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Perthame and Tadmor conjectured an optimal smoothing eect for entropy solutions of multidimensional scalar conservation laws. This eect estimated in fractional Sobolev spaces is linked to the ux nonlinearity. In order to show that the conjectured smoothing eect cannot be exceeded, we use a new denition of a nonlinear smooth ux which proves ecient to build bespoke explicit solutions. First, one-dimensional solutions are studied in fractional BV spaces which turn out to be optimal to encompass the smoothing eect: regularity and traces. Second, the multidimensional case is handled with a monophase solution and the construction is optimal since there is only one choice for the phase to reach the lowest expected regularity.

Introduction

For the multidimensional scalar conservation laws

(1.1) ∂ t U + div X F (U ) = 0, U (0, X) = U 0 (X) ∈ L ∞ (R n , R)
the rst smoothing eect measured in Sobolev spaces was obtained in 1994 by Lions, Perthame and Tadmor ( [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]) for a ux F ∈ C 1 (R, R n ). It was improved by Tadmor and Tao in 2007 ([24]). This smoothing eect generalizes the BV smoothing eect obtained in 1957 independently by Lax and Oleinik for a one-dimensional uniformly convex ux ( [START_REF] Lax 57 | Hyperbolic systems of conservation laws II[END_REF][START_REF] Oleinik | Discontinous solutions of nonlinear dierential equations[END_REF]). In [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] the regularity is measured in the Sobolev space W s,1 loc (R n X , R) with a small s ∈]0, 1]: Lions, Perthame and Tadmor conjectured that s = α where α ∈]0, 1] (Denition 2) quanties the nonlinearity of the ux on the compact interval K = [inf U 0 , sup U 0 ]. In the one-dimensional case, De Lellis and Westdickenberg showed in 2003 that s ≤ α for power-law convex uxes ( [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF]) and Jabin showed in 2010 that s = α for C 2 uxes under a generalized Oleinik condition ( [START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF]). For a nonlinear multidimensional smooth ux the parameter α is determined explicitly in [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF] with an equivalent denition of nonlinearity recalled in Section 2 below. In particular the parameter α depends on the space dimension n and satises: α ≤ 1 n . Moreover, Denition 4 naturally yields the construction of a supercritical family of oscillating smooth solutions -on a bounded time before shocks-exactly uniformly bounded in the optimal Sobolev space conjectured ( [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF]). In this paper:

• we obtain an extension of the inequality s ≤ α for all nonlinear multidimensional smooth uxes; • we present examples of special individual solutions (and not a family of solutions as in [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF]) which belong to the almost optimal Sobolev space. In order to do so we use the fractional BV spaces which appear to be more relevant in the one-dimensional case to get the regularity and the shock structure of entropy solutions ( [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]). One-dimensional examples with low regularity given in [START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF][START_REF] Cheverry | Regularizing eects for multidimensional scalar conservation laws[END_REF][START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] are rst studied in generalized BV spaces and then extended to the multidimensional case. Notice that the construction is optimal for the one-dimensional case, at least for the class of degenerate strictly convex uxes ( [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF][START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF]). As in [START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF][START_REF] Cheng | The space BV is not enough for hyperbolic conservation laws[END_REF][START_REF] Dafermos | Regularity and large time behavior of solutions of a conservation law without convexity[END_REF] these examples are not related to the convexity. We conjecture that it is also optimal for the multidimensional case, at least for uxes smooth enough (of class C n+1 ). For a ux only of class C 1 the natural way is to generalize the BV Φ approach developed in [START_REF] Castelli | Smoothing eect in BV -Φ for scalar conservation laws[END_REF]. The main result of the paper is about the limitation of the smoothing eect.

Theorem 1. [Solutions with the minimal Sobolev regularity expected]

Let K ⊂ R be a proper compact interval, F ∈ C ∞ (K, R n ) a nonlinear ux such that the associated α = α[K] is positive.
Then, for all ε > 0 and for all T > 0, there exists an entropy solution U with values in K such that for all t ∈]0, T [,

U (t, .) ∈ W α-ε,1 loc (R n , R) but U (t, .) / ∈ W α+ε,1 loc (R n , R).
To prove this main result the paper is organized as follows. Two denitions of a nonlinear ux are recalled in Section 2. Fractional and generalized BV spaces, BV s and BV Φ , are introduced in Section 3. We make comparisons with the fractional Sobolev spaces and we give in Proposition 10 an explicit way to compute the generalized total variation in some particular cases. Section 4 deals with optimal examples with low regularity in BV s . The multidimensional case is handled in Section 5 to conclude the proof of Theorem 1.

