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ON THE MAXIMAL SMOOTHING EFFECT FOR
MULTIDIMENSIONAL SCALAR CONSERVATION LAWS

PIERRE CASTELLI & STÉPHANE JUNCA

Abstract. In 1994, Lions, Perthame and Tadmor conjectured an optimal smoothing
e�ect for entropy solutions of multidimensional scalar conservation laws. This e�ect
estimated in fractional Sobolev spaces is linked to the �ux nonlinearity. In order to
show that the conjectured smoothing e�ect cannot be exceeded, we use a new de�nition
of a nonlinear smooth �ux which proves e�cient to build bespoke explicit solutions.
First, one-dimensional solutions are studied in fractional BV spaces which turn out
to be optimal to encompass the smoothing e�ect: regularity and traces. Second, the
multidimensional case is handled with a monophase solution and the construction
is optimal since there is only one choice for the phase to reach the lowest expected
regularity.
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1. Introduction

For the multidimensional scalar conservation laws

(1.1) ∂tU + divX F (U) = 0, U(0, X) = U0(X) ∈ L∞(Rn,R)

the �rst smoothing e�ect measured in Sobolev spaces was obtained in 1994 by Lions,
Perthame and Tadmor ([19]) for a �ux F ∈ C1(R,Rn). It was improved by Tadmor and
Tao in 2007 ([24]). This smoothing e�ect generalizes the BV smoothing e�ect obtained
in 1957 independently by Lax and Oleinik for a one-dimensional uniformly convex �ux
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([18, 21]). In [19] the regularity is measured in the Sobolev space W s,1
loc (Rn

X ,R) with a
small s ∈]0, 1]: Lions, Perthame and Tadmor conjectured that

s = α

where α ∈]0, 1] (De�nition 2) quanti�es the nonlinearity of the �ux on the compact in-
terval K = [inf U0, sup U0]. In the one-dimensional case, De Lellis and Westdickenberg
showed in 2003 that s ≤ α for power-law convex �uxes ([11]) and Jabin showed in 2010
that s = α for C2 �uxes under a generalized Oleinik condition ([13]).
For a nonlinear multidimensional smooth �ux the parameter α is determined explicitly
in [16] with an equivalent de�nition of nonlinearity recalled in Section 2 below. In

particular the parameter α depends on the space dimension n and satis�es: α ≤ 1

n
.

Moreover, De�nition 4 naturally yields the construction of a supercritical family of os-
cillating smooth solutions -on a bounded time before shocks- exactly uniformly bounded
in the optimal Sobolev space conjectured ([16]).
In this paper:

• we obtain an extension of the inequality s ≤ α for all nonlinear multidimensional
smooth �uxes;
• we present examples of special individual solutions (and not a family of solutions
as in [16]) which belong to the almost optimal Sobolev space.

In order to do so we use the fractional BV spaces which appear to be more relevant
in the one-dimensional case to get the regularity and the shock structure of entropy
solutions ([1]). One-dimensional examples with low regularity given in [2, 6, 11] are
�rst studied in generalized BV spaces and then extended to the multidimensional case.
Notice that the construction is optimal for the one-dimensional case, at least for the class
of degenerate strictly convex �uxes ([1, 2, 11]). As in [2, 5, 8] these examples are not
related to the convexity. We conjecture that it is also optimal for the multidimensional
case, at least for �uxes smooth enough (of class Cn+1). For a �ux only of class C1 the
natural way is to generalize the BVΦ approach developed in [3].
The main result of the paper is about the limitation of the smoothing e�ect.

Theorem 1. [Solutions with the minimal Sobolev regularity expected]
Let K ⊂ R be a proper compact interval, F ∈ C∞(K,Rn) a nonlinear �ux such that the

associated α = α[K] is positive. Then, for all ε > 0 and for all T > 0, there exists an

entropy solution U with values in K such that for all t ∈]0, T [,

U(t, .) ∈ Wα−ε,1
loc (Rn,R) but U(t, .) /∈ Wα+ε,1

loc (Rn,R).

