and compute the second speed-up ratio r2:

r2 =
K × full pb computing time

offline +K × online computing time

with K = 1000.426

The larger the speed ratios, the more efficient the use of a reduction procedure is. In427

our experiments, the computing time were real elapsed times computed using Matlab428

tic and toc functions. We summarize in Tables 3 and 4 the full, online and offline429

costs, as well as the speed up ratios, for the various experiments described in Table 1.430

Experiment name (a) (b) (c) (d)
t10× x10 t20× x10 t20× x10 t20× x20

full pb comp. time 9.4 17.2 16.2 40.2
offline comp. time 114.3 202.2 196.8 437.3
online comp. time 6.3 9.4 9.0 15.6
speed-up ratio r1 1.5 1.8 1.8 2.6
speed-up ratio r2 1.5 1.8 1.8 2.5

Figure 2 2 3 3
Table 3

Table of costs, for a size of the truncated POD equal to 8.

5. Conclusion. A class of nonlinear problems depending on a probabilistic vec-431

tor has been considered, and a numerically efficient method has been designed to432

compute the error estimation, when approximating the output error. This method is433

based on two phases. The offline phase requires to compute the solution of a high-434

dimensional problem, and the online phase is based on the computation of the solution435

of a reduced-order problem. This approach has been applied to a toy model and to436

This manuscript is for review purposes only.



GOAL-ORIENTED ERROR ESTIMATION FOR NONLINEAR PROBLEMS 19

Experiment name (e) (f) (g) (h)
t10× x40 t20× x40 t10× x80 t20× x80

full pb computing time 33.4 311 174.8 1500
offline computing time 329.0 2274 1205 8789
online computing time 7.6 17.2 8.0 16.9

speed-up ratio r1 4.4 18.1 21.9 88.8
speed-up ratio r2 4.2 16.0 19.0 58.4

Figure 4 4 5 5
Table 4

Table of costs, for a size of the truncated POD equal to 8.

a nonlinear partial differential equation, namely the Burgers equation parametrized437

by two probabilistic coefficients. An application of this numerical method to other438

mathematical problems is under investigation, more precisely, it could be fruitful to439

investigate the impact of this new result in control theory (as done in [6] for a linear440

problem). Perspectives in environmental modelling, among other domains where the441

sensitivity analysis is crucial, are also worth considering.442
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Appendix A. Postponed proofs.498

A.1. Proof of Proposition 1. We prove each item of Proposition 1 separately.499

1. IfM(µ, ·) is linear, then dM(µ, x) = A(µ) for all x ∈ X and µ ∈ P, therefore
the adjoint is simply the matrix transpose: dM∗(µ, x) = A(µ)T , so that

M∗(µ, x, y, z) =

∫ 1

0

A(µ)T z ds = A(µ)T z

2. As for all x ∈ X the adjoint operator z 7→ dM∗(x)(z) is linear in z, M∗ is500

clearly linear in z as well.501

3. Let us prove (7). For all µ ∈ P, x, y ∈ X, z ∈ Y we have:

〈x− y,M∗(µ, x, y, z)〉 = 〈x− y,
∫ 1

0

dM∗(y + s(x− y))(z) ds〉

=

∫ 1

0

〈dM(y + s(x− y))(x− y), z〉 ds

= 〈
∫ 1

0

dM(y + s(x− y))(x− y) ds, z〉

= 〈M(x)−M(y), z〉

This concludes the proof of Proposition 1. �502

A.2. Proof of Lemma 6. Let us recall the formula for the residual:503

(19) r(µ) =M(µ, ũ(µ))504

so that the scalar products we need to compute are, for all i:505

(20) 〈r(µ), φi〉 = 〈M(µ, ũ(µ)), φi〉506

Here we describe the online/offline procedure to compute507

(21) 〈M(µ, v), φi〉508

where v ∈ X̃ and µ ∈ P are given.509

We also make all the asumptions of Lemma 6 regarding the decomposition ofM and510
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mjs. Using the decomposition 11 we have511

(22) 〈M(µ, v), φi〉 =

S∑
j=1

mj(µ, v)〈yj , φi〉512

We then decompose v onto a basis {f1, . . . , fN} of X̃ ⊂ X. First we write each fk in
the basis {x1, . . . , xN } of X:

fk =

N∑
i=1

fk,ixi

Then we write v:513

(23) v =

N∑
k=1

v′kfk =

N∑
k=1

N∑
i=1

fk,iv
′
kxi514

so that we can write:515

(24) v =

N∑
i=1

vixi, with vi =

N∑
k=1

fk,iv
′
k516

Formula (13) requires vl to the power αl, so we use the multinomial formula to get:517

(25) vαll =

(
N∑
k=1

fk,αlv
′
k

)αl
=

∑
β∈B(N,αl)

(
αl
β

) N∏
k=1

(v′kfk,l)
βk518

using the multinomial indices and coefficients:519

(26)
B(N,αl) = {β = (β1, . . . , βN ) ∈ NN ,

N∑
k=1

βk = αl}(
αl
β

)
=

αl!

β1! . . . βN !

520

We replace (12) and (13) in (22):521

(27)

〈M(µ, v), φi〉 =

S∑
j=1

Tj∑
k=0

Qk,j(v)hk(µ)〈yj , φi〉

=

S∑
j=1

Tj∑
k=0

∑
α∈Ij,k

qj,k,α

(∏
l∈Vα

vαll

)
hk(µ)〈yj , φi〉

522

Now we set:
qj,k,α = 0 if α ∈ I \ Ij,k or if k > Tj

to get523

(28)

〈M(µ, v), φi〉 =

S∑
j=1

T∑
k=0

∑
α∈I

qj,k,α

(∏
l∈Vα

vαll

)
hk(µ)〈yj , φi〉

=

T∑
k=0

hk(µ)
∑
α∈I

(∏
l∈Vα

vαll

) S∑
j=1

qj,k,α〈yj , φi〉
524
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During the online phase we are given µ and v. The following quantities are indepen-525

dent of µ and v, therefore can be computed during the offline phase:526

(29) Gα,k,i =

S∑
j=1

qj,k,α〈yj , φi〉 for all k ∈ {0, . . . , T}, i ∈ {1, . . . ,N}, α ∈ Vα527

and the online computation then writes:528

(30) 〈M(µ, v), φi〉 =

T∑
k=0

hk(µ)
∑
α∈I

(∏
l∈Vα

vαll

)
Gα,k,i529

Let us now proceed to the complexity of this computation, that is its operation count.
First we consider the computation of vαll , using equation (25):

vαll =
∑

β∈B(N,αl)

(
αl
β

) N∏
k=1

(v′kfk,l)
βk

The product

N∏
k=1

(v′kfk,l)
βk costs (up to a multiplicative constant) β1 + . . .+ βN = αl

multiplications, so that the computation of vαll costs (up to a multiplicative constant)
#B(N,αl)× αl operations. We know that

#B(N,αl) =

(
αl +N − 1
N − 1

)
so if we set

R = max
α∈I

max
l∈Vα

αl

(
αl +N − 1
N − 1

)
then the cost of computating vαll is (up to a multiplicative constant) bounded by R.
Looking back to (30) and using notations (14), the total operation count for the online
phase is bounded by:

const.× T ×M × L×R

This concludes the proof of Lemma 6. �530
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