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HPP: a new software for constrained motion planning

Joseph Mirabel1,2, Steve Tonneau1,2, Pierre Fernbach1,2, Anna-Kaarina Seppälä1,2, Mylène Campana1,2,

Nicolas Mansard1,2 and Florent Lamiraux1,2

Abstract— We present HPP, a software designed for com-
plex classes of motion planning problems, such as navigation
among movable objects, manipulation, contact-rich multiped
locomotion, or elastic rods in cluttered environments. HPP is
an open-source answer to the lack of a standard framework for
these important issues for robotics and graphics communities.

HPP adopts a clear object oriented architecture, which makes
it easy to implement parts of an existing planning algorithm,
or entirely new algorithms. Python bindings and a visualization
tool allow for fast problem setting and prototyping: a new
algorithm can be implemented in just a few lines of code.

HPP can be used for classic planning problems such as
pick and place for mobile robots, but is specifically designed
to solve problems where the motion of the robot is con-
strained. Examples of behaviors produced by HPP thanks to a
generic constraint formulation include: maintaining a relative
orientation between bodies, enforcing the static equilibrium of
the robot, or automatically inferring that an object must be
moved to allow locomotion. Constraints are tied to a custom
representation of the kinematic chain, compatible with the
Unified Robot Description format (URDF).

To illustrate the possibilities of HPP, we present several
recent scientific contributions implemented with HPP, most
of which are provided with Python tutorials. HPP aims at
being seamlessly integrated within a global robot control loop:
Pinocchio, the fast multi-body dynamics library, is currently
being integrated in HPP, thus bridging the gap between the
planning and control communities.

I. INTRODUCTION

Schwartz and Sharir define the motion planning problem

as follows [1]: “Given a body B, and a region bounded

by a collection of “walls”, either find a continuous motion

connecting two given positions and orientations of B during

which B avoids collision with the walls, or else establish that

no such motion exists”. This formulation covers a “collision

avoidance” aspect, and a “motion” aspect of the planning,

both dependent on the body.

Motion Planning for collision avoidance

Efficient, generic algorithms [2], [3] have been proposed

to explore the space of collision-free configurations [4]. The

large majority of methods performs a sampling of this space,

with the objective to capture its topology in a roadmap, a

graph where nodes correspond to configurations of the robot,

connected if a collision-free path exists between them.

Efficient implementation of these algorithms exist nowa-

days, in the frameworks OMPL [5], OpenRAVE [6], and

Kineo CAM [7]. Thanks to them, assembly/disassembly

tasks for manipulator arms, trajectory planning and control
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of wheeled robots, or human ergonomic studies are achieved

on a daily-basis in the industry or the academia. These algo-

rithms focus on the “collision avoidance” aspect, since the

motion is controlled by well-known differential equations.

Constrained Motion planning

Recently, important scientific contributions have been pro-

posed for more difficult classes of motion planning problems,

where the augmented motion capabilities of the robot come

with constraints on the movement.

For instance, multi-contact planning is the problem where

an under-actuated multiped robot can only move through the

contact forces exerted by its effectors on the environment [8].

Similarly in the problem of Navigation Among Movable

Obstacles (NAMO) [9], [10], if a chair lies in front of a

door, a robot may have to move it away before crossing the

door. The latter problem can be seen as a motion planning

problem where the body B is composed of both the chair

(not able to move by itself!) and the robot. This formulation

can be applied to the problem of manipulation [11], [12].

For a complex system such as a humanoid robot, all the

mentioned aspects must be addressed simultaneously within

the same framework [13]. For instance, the challenge course

of the DARPA Robotics Challenge integrated multi contact

planning, manipulation planning and NAMO altogether. One

option is to implement ad-hoc planners for each problem,

and to try to use them together, at the risk that each

planner outputs conflicting solutions. The only open source

solution which takes this approach (to our knowledge) is

the Choreonoid software [14]. However it only implements

a grasp plugin at the moment.

To our knowledge, no existing software chooses the other

option, which is to propose a generic formulation for con-

strained motion planning, aiming at simplifying program-

ming burden, but also at addressing simultaneously all con-

straints within the same algorithm, thus avoiding conflicts.

The motivation for developing HPP is to propose the first

generic and open source implementation of a constraint-

based motion planning software.