To prove this main result the paper is organized as follows. Two de�nitions of a non-
linear �ux are recalled in Section 2. Fractional and generalized BV spaces, BV s and
BVΦ, are introduced in Section 3. We make comparisons with the fractional Sobolev
spaces and we give in Proposition 10 an explicit way to compute the generalized total
variation in some particular cases. Section 4 deals with optimal examples with low
regularity in BV s. The multidimensional case is handled in Section 5 to conclude the
proof of Theorem 1.
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2. Nonlinear flux

There have been several de�nitions of a nonlinear �ux depending on the regularity of the
�ux: [12, 18, 21] for a C2 �ux, [19] for a C1 �ux, [22, 25] for a C0 �ux. These de�nitions
are compared in [16]. For an analytic �ux they are equivalent with recent De�nition
4 below. The �rst de�nition related with the smoothing e�ect for multidimensional
conservation laws was given by Lions, Perthame and Tadmor:

De�nition 2. [Nonlinear �ux [19]] Let M be a positive constant. F : R → Rn is
said to be nonlinear on [−M,M ] if there exist α > 0 and C = Cα > 0 such that for all
δ > 0

sup
τ2+|ξ|2=1

|Wδ(τ, ξ)| ≤ C δα,

where (τ, ξ) ∈ R×Rn and |Wδ(τ, ξ)| is the one-dimensional measure of the singular set:

|Wδ(τ, ξ)| := {|v| ≤M, |τ + a(v) · ξ| ≤ δ} ⊂ [−M,M ] and a = F ′.

In all the sequel, only the greatest α is considered.

Example 3. If f is a scalar power-law �ux: f(u) =
|u|1+d

1 + d
for d ≥ 1, then the greatest

α on [−M,M ] is
1

d
. Burgers' �ux corresponds to d = 1.

The construction of solutions with minimal regularity uses a precise understanding of
the nonlinearity. A new de�nition appears for the �rst time in [4] for a genuinely
nonlinear vectorial �ux and then in [7, 9, 13, 16].

De�nition 4. [Nonlinear smooth �ux [16]] F ∈ C∞(R,Rn) is nonlinear on K if for
all U ∈ K the quantity

dF [U ] = min
{
j ∈ N∗|rank(F ′′(U), ..., F (1+j)(U)) = n

}
is �nite. Moreover, dF [.] admits a maximum on K for some U ∈ K which quanti�es
the nonlinearity by the integer:

dF = sup
u∈K

min
{
j ∈ N∗ | rank(F ′′(U), ..., F (1+j)(U)) = d

}
= dF [U ].

The �ux F is genuinely nonlinear on K if dF = n.

Following [16] this condition also means that the curve Γ = {A(V ), V ∈ K} never
stays in any hyperplane. In some sense dF measures the degeneracy of the �ux. Notice
that by de�nition dF [U ] ≥ n and the genuine nonlinearity means that for all U ∈ K,
dF [U ] = n, so that the family

{
F ′′(U), ..., F (1+n)(U)

}
is a basis of Rn. The constant

state U will play a key role later: the most singular entropy solutions built are near U .

Remark 5. In dimension 1 this de�nition reduces for the scalar �ux f to the �rst non
zero derivatives of a(u) = f ′(u):

dF = sup
u∈K

min
{
j ∈ N∗ | a(j)(u) 6= 0

}
.
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Theorem 6. [[16]] If F ∈ C∞(R,Rn), then α =
1

dF
≤ 1

n
.

Moreover, the parameter α is the inverse of an integer greater than the space dimension.

The particular case α =
1

n
corresponds to the maximal nonlinearity, namely the genuine

nonlinearity [4, 7, 9, 13].