Nonlinear flux

There have been several denitions of a nonlinear ux depending on the regularity of the ux: [START_REF] Engquist | Large time behavior and homogenization of solutions of two-dimensional conservation laws[END_REF][START_REF] Lax 57 | Hyperbolic systems of conservation laws II[END_REF][START_REF] Oleinik | Discontinous solutions of nonlinear dierential equations[END_REF] for a C 2 ux, [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] for a C 1 ux, [START_REF] Panov | On sequences of measure-valued solutions of a rst-order quasilinear equation, engl. transl[END_REF][START_REF] Tartar | Compensated compactness and applications to partial dierential equations[END_REF] for a C 0 ux. These denitions are compared in [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF]. For an analytic ux they are equivalent with recent Denition 4 below. The rst denition related with the smoothing eect for multidimensional conservation laws was given by Lions, Perthame and Tadmor: Denition 2. [Nonlinear ux [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]] Let M be a positive constant. F : R → R n is said to be nonlinear on [-M, M ] if there exist α > 0 and C = C α > 0 such that for all δ > 0 sup

τ 2 +|ξ| 2 =1 |W δ (τ, ξ)| ≤ C δ α ,
where (τ, ξ) ∈ R × R n and |W δ (τ, ξ)| is the one-dimensional measure of the singular set: M ] and a = F . In all the sequel, only the greatest α is considered.

|W δ (τ, ξ)| := {|v| ≤ M, |τ + a(v) • ξ| ≤ δ} ⊂ [-M,
Example 3. If f is a scalar power-law ux:

f (u) = |u| 1+d 1 + d for d ≥ 1, then the greatest α on [-M, M ] is 1 d . Burgers' ux corresponds to d = 1.
The construction of solutions with minimal regularity uses a precise understanding of the nonlinearity. A new denition appears for the rst time in [START_REF] Chen | Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws[END_REF] for a genuinely nonlinear vectorial ux and then in [START_REF] Crippa | Regularizing eect of nonlinearity in mul-tidimensional scalar conservation laws[END_REF][START_REF] De Lellis | Structure of entropy solutions for multidimensional scalar conservation laws[END_REF][START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF]. Denition 4. [Nonlinear smooth ux [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF]

] F ∈ C ∞ (R, R n ) is nonlinear on K if for all U ∈ K the quantity d F [U ] = min j ∈ N * |rank(F (U ), ..., F (1+j) (U )) = n is nite. Moreover, d F [.]
admits a maximum on K for some U ∈ K which quanties the nonlinearity by the integer:

d F = sup u∈K min j ∈ N * | rank(F (U ), ..., F (1+j) (U )) = d = d F [U ]. The ux F is genuinely nonlinear on K if d F = n.
Following [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF] this condition also means that the curve Γ = {A(V ), V ∈ K} never stays in any hyperplane. In some sense d F measures the degeneracy of the ux. Notice that by denition d F [U ] ≥ n and the genuine nonlinearity means that for all U ∈ K, d F [U ] = n, so that the family F (U ), ..., F (1+n) (U ) is a basis of R n . The constant state U will play a key role later: the most singular entropy solutions built are near U . Remark 5. In dimension 1 this denition reduces for the scalar ux f to the rst non zero derivatives of a(u) = f (u):

d F = sup u∈K min j ∈ N * | a (j) (u) = 0 . Theorem 6. [[16]] If F ∈ C ∞ (R, R n ), then α = 1 d F ≤ 1 n
.

Moreover, the parameter α is the inverse of an integer greater than the space dimension.

The particular case α = 1 n corresponds to the maximal nonlinearity, namely the genuine nonlinearity [START_REF] Chen | Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws[END_REF][START_REF] Crippa | Regularizing eect of nonlinearity in mul-tidimensional scalar conservation laws[END_REF][START_REF] De Lellis | Structure of entropy solutions for multidimensional scalar conservation laws[END_REF][START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF].

