Feynman propagators and Hadamard states from scattering data for the Klein-Gordon equation on asymptotically Minkowski spacetimes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Feynman propagators and Hadamard states from scattering data for the Klein-Gordon equation on asymptotically Minkowski spacetimes

Michał Wrochna

Résumé

We consider the massive Klein-Gordon equation on a class of asymptotically static spacetimes. We prove the existence and Hadamard property of the in and out states constructed by scattering theory methods. Assuming in addition that the metric approaches that of Minkowski space at infinity in a short-range way, jointly in time and space variables, we define Feynman scattering data and prove the Fredholm property of the Klein-Gordon operator with the associated Atiyah-Patodi-Singer boundary conditions. We then construct a parametrix (with compact remainder terms) for the Fredholm problem and prove that it is also a Feynman parametrix in the sense of Duistermaat and Hörmander.
Fichier principal
Vignette du fichier
hadamard_scattering.pdf (609.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01290886 , version 1 (18-03-2016)

Identifiants

Citer

Christian Gérard, Michał Wrochna. Feynman propagators and Hadamard states from scattering data for the Klein-Gordon equation on asymptotically Minkowski spacetimes. 2016. ⟨hal-01290886⟩

Relations

520 Consultations
205 Téléchargements

Altmetric

Partager

More