3. BV s
and BVΦ spaces

What is the right functions space to measure properly the regularity of entropy solu-
tions? This natural question is asked by Tartar in [26]. Sobolev spaces are considered
not to be the optimal ones in [13]. Sobolev spaces do not provide the fundamental
traces property of BV functions ([7, 9, 27]). In the one-dimensional case, BV s spaces
provide a relevant framework ([1, 2]): the right fractional exponent of entropy solutions
is reached and the like-BV structure is recovered. Some other regularities are derived
from the BV s regularity, for instance the BV regularity of ϕ(u) in [8, 23] where u is
an entropy solution and ϕ a nonlinear function. Moreover, the BV s regularity yields
a W s−ε,1 regularity for all ε > 0. Thanks to Proposition 10 below we get a simple
and sharp exponent s for the examples presented in Section 4. These examples are a
little more regular than expected. The surplus of regularity can be reduced as much as
desired. An example adapted from [11] seems optimal in the BV s framework. By using
a �ner measurement of the regularity with the larger class of BVΦ spaces including the
BV s spaces, it is shown that the last example is still a little more regular than the
critical regularity. It is the reason why we also use the BVΦ spaces. The de�nitions of
these generalized BV spaces are brie�y recalled. The reader is referred to [20] for the
�rst extensive study of the BVΦ spaces.

De�nition 7. [BVΦ spaces [20]] Let I be an non-empty interval of R and let S(I)
be the set of subdivisions of I: {(x0, x1, ..., xn), n ≥ 1, xi ∈ I, x0 < x1 < ... < xn}. Let
M > 0, Φ an even convex function on [−2M, 2M ], positive on ]0, 2M ] such that Φ(0) = 0
and u a function de�ned on I such that |u| ≤M .

i) The Φ−variation of u with respect to the subdivision σ = (x0, x1, ..., xn) is:

TVΦu[σ] =
n∑
i=1

Φ (u(xi)− u(xi−1)) .

ii) The total Φ−variation of u on I is:

TVΦu[I] = sup
σ∈S(I)

TVΦu[σ].

iii) If Φ satis�es the condition

(∆2) ∃h0 > 0, k > 0, Φ(2 h) ≤ kΦ(h) for 0 ≤ h ≤ h0,

then BVΦ(I) := {u : I → R, |u| ≤M,TVΦu[I] <∞} is a linear space.
Else we set BVΦ(I) := {u : I → R,∃λ > 0, TVΦ(λu)[I] <∞}, which is a metric space.
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Remark 8. 1) According to the assumptions made on Φ, it is necessarily an increasing
function on ]0,+∞[.
2) Notice that [20] considers the case Φ(u) = o (u) near 0, which leads to a less regular
space than BV : BV * BVΦ. The case where Φ(u) = u or Φ(u) ∼ u near 0 yields
BV = BVΦ. For degenerate �uxes we are in the context of [20]: Φ(u) = o (u) near 0.

3)In the particular case where Φ is a power function: Φ(u) = |u|1/s with s > 1, then
BVΦ(I) = BV|u|1/s(I) is BV s(I) and for s = 1, BV s(I) = BV (I), the space of functions
of bounded variation.

Example 9. 1) Let Φ(u) = exp

(
− 1

u2

)
, |u| ≤ 1. Since Φ(u) = o (|u|α) for all α ≥ 1,

it follows that for all s ∈]0, 1], BV s ⊂ BVΦ. In particular, BV s 6= BVΦ for all s ∈]0, 1].

2) Let Φ(u) = − |u|
α

ln |u|
, |u| < 1, α ≥ 1, s =

1

α
. The following inclusions hold for all

ε > 0: BV s ⊂ BVΦ ⊂ BV s−ε.

Proposition 2.3 p.660 in [1] is generalized here in the BVΦ framework. The BV s optimal
norm is less easy to get than in BV . Fortunately, for a function which is alternatively in-
creasing and decreasing with less and less oscillation, the total Φ−variation is estimated
as in BV .