BV s and BV Φ spaces

What is the right functions space to measure properly the regularity of entropy solutions? This natural question is asked by Tartar in [START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF]. Sobolev spaces are considered not to be the optimal ones in [START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF]. Sobolev spaces do not provide the fundamental traces property of BV functions ( [START_REF] Crippa | Regularizing eect of nonlinearity in mul-tidimensional scalar conservation laws[END_REF][START_REF] De Lellis | Structure of entropy solutions for multidimensional scalar conservation laws[END_REF][START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF]). In the one-dimensional case, BV s spaces provide a relevant framework ( [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF]): the right fractional exponent of entropy solutions is reached and the like-BV structure is recovered. Some other regularities are derived from the BV s regularity, for instance the BV regularity of ϕ(u) in [START_REF] Dafermos | Regularity and large time behavior of solutions of a conservation law without convexity[END_REF][START_REF] Perthame | Total oscillation dimishing property for scalar conservation laws[END_REF] where u is an entropy solution and ϕ a nonlinear function. Moreover, the BV s regularity yields a W s-ε,1 regularity for all ε > 0. Thanks to Proposition 10 below we get a simple and sharp exponent s for the examples presented in Section 4. These examples are a little more regular than expected. The surplus of regularity can be reduced as much as desired. An example adapted from [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] seems optimal in the BV s framework. By using a ner measurement of the regularity with the larger class of BV Φ spaces including the BV s spaces, it is shown that the last example is still a little more regular than the critical regularity. It is the reason why we also use the BV Φ spaces. The denitions of these generalized BV spaces are briey recalled. The reader is referred to [START_REF] Musielak | On generalized variations[END_REF] for the rst extensive study of the BV Φ spaces. Denition 7. [BV Φ spaces [START_REF] Musielak | On generalized variations[END_REF]] Let I be an non-empty interval of R and let S(I) be the set of subdivisions of I:

{(x 0 , x 1 , ..., x n ), n ≥ 1, x i ∈ I, x 0 < x 1 < ... < x n }. Let M > 0, Φ an even convex function on [-2M, 2M ],
positive on ]0, 2M ] such that Φ(0) = 0 and u a function dened on I such that |u| ≤ M .

i) The Φ-variation of u with respect to the subdivision σ = (x 0 , x 1 , ..., x n ) is:

T V Φ u[σ] = n i=1 Φ (u(x i ) -u(x i-1 )) .
ii) The total Φ-variation of u on I is:

T V Φ u[I] = sup σ∈S(I) T V Φ u[σ].
iii) If Φ satises the condition

(∆ 2 ) ∃ h 0 > 0, k > 0, Φ(2 h) ≤ k Φ(h) for 0 ≤ h ≤ h 0 , then BV Φ (I) := {u : I → R, |u| ≤ M, T V Φ u[I] < ∞} is a linear space. Else we set BV Φ (I) := {u : I → R, ∃λ > 0, T V Φ (λu)[I] < ∞}, which is a metric space.
Remark 8. 1) According to the assumptions made on Φ, it is necessarily an increasing function on ]0, +∞[. 2) Notice that [START_REF] Musielak | On generalized variations[END_REF] considers the case Φ(u) = o (u) near 0, which leads to a less regular space than BV : BV BV Φ . The case where Φ(u) = u or Φ(u) ∼ u near 0 yields BV = BV Φ . For degenerate uxes we are in the context of [START_REF] Musielak | On generalized variations[END_REF]:

Φ(u) = o (u) near 0.
3)In the particular case where Φ is a power function: Φ(u) = |u| 1/s with s > 1, then BV Φ (I) = BV |u| 1/s (I) is BV s (I) and for s = 1, BV s (I) = BV (I), the space of functions of bounded variation.

Example 9. 1) Let

Φ(u) = exp - 1 u 2 , |u| ≤ 1. Since Φ(u) = o (|u| α ) for all α ≥ 1, it follows that for all s ∈]0, 1], BV s ⊂ BV Φ . In particular, BV s = BV Φ for all s ∈]0, 1]. 2) Let Φ(u) = - |u| α ln |u| , |u| < 1, α ≥ 1, s = 1 α
. The following inclusions hold for all

ε > 0: BV s ⊂ BV Φ ⊂ BV s-ε .
Proposition 2.3 p.660 in [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF] is generalized here in the BV Φ framework. The BV s optimal norm is less easy to get than in BV . Fortunately, for a function which is alternatively increasing and decreasing with less and less oscillation, the total Φ-variation is estimated as in BV .

Proposition 10. [T V Φ for oscillation with decreasing amplitudes]

Let (x k ) k an increasing sequence, I k = [x k , x k+1 ], I = ∪ k I k .
If u is a monotonic function on all I k such that the algebraic amplitude on

I k : δ k = u(x k+1 )-u(x k ) satises δ k+1 δ k ≤ 0 and |δ k+1 | ≤ |δ k |, then T V Φ u[I] = k Φ(δ k ).
Remark 11. 1) These points x k will be called extremal points subsequently.

2) Notice that the two conditions δ k+1 δ k ≤ 0 and |δ k+1 | ≤ |δ k | are compulsory to get the total Φ-variation. Else the strict inequality

T V Φ u[I] > k Φ(δ k )
occurs, as shown by the two counterexamples below. These conditions are related to the strict convexity of Φ and the fact that Φ(0) = 0, which yields in particular the following inequality: 1] for ε small enough.

(3.1) Φ(a) + Φ(b) < Φ(a + b) when a > 0, b > 0. i) If δ k+1 δ k > 0, then a strictly monotonic function provides a counterexample. Set u(x) = x, x 0 = -1, x 1 = 0, x 2 = 1. Then k Φ(δ k ) = 2Φ(1) < Φ(2) = T V Φ u[-1, 1]. ii) If (|δ k |) k is not decreasing, then consider u a continuous piecewise linear function such that |u (x)| = 1 on ]x k , x k+1 [, x 0 = -1, x 1 = 0, x 2 = ε, x 3 = 1 + ε. So up to a constant: u(x) = x on I 0 , u(x) = -x on I 1 and u(x) = x -2ε on I 2 . Then k Φ(δ k ) = 2Φ(1) + Φ(ε) < Φ(2) = T V Φ u[-1,
Proof. Set y 1 < • • • < y r a subdivision of I. We have to prove that:

r-1 i=1 Φ(u(y i+1 ) -u(y i )) ≤ k Φ(δ k ).
The strategy consists of modifying the initial subdivision in order to increase its Φ-variation at each step of the construction. We will successively: i) reduce the subdivision by removing some intermediary points ; ii) replace some points of (y i ) 1≤i≤r by extremal points and add if necessary some consecutive extremal points. i) Assume that three points y i , y i+1 , y i+2 are in the same interval I k . It follows from the monotonicity of u on I k and the strict convexity of Φ that:

Φ(u(y i+1 ) -u(y i )) + Φ(u(y i+2 ) -u(y i+1 )) ≤ Φ(u(y i+2 ) -u(y i )),
so the intermediary point y i+1 has to be removed from the initial subdivision to obtain a larger Φ-variation. Repeating this reduction as many times as necessary, there are nally at most two points of the new subdivision in each interval I k .

ii) The second step of the construction focuses on the oscillations of the function u.

It follows from the decreasing-amplitude assumption that the sequences (u(x 2k )) k and (u(x 2k+1 )) k are monotonic and correspond to the local extrema of the function u. To set the monotonicity, assume for instance δ 0 < 0 < δ 1 (else replace u by -u), so that

u(x 0 ) ≥ u(x 2 ) ≥ • • • ≥ u(x 2k ) ≥ u(x 2k+1 ) ≥ • • • ≥ u(x 3 ) ≥ u(x 1 ).
a) The rst point y 1 will now be replaced by one or two extremal points to get an upper bound of Φ(u(y 2 ) -u(y 1 ))

and then to increase the Φ-variation. If y 1 is already an extremal point, then we can skip this step and go directly to step b). Else, let i be the integer such that:

x i < y 1 < x i+1 . There are two cases:

y 2 ∈ I i or y 2 / ∈ I i . If y 2 ∈ I i , then |u(y 2 ) -u(y 1 )| ≤ |u(y 2 ) -u(x i )| , so that Φ(u(y 2 ) -u(y 1 )) ≤ Φ(u(y 2 ) -u(x i )).
So y 1 will be replaced in the subdivision by

x i . If y 2 / ∈ I i , then |u(y 2 ) -u(y 1 )| ≤ |δ i | , so that Φ(u(y 2 ) -u(y 1 )) ≤ Φ(u(x i+1 ) -u(x i )) = Φ(δ i ).
So y 1 will be replaced by x i+1 and the point x i is added as the rst point of the subdivision. The subdivision is now

x i < x i+1 < y 2 . Let k ≥ i + 1 such that x k < y 2 ≤ x k+1 . If k ≥ i + 2 then x i+2 , .
.., x k are added to the subdivision in order to get a greater Φ-variation. Notice that the new subdivision starts from now on one or some extremal points. b) We will now get an upper bound of

Φ(u(y 2 ) -u(x k )) + Φ(u(y 3 ) -u(y 2 ))
by removing y 2 from the subdivision. There are two cases: y 3 ∈ I k or y 3 / ∈ I k . If y 3 ∈ I k , then y 2 is simply removed from the subdivision since

Φ(u(y 2 ) -u(x k )) + Φ(u(y 3 ) -u(y 2 )) ≤ Φ(u(y 3 ) -u(x k )).
If y 3 / ∈ I k , there are two cases again. If u(y 3 ) is between u(x k ) and u(y 2 ), then

Φ(u(y 2 ) -u(x k )) + Φ(u(y 3 ) -u(y 2 )) ≤ Φ(δ k ) + Φ(u(y 3 ) -u(x k+1 )) since |u(y 2 ) -u(x k )| ≤ |δ k | and |u(y 3 ) -u(y 2 )| ≤ |u(y 3 ) -u(x k+1 )| .
Else, u(y 2 ) is between u(x k ) and u(y 3 ) and it follows from (3.1) that

Φ(u(y 2 ) -u(x k )) + Φ(u(y 3 ) -u(y 2 )) ≤ Φ(u(y 3 ) -u(x k )) ≤ Φ(δ k ),
and then

Φ(u(y 2 ) -u(x k )) + Φ(u(y 3 ) -u(y 2 )) ≤ Φ(δ k ) + Φ(u(y 3 ) -u(x k+1 )).
In both cases y 2 is replaced by x k+1 and the Φ-variation increases. c) For y 3 the situation is similar to that of the point b), since we have to nd an upper bound of

Φ(u(y 3 ) -u(x k+1 )) + Φ(u(y 4 ) -u(y 3 )).
Continuing the process, the initial subdivision becomes a sequence of consecutive extremal points x i , x i+1 , ..., x p with a greater Φ-variation, less or equal to k Φ(δ k ), which concludes the proof.

Explicit one-dimensional solutions

In this section explicit solutions with almost minimal regularity are proposed. The regularity is simply and precisely estimated in BV s , which is enough to get the correspondent Sobolev regularity ( [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF]). The one-dimensional problem considered is:

∂ t u + ∂ x f (u) = 0, u(0, x) = u 0 (x). If the ux f is smooth (f ∈ C ∞ ), nonlinear (∀u, ∃ k > 1, f (k) (u) = 0)
and strictly convex but possibly degenerate, then the regularity in BV α with only an L ∞ initial data is already known ( [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]). More precisely, if the ux degeneracy is

d f = d, then α = 1 d
and the entropy solutions becomes immediately more regular: u(t, .) ∈ BV α loc as a function of x for all t > 0. The point is now to show examples with no more regularity. The regularity is rst considered in BV s where the norm can be exactly computed. Second, the Sobolev regularity is studied at the end of this section. Proposition 12. Suppose that the nonlinear ux f ∈ C ∞ (K, R) satises Denition 2 with a degeneracy α. Then for all ε > 0, for all T > 0 there exists an entropy solution u such that for all t ∈]0 ; T [:

u(t, •) ∈ BV α loc (R) ∩ W α-ε,1 loc (R) and u(t, .) / ∈ BV α+ε loc (R) ∪ W α+ε,1 loc (R).
Two examples are presented: the rst one is a continuous solution with a small fractional regularity ( [START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF]), the second one corresponds to an accumulation of Riemann problems. The BV s or BV Φ estimations are precisely done on the initial data. The point is to have a time T 1 > 0 before the waves interactions so that the BV s norm remains constant on [0, T 1 [. A change of variables T t = T 1 τ , T x = T 1 ξ yields a similar solution with a life span before waves interactions equals to T . In other words, if T 1 is the life span for the entropy solution with initial data u 0 (x) then with the initial data u 0