Proposition 10. [TVΦ for oscillation with decreasing amplitudes]
Let (xk)k an increasing sequence, Ik = [xk, xk+1], I = ∪kIk. If u is a monotonic

function on all Ik such that the algebraic amplitude on Ik: δk = u(xk+1)−u(xk) satis�es

δk+1δk ≤ 0 and |δk+1| ≤ |δk|, then TVΦu[I] =
∑
k

Φ(δk).

Remark 11.
1) These points xk will be called extremal points subsequently.
2) Notice that the two conditions δk+1δk ≤ 0 and |δk+1| ≤ |δk| are compulsory to get

the total Φ−variation. Else the strict inequality TVΦu[I] >
∑
k

Φ(δk) occurs, as shown

by the two counterexamples below. These conditions are related to the strict convexity
of Φ and the fact that Φ(0) = 0, which yields in particular the following inequality:

(3.1) Φ(a) + Φ(b) < Φ(a+ b) when a > 0, b > 0.

i) If δk+1δk > 0, then a strictly monotonic function provides a counterexample. Set

u(x) = x, x0 = −1, x1 = 0, x2 = 1. Then
∑
k

Φ(δk) = 2Φ(1) < Φ(2) = TVΦu[−1, 1].

ii) If (|δk|)k is not decreasing, then consider u a continuous piecewise linear function
such that |u′(x)| = 1 on ]xk, xk+1[, x0 = −1, x1 = 0, x2 = ε, x3 = 1 + ε. So up
to a constant: u(x) = x on I0, u(x) = −x on I1 and u(x) = x − 2ε on I2. Then∑
k

Φ(δk) = 2Φ(1) + Φ(ε) < Φ(2) = TVΦu[−1, 1] for ε small enough.
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Proof. Set y1 < · · · < yr a subdivision of I. We have to prove that:

r−1∑
i=1

Φ(u(yi+1)− u(yi)) ≤
∑
k

Φ(δk).

The strategy consists of modifying the initial subdivision in order to increase its Φ−variation
at each step of the construction. We will successively:
i) reduce the subdivision by removing some intermediary points ;
ii) replace some points of (yi)1≤i≤r by extremal points and add if necessary some con-
secutive extremal points.
i) Assume that three points yi, yi+1, yi+2 are in the same interval Ik. It follows from
the monotonicity of u on Ik and the strict convexity of Φ that:

Φ(u(yi+1)− u(yi)) + Φ(u(yi+2)− u(yi+1)) ≤ Φ(u(yi+2)− u(yi)),

so the intermediary point yi+1 has to be removed from the initial subdivision to obtain
a larger Φ−variation. Repeating this reduction as many times as necessary, there are
�nally at most two points of the new subdivision in each interval Ik.
ii) The second step of the construction focuses on the oscillations of the function u.
It follows from the decreasing-amplitude assumption that the sequences (u(x2k))k and
(u(x2k+1))k are monotonic and correspond to the local extrema of the function u. To
set the monotonicity, assume for instance δ0 < 0 < δ1 (else replace u by −u), so that

u(x0) ≥ u(x2) ≥ · · · ≥ u(x2k) ≥ u(x2k+1) ≥ · · · ≥ u(x3) ≥ u(x1).

a) The �rst point y1 will now be replaced by one or two extremal points to get an upper
bound of

Φ(u(y2)− u(y1))

and then to increase the Φ−variation. If y1 is already an extremal point, then we
can skip this step and go directly to step b). Else, let i be the integer such that:
xi < y1 < xi+1. There are two cases: y2 ∈ Ii or y2 /∈ Ii.
If y2 ∈ Ii, then

|u(y2)− u(y1)| ≤ |u(y2)− u(xi)| ,
so that

Φ(u(y2)− u(y1)) ≤ Φ(u(y2)− u(xi)).

So y1 will be replaced in the subdivision by xi.

If y2 /∈ Ii, then
|u(y2)− u(y1)| ≤ |δi| ,

so that
Φ(u(y2)− u(y1)) ≤ Φ(u(xi+1)− u(xi)) = Φ(δi).

So y1 will be replaced by xi+1 and the point xi is added as the �rst point of the
subdivision. The subdivision is now xi < xi+1 < y2. Let k ≥ i + 1 such that
xk < y2 ≤ xk+1. If k ≥ i+ 2 then xi+2, ..., xk are added to the subdivision in order
to get a greater Φ−variation.

Notice that the new subdivision starts from now on with one or some extremal points.
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b) We will now get an upper bound of

Φ(u(y2)− u(xk)) + Φ(u(y3)− u(y2))

by removing y2 from the subdivision. There are two cases: y3 ∈ Ik or y3 /∈ Ik.
If y3 ∈ Ik, then y2 is simply removed from the subdivision since

Φ(u(y2)− u(xk)) + Φ(u(y3)− u(y2)) ≤ Φ(u(y3)− u(xk)).
If y3 /∈ Ik, there are two cases again.
If u(y3) is between u(xk) and u(y2), then

Φ(u(y2)− u(xk)) + Φ(u(y3)− u(y2)) ≤ Φ(δk) + Φ(u(y3)− u(xk+1))

since

|u(y2)− u(xk)| ≤ |δk| and |u(y3)− u(y2)| ≤ |u(y3)− u(xk+1)| .
Else, u(y2) is between u(xk) and u(y3) and it follows from (3.1) that

Φ(u(y2)− u(xk)) + Φ(u(y3)− u(y2)) ≤ Φ(u(y3)− u(xk)) ≤ Φ(δk),

and then

Φ(u(y2)− u(xk)) + Φ(u(y3)− u(y2)) ≤ Φ(δk) + Φ(u(y3)− u(xk+1)).
In both cases y2 is replaced by xk+1 and the Φ−variation increases.

c) For y3 the situation is similar to that of the point b), since we have to �nd an upper
bound of

Φ(u(y3)− u(xk+1)) + Φ(u(y4)− u(y3)).

Continuing the process, the initial subdivision becomes a sequence of consecutive ex-

tremal points xi, xi+1, ..., xp with a greater Φ−variation, less or equal to
∑
k

Φ(δk),

which concludes the proof. �

4. Explicit one-dimensional solutions

In this section explicit solutions with almost minimal regularity are proposed. The
regularity is simply and precisely estimated in BV s, which is enough to get the corre-
spondent Sobolev regularity ([1, 2]).
The one-dimensional problem considered is:

∂tu+ ∂xf(u) = 0, u(0, x) = u0(x).

If the �ux f is smooth (f ∈ C∞), nonlinear (∀u, ∃ k > 1, f (k)(u) 6= 0) and strictly
convex but possibly degenerate, then the regularity in BV α with only an L∞ initial
data is already known ([1]). More precisely, if the �ux degeneracy is df = d, then

α =
1

d
and the entropy solutions becomes immediately more regular: u(t, .) ∈ BV α

loc as

a function of x for all t > 0.
The point is now to show examples with no more regularity. The regularity is �rst
considered in BV s where the norm can be exactly computed. Second, the Sobolev
regularity is studied at the end of this section.
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Proposition 12. Suppose that the nonlinear �ux f ∈ C∞(K,R) satis�es De�nition 2

with a degeneracy α. Then for all ε > 0, for all T > 0 there exists an entropy solution

u such that for all t ∈]0 ; T [:

u(t, ·) ∈ BV α
loc(R) ∩Wα−ε,1

loc (R) and u(t, .) /∈ BV α+ε
loc (R) ∪Wα+ε,1

loc (R).