T 1 T
x the life span is T . Example 13 is a continuous example not related to convexity. However, for a smooth ux with at least a non-zero derivative the function is locally left or right convex or concave. Example 14 uses the right convexity with a non-negative solution.

Example 13. Continuous example:

u ∈ C 0 ([0, T [×R).
The following example is built in [START_REF] Castelli | Oscillating waves and the maximal smoothing eect for one-dimensional nonlinear conservation laws[END_REF] where the critical s-total variation is estimated. Only the behavior of the initial data is recalled. If the maximal point of degeneracy of the ux is u = 0 then the explicit initial data is:

u 0 (x) = x a cos π x b where a = α + α 2 ε , b = α ε .
In some sense the worst behavior of u is obtained with very high oscillations compensated precisely by a very at behavior of u 0 near the singular point x = 0.

A classic way to build singular solutions is to take an initial piecewise constant data ( [START_REF] Cheverry | Regularizing eects for multidimensional scalar conservation laws[END_REF] p. 13 and [11]). Thus the entropy solutions correspond to a succession of rarefaction waves and shock waves. The entropy solution is not continuous but we show that we can choose ε = 0 in this context. BV s appear to be the optimal spaces to study the regularity of entropy solutions [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF][START_REF] Castelli | Smoothing eect in BV -Φ for scalar conservation laws[END_REF]. Since the study of the regularity of such solutions is not given in BV s spaces but in Besov spaces in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF], a short study of the solution in BV s is derived. Proposition 12 can be improved in the following way: for all T > 0, there exists an entropy solution such that for all t ∈]0, T [ and for all ε > 0, u(t, •) ∈ BV α loc (R) and u(t, .) / ∈ BV α+ε loc (R). In order to do so, we give Example 14. Such an improvement seems not so clear for the rst continuous example.

Example 14. Piecewise elementary waves.

This example is presented in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] (see also [START_REF] Cheverry | Regularizing eects for multidimensional scalar conservation laws[END_REF]) and studied in Besov spaces. A monotonic assumption is added to perform the BV Φ estimates thanks to Proposition 10. The construction in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] is given for a power-law ux: f (u) = |u| 1+d for d ≥ 1. This example is generalizable for any C ∞ ux satisfying Remark 5 with the same d, f (0) = 0 and f is strictly convex in a right neighborhood of 0. To have f (0) = 0 it is enough to make a change of space variable: x←→ x -f (0)t. For the right local convexity it is assumed that f (1+d) (0) > 0. In the concave case f (1+d) (0) < 0 the example can be easily modied with the same picture and negative wave speeds. A suitable piecewise constant initial data is dened.

Since f is convex on [0, +∞[, only decreasing jumps satisfy the Lax' entropy condition. Increasing jumps will be replaced by rarefaction waves. Let (c k ) k≥1 ∈ l d be a sequence of positive numbers. Set for k ∈ N:

∆ k := a(c k+1 ), s k = f (c k+1 ) c k+1 < ∆ k x + k := +∞ j=k ∆ j < +∞ , x - k+1 := x + k -s k > x + k+1 u(•, 0) := +∞ k=1 c k χ I k where I k := [x + k , x - k ].
As explained in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF], an initial jump connecting 0 to c k evolves into a rarefaction wave whose leading edge moves with speed a(c k ) ∼ λc d k , where λ =

f (1+d) (0) d! > 0.
The choice of ∆ k made here ensures that all waves do not interact in the time interval ]0 ; T [ with

T = 1.
The interaction times can be calculated explicitly: the left rarefaction and the right shock intersect at time t

- k = x - k+1 -x + k+1 a(c k+1 ) -s k = 1
; the left shock and the right rarefaction

intersect at time t + k = x + k -x - k+1 s k = 1.
We now focus on two dierent choices of the sequence (c k ) and prove below the stated results:

(1)

If c k = 1 k α+ε for all k > 0, then u(t, •) ∈ BV s for all s < α+ε but u(t, •) / ∈ BV α+ε .
(

) If c k = 1 (k ln 1+η (k)) α for all k > 1, η > 0, then u(t, •) ∈ BV α but u(t, •) / ∈ BV s 2 
for all s > α. These examples present oscillations with decreasing amplitudes, so the regularity is computed simply in the spaces BV s or BV Φ thanks to Proposition 10. Notice that:

• T V Φ u = 2 k Φ(c k ) so that u belongs to BV Φ if and only if k Φ(c k ) < ∞.
• BV s is simply the BV Φ space with the function Φ(y) = y 1/s for y ≥ 0.

• before the interaction time of waves T , the BV s norm of the entropy solution is equal to that of the initial data.

(1) The rst example is related to the convergence of the series , then:

Φ(c k ) = α γ | ln(k) + (1 + η) ln(ln(k))| γ k ln 1+η (k) ∼ α γ k ln 1+η-γ (k) ,
so that the series k Φ(c k ) converges if and only if γ < η. Since the following strict inclusions hold for all ε > 0, γ > 0:

BV s+ε BV y 1/s | ln γ y| BV s ([3]
), it follows that u(t, .) ∈ BV y 1/α | ln γ y| ⊂ BV y 1/α = BV α for all 0 < γ < η and u(t, .) / ∈ BV y 1/α | ln η y| . These estimates are valid for all 0 ≤ t < T .

We now turn to Sobolev estimates. For all ε > 0, BV s loc ⊂ W s-ε,1 loc ( [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF]), so the last point is to show that the previous examples do not belong to W α+ε,1 loc . Lemma 15. Let u a piecewise constant function on ]0, 1[, (x k ) a decreasing sequence such that x 0 = 1 and x k → 0. Set for k ≥ 1

I k =]x k , x k-1 [, ∆ k = x k-1 -x k , u(x) = u k on I k and c k = |u k-1 -u k |. Assume that (∆ k ) is a decreasing sequence. Let s ∈]0, 1[, if k c k ∆ 1-s k = +∞ then u / ∈ W s,1 (]0, 1[).
Proof. It suces to roughly estimate the W s,1 semi-norm of u:

|u| W s,1 (]0,1[) = ˆ1 0 ˆ1 0 |u(x) -u(y)| |x -y| 1+s dx dy = k≥1 ˆxk-1 x k ˆ1 0 |u(x) -u(y)| |x -y| 1+s dy dx ≥ k≥2 ˆxk-1 x k ˆx+∆ k x |u(x) -u(y)| |x -y| 1+s dy dx = k≥2 ˆxk-1 x k ˆx+∆ k x k-1 |u(x) -u(y)| |x -y| 1+s dy dx ≥ k≥2 ˆxk-1 x k c k ∆ 1+s k (x -x k ) dx = 1 2 k≥2 c k ∆ 1-s k .
Example 14 is not piecewise constant but, for any t > 0 xed, it suces to consider u(t, x) the function which is equal to u(t, x) when u(t, x) is locally zero and on the rarefaction with maximal value c k , u(t, x) = 1 2

c k if u(t, x) > 1 2
c k and u(t, x) = 0 else. Since the W s,1 semi-norm of u is less than the one of u the conclusion of Lemma 15 holds. The same method can also be used for continuous Example 13. More precisely, let x k be the decreasing sequence of roots of u and c k the supremum of |u| on I k . Set

u(t, x) = 1 2 c k if u(t, x) > 1 2
c k and 0 else on I k . We can now achieve the proof of Proposition 12. For the Riemann series of Example 14 with s = α+ε, we can write:

k c k ∆ 1-s k ∼ λ k c 1+d(1-s) k → +∞ since 1+d(1-α) = d.
Thus, applying an extension of Lemma 15, it follows that u(t, .) / ∈W s+ε,1 (]0, 1[). The other examples conclude the proof similarly. We do not go further in the Sobolev framework since the best W s,p was already conjectured in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] with p = 1 s and was reached in [START_REF] Bourdarias | Fractional BV spaces and applications to scalar conservation laws[END_REF] for some convex uxes. We now turn to the multidimensional case.