Two examples are presented: the �rst one is a continuous solution with a small fractional
regularity ([2]), the second one corresponds to an accumulation of Riemann problems.
The BV s or BVΦ estimations are precisely done on the initial data. The point is to have
a time T1 > 0 before the waves interactions so that the BV s norm remains constant
on [0, T1[. A change of variables T t = T1 τ , T x = T1 ξ yields a similar solution with
a life span before waves interactions equals to T . In other words, if T1 is the life span

for the entropy solution with initial data u0(x) then with the initial data u0

(
T1

T
x

)
the

life span is T .
Example 13 is a continuous example not related to convexity. However, for a smooth
�ux with at least a non-zero derivative the function is locally left or right convex or
concave. Example 14 uses the right convexity with a non-negative solution.

Example 13. Continuous example: u ∈ C0([0, T [×R).
The following example is built in [2] where the critical s−total variation is estimated.
Only the behavior of the initial data is recalled. If the maximal point of degeneracy of
the �ux is u = 0 then the explicit initial data is:

u0(x) = xa cos
( π
xb

)
where a = α +

α2

ε
, b =

α

ε
.

In some sense the worst behavior of u is obtained with very high oscillations compen-
sated precisely by a very �at behavior of u0 near the singular point x = 0.

A classic way to build singular solutions is to take an initial piecewise constant data ([6]
p. 13 and [11]). Thus the entropy solutions correspond to a succession of rarefaction
waves and shock waves. The entropy solution is not continuous but we show that we
can choose ε = 0 in this context. BV s appear to be the optimal spaces to study the
regularity of entropy solutions [1, 3]. Since the study of the regularity of such solutions
is not given in BV s spaces but in Besov spaces in [11], a short study of the solution in
BV s is derived.

Proposition 12 can be improved in the following way: for all T > 0, there exists an
entropy solution such that for all t ∈]0, T [ and for all ε > 0, u(t, ·) ∈ BV α

loc(R) and
u(t, .) /∈ BV α+ε

loc (R). In order to do so, we give Example 14. Such an improvement
seems not so clear for the �rst continuous example.

Example 14. Piecewise elementary waves.
This example is presented in [11] (see also [6]) and studied in Besov spaces. A monotonic
assumption is added to perform the BVΦ estimates thanks to Proposition 10. The
construction in [11] is given for a power-law �ux: f(u) = |u|1+d for d ≥ 1. This example
is generalizable for any C∞ �ux satisfying Remark 5 with the same d, f ′(0) = 0 and
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f is strictly convex in a right neighborhood of 0. To have f ′(0) = 0 it is enough to
make a change of space variable: x←→ x − f ′(0)t. For the right local convexity it is
assumed that f (1+d)(0) > 0. In the concave case f (1+d)(0) < 0 the example can be
easily modi�ed with the same picture and negative wave speeds. A suitable piecewise
constant initial data is de�ned.

Since f is convex on [0,+∞[, only decreasing jumps satisfy the Lax' entropy condition.
Increasing jumps will be replaced by rarefaction waves. Let (ck)k≥1 ∈ ld be a sequence
of positive numbers. Set for k ∈ N:

∆k := a(ck+1), sk =
f(ck+1)

ck+1

< ∆k

x+
k :=

+∞∑
j=k

∆j < +∞ , x−k+1 := x+
k − sk > x+

k+1

u(·, 0) :=
+∞∑
k=1

ckχIk where Ik := [x+
k , x

−
k ].

As explained in [11], an initial jump connecting 0 to ck evolves into a rarefaction wave

whose leading edge moves with speed a(ck) ∼ λcdk, where λ =
f (1+d)(0)

d!
> 0. The choice

of ∆k made here ensures that all waves do not interact in the time interval ]0 ; T [ with
T = 1.
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The interaction times can be calculated explicitly: the left rarefaction and the right

shock intersect at time t−k =
x−k+1 − x

+
k+1

a(ck+1)− sk
= 1 ; the left shock and the right rarefaction

intersect at time t+k =
x+
k − x

−
k+1

sk
= 1.

We now focus on two di�erent choices of the sequence (ck) and prove below the stated
results:

(1) If ck =
1

kα+ε
for all k > 0, then u(t, ·) ∈ BV s for all s < α+ε but u(t, ·) /∈ BV α+ε.