Monophase entropy solution

An idea to build the most singular solution follows the geometric optics study. Such a method provides a family of solutions depending on very high frequencies. In this framework the singularity of the whole family (uniform Sobolev bounds) is given by the relation between the small amplitude and the wavelength [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF]. It is known that the most singular case occurs near some constant state [START_REF] Chen | Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws[END_REF][START_REF] Joly | Justication of resonant one-dimensional nonlinear geometric optics[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF][START_REF] Junca | Supercritical geometric optics for scalar conservation laws[END_REF]. Moreover, in [START_REF] Chen | Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws[END_REF] for the worst case, the multi-phase expansion near the constant state has only one phase with the highest frequency. A monophase expansion is exploited in [START_REF] Junca | High frequency waves and the maximal smoothing eect for nonlinear scalar conservation laws[END_REF][START_REF] Junca | Supercritical geometric optics for scalar conservation laws[END_REF] to get the supercritical geometric optics expansions. This remark is also a key point to build individual solution (and not a whole family) with the almost minimal regularity expected. It is then expected that a solution with one phase ϕ : R n → R carefully chosen can yield a solution with low regularity:

U (t, X) = U + u(t, ϕ(X)).
U is the point where the vectorial ux F is locally the less nonlinear (see Denition 4). The function u(t, x) solves a one-dimensional conservation law where the scalar ux f is:

f (u) = ∇ϕ • F (U + u).
The computation of the ux is a direct application of the chain rule formula for smooth solutions. If the solution is not smooth this formula is still valid for weak entropy solutions [START_REF] Chen | Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws[END_REF][START_REF] Junca | A two-scale convergence result for a nonlinear conservation in one space variable, Asymptot[END_REF]. The following classic lemma is stated without proof. Lemma 16. If u is an entropy solution of ∂ t u + ∂ x f (u) = 0 with the scalar ux f (u) = ∇ϕ • F (U + u) then U (t, X) = u + u(t, ϕ(X)) is an entropy solution of ∂ t U + div X F (U ) = 0.

Let us choose the critical phase ϕ taking account of the derivatives of f :

f (k) (0) = ∇ϕ • F (k) (U ).
The phase is chosen to have the most degenerate scalar ux f . Since by Denition 4 rank F (U ), ..., F (d F ) (U ), F (1+d F ) (U )) = n and rank F (U ), ..., F (d F ) (U )) = n -1, there is only one direction to choose ∇ϕ such that the scalar ux f has the same degeneracy than the vectorial ux F : d f = d F . This only way is to take ϕ such that: 0 = ∇ϕ ⊥ F (U ), ..., F (d F -1) (U )) .

Thus, up to a normalization, the choice of the linear phase ϕ is unique. Now it suces to take an initial data u 0 with a low regularity from the one-dimensional case with u 0 small enough to get a critical solution with the critical initial data: U (0, X) = U 0 (X) = U + u 0 (ϕ(X)).

The entropy solution u is chosen to have the expected low regularity in BV s and W s,1 thanks to Proposition 12. In Sobolev spaces the same low regularity is inherited by U on the same interval of time. Precisely, a linear change of variables X → Y = (Y 1 , ..., Y n ) in R n does not change the best Sobolev exponent. The change of variables is chosen to have Y 1 = ϕ(X). The optimal Sobolev regularity has to be estimated on function depending only on 

  + ε and the divergence of the harmonic series. (2) The second example works with the same arguments. Note that the regularity can be estimated more precisely in the BV Φ spaces. If Φ(y) = y d | ln γ y| for y > 0, with d = 1 α

Y 1 :

 1 U (t, Y ) = U + u(t, Y 1 ) = v(t, Y 1 ).The low regularity of the entropy solution U and then Theorem 1 follow from this classical lemma:Lemma 17. If U (Y ) = v(Y 1 ) , ε > 0, v ∈ W s-ε,1 loc (R, R) but v / ∈ W s+ε,1 loc (R, R), then U ∈ W s-ε,1 loc (R n , R) but U / ∈ W s+ε,1 loc (R n , R).