(2) If ck =
1

(k ln1+η(k))α
for all k > 1, η > 0, then u(t, ·) ∈ BV α but u(t, ·) /∈ BV s

for all s > α.

These examples present oscillations with decreasing amplitudes, so the regularity is
computed simply in the spaces BV s or BVΦ thanks to Proposition 10. Notice that:

• TVΦu = 2
∑

k Φ(ck) so that u belongs to BVΦ if and only if
∑

k Φ(ck) <∞.

• BV s is simply the BVΦ space with the function Φ(y) = y1/s for y ≥ 0.

• before the interaction time of waves T , the BV s norm of the entropy solution is
equal to that of the initial data.

(1) The �rst example is related to the convergence of the series
∑
k

(
1

kα+ε

)1/s

for

s < α + ε and the divergence of the harmonic series.

(2) The second example works with the same arguments. Note that the regularity
can be estimated more precisely in the BVΦ spaces. If Φ(y) = yd| lnγ y| for
y > 0, with d =

1

α
, then:

Φ(ck) =
αγ| ln(k) + (1 + η) ln(ln(k))|γ

k ln1+η(k)
∼ αγ

k ln1+η−γ(k)
,

so that the series
∑

k Φ(ck) converges if and only if γ < η. Since the following
strict inclusions hold for all ε > 0, γ > 0: BV s+ε $ BVy1/s| lnγ y| $ BV s ([3]),
it follows that u(t, .) ∈ BVy1/α| lnγ y| ⊂ BVy1/α = BV α for all 0 < γ < η and
u(t, .) /∈ BVy1/α| lnη y|. These estimates are valid for all 0 ≤ t < T .

We now turn to Sobolev estimates. For all ε > 0, BV s
loc ⊂ W s−ε,1

loc ([1]), so the last point

is to show that the previous examples do not belong to Wα+ε,1
loc .

Lemma 15. Let u a piecewise constant function on ]0, 1[, (xk) a decreasing sequence

such that x0 = 1 and xk → 0. Set for k ≥ 1 Ik =]xk, xk−1[, ∆k = xk−1 − xk, u(x) = uk
on Ik and ck = |uk−1 − uk|. Assume that (∆k) is a decreasing sequence. Let s ∈]0, 1[,

if
∑
k

ck∆
1−s
k = +∞ then u /∈ W s,1(]0, 1[).
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Proof. It su�ces to roughly estimate the W s,1 semi-norm of u:

|u|W s,1(]0,1[) =

ˆ 1

0

ˆ 1

0

|u(x)− u(y)|
|x− y|1+s dx dy

=
∑
k≥1

ˆ xk−1

xk

ˆ 1

0

|u(x)− u(y)|
|x− y|1+s dy dx

≥
∑
k≥2

ˆ xk−1

xk

ˆ x+∆k

x

|u(x)− u(y)|
|x− y|1+s dy dx

=
∑
k≥2

ˆ xk−1

xk

ˆ x+∆k

xk−1

|u(x)− u(y)|
|x− y|1+s dy dx

≥
∑
k≥2

ˆ xk−1

xk

ck

∆1+s
k

(x− xk) dx

=
1

2

∑
k≥2

ck∆
1−s
k .

�

Example 14 is not piecewise constant but, for any t > 0 �xed, it su�ces to consider
u(t, x) the function which is equal to u(t, x) when u(t, x) is locally zero and on the

rarefaction with maximal value ck, u(t, x) =
1

2
ck if u(t, x) >

1

2
ck and u(t, x) = 0 else.

Since the W s,1 semi-norm of u is less than the one of u the conclusion of Lemma 15
holds. The same method can also be used for continuous Example 13. More precisely,
let xk be the decreasing sequence of roots of u and ck the supremum of |u| on Ik. Set

u(t, x) =
1

2
ck if u(t, x) >

1

2
ck and 0 else on Ik.

We can now achieve the proof of Proposition 12. For the Riemann series of Example 14

with s = α+ε, we can write:
∑

k ck∆
1−s
k ∼ λ

∑
k c

1+d(1−s)
k → +∞ since 1+d(1−α) = d.

Thus, applying an extension of Lemma 15, it follows that u(t, .) /∈W s+ε,1(]0, 1[). The
other examples conclude the proof similarly.
We do not go further in the Sobolev framework since the best W s,p was already conjec-

tured in [11] with p =
1

s
and was reached in [1] for some convex �uxes. We now turn

to the multidimensional case.

5. Monophase entropy solution

An idea to build the most singular solution follows the geometric optics study. Such
a method provides a family of solutions depending on very high frequencies. In this
framework the singularity of the whole family (uniform Sobolev bounds) is given by
the relation between the small amplitude and the wavelength [16]. It is known that
the most singular case occurs near some constant state [4, 14, 16, 17]. Moreover, in
[4] for the worst case, the multi-phase expansion near the constant state has only one
phase with the highest frequency. A monophase expansion is exploited in [16, 17] to
get the supercritical geometric optics expansions. This remark is also a key point to
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build individual solution (and not a whole family) with the almost minimal regularity
expected. It is then expected that a solution with one phase ϕ : Rn → R carefully
chosen can yield a solution with low regularity:

U(t,X) = U + u(t, ϕ(X)).

U is the point where the vectorial �ux F is locally the less nonlinear (see De�nition 4).
The function u(t, x) solves a one-dimensional conservation law where the scalar �ux f
is:

f(u) = ∇ϕ · F (U + u).

The computation of the �ux is a direct application of the chain rule formula for smooth
solutions. If the solution is not smooth this formula is still valid for weak entropy
solutions [4, 15]. The following classic lemma is stated without proof.

Lemma 16. If u is an entropy solution of ∂tu + ∂xf(u) = 0 with the scalar �ux

f(u) = ∇ϕ · F (U + u) then U(t,X) = u + u(t, ϕ(X)) is an entropy solution of ∂tU +
divX F (U) = 0.

Let us choose the critical phase ϕ taking account of the derivatives of f :

f (k)(0) = ∇ϕ · F (k)(U).

The phase is chosen to have the most degenerate scalar �ux f . Since by De�nition 4
rank

{
F ′′(U), ..., F (dF )(U), F (1+dF )(U))

}
= n and rank

{
F ′′(U), ..., F (dF )(U))

}
= n − 1,

there is only one direction to choose ∇ϕ such that the scalar �ux f has the same
degeneracy than the vectorial �ux F : df = dF . This only way is to take ϕ such that:

0 6= ∇ϕ ⊥
{
F ′′(U), ..., F (dF−1)(U))

}
.

Thus, up to a normalization, the choice of the linear phase ϕ is unique. Now it su�ces
to take an initial data u0 with a low regularity from the one-dimensional case with u0

small enough to get a critical solution with the critical initial data:

U(0, X) = U0(X) = U + u0(ϕ(X)).

The entropy solution u is chosen to have the expected low regularity in BV s and W s,1

thanks to Proposition 12. In Sobolev spaces the same low regularity is inherited by U on
the same interval of time. Precisely, a linear change of variables X 7→ Y = (Y1, ..., Yn)
in Rn does not change the best Sobolev exponent. The change of variables is chosen
to have Y1 = ϕ(X). The optimal Sobolev regularity has to be estimated on function
depending only on Y1 :

U(t, Y ) = U + u(t, Y1) = v(t, Y1).

The low regularity of the entropy solution U and then Theorem 1 follow from this
classical lemma:

Lemma 17. If U(Y ) = v(Y1) , ε > 0, v ∈ W s−ε,1
loc (R,R) but v /∈ W s+ε,1

loc (R,R), then

U ∈ W s−ε,1
loc (Rn,R) but U /∈ W s+ε,1

loc (Rn,R).
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