Contributions and paper structure

HPP is a set of C++ open-source libraries for Linux. The

first building block is hpp-model. It provides definitions

and functions for the kinematic model of a robot and the

geometric objects of a problem (Section II). The key library

is hpp-constraints, a generic constraint framework im-

plemented on top of hpp-model (Section III). The motion

planning features of HPP are implemented in hpp-core,

http://www.choreonoid.org/GraspPlugin/i/?q=en


using a object-oriented architecture that allows customizing

parts of a motion planning algorithm in a few lines of C++,

or in Python through CORBA bindings (Section IV).

At the end of the paper, we present several cases studies:

we compare HPP with OMPL in classic motion planning

scenarios, and present several scientific contributions that

illustrate the interest of HPP (Section V).

II. KINEMATIC MODEL

Contrary to OMPL, and similarly to OpenRAVE and

Choreonoid, HPP commits to a kinematic model. This is

justified by the fact that implementing a generic constraint

system requires defining the notion of Joint and its asso-

ciated joint velocity space, organized in a kinematic tree (or

Device). Though it is possible to extend the hpp-model

library with custom Joint types and kinematic chains, HPP

conveniently handles natively most of the common joints.

URDF files are used for the external representation of the

kinematic model, making it compatible with the Robotics

Operating System (ROS) [15].

A. Joint and Kinematic chain implementation

A kinematic chain is implemented as a tree of joints

moving inertial and geometrical objects. The configuration

space of a robot is the Cartesian product of the configuration

spaces of its joints (and possibly of a vector space called

ExtraConfigSpace, used for manipulating external ob-

jects, and described later). Table I displays the default joint

types handled in HPP. Users can also define their own joints.

We explicitly and natively handle joints for which the

configuration space is a Lie group [16] (e.g. ball joints).

For these joints, we use a representation both continuous

and robust to singularities (e.g. for ball joints, the space

is SO(3), and we use quaternions rather than Euler angles

representation). It results that the joint velocity has a smaller

dimension than the joint configuration (i.e. the velocity

belongs to the Lie Algebra, tangent to the Lie Group).

B. Operations on the configuration space

The configuration of the robot is described by a vector

q ∈ R
n, where n is the sum of dimensions of each joint,

while the configuration velocity, denoted (abusively) by q̇,

may have a smaller dimension. Functions are provided to

manipulate configuration and velocity vectors:

• integrate (q, q̇) computes the configuration reached

from q after applying velocity q̇ during unit time.

• difference (q1,q2) computes the velocity that leads

from q1 to q2 in unit time.

These two functions are a generalization of most simple op-

erations typically used in motion planning on vector spaces,

such as linear interpolation between two configurations.

Geometrical objects are stored using a modified version

of FCL [17]. We thus rely on this library for distance and

collision computations.

Type Configuration space Velocity space

Prismatic (1D) R (translation) R (linear)

Unbounded revolute (1D) S1
⊂ R

2 (unit complex) R (angular)
Bounded revolute (1D) R (angle) R (angular)

Ball joints (3D) S3
⊂ R

4 (unit quaternion) R
3 (angular)

TABLE I: Main types of joints provided by default. For each

joint, we specify the representation of their configuration

space (q vector) and their tangent space (velocity q̇ vector).

III. DIFFERENTIABLE FUNCTIONS AS CONSTRAINTS

The key asset of HPP is the implementation of non-linear

constraints as differentiable functions. HPP also provides

methods to automatically project a sampled configuration

into the configuration space described by the constraint.

OMPL does not handle constraints natively since it does

not commit to a kinematic model. Regarding OpenRAVE,

and the integration of OMPL with Moveit!, it appears that

only positional constraints are handled (inverse kinemat-

ics), and mostly limited to manipulator arms. For instance

OpenRAVE relies on analytic inverse kinematics methods,

which do not apply to chains with more than 6 or 7 degrees

of freedom (unless some are disabled). Choreonoid on the

other hand also handles static equilibrium and advanced

manipulation constraints, in two independent plugins, with

no trivial mean to coordinate them.

HPP handles indifferently any constraint that can be

written with a differentiable function in a unified way, and

proposes several default implementations, including the one

proposed by other softwares (see the list below). Any number

of constraints can be handled simultaneously.

A. Non-Linear equality and inequality constraints

Differentiable functions can be used by a motion planner

to ensure that the configurations of a path (or a subpath)

verify one or several constraints. Given a function f that

takes its values in a vector space of arbitrary dimension m,

a constraint can be defined as:

f(q) = c

where c ∈ R
m is constant. A user-defined constraint is

thus defined by three elements: the function f , the objective

value c, and the Jacobian of f . Automatic differentiation is

also implemented to spare the need of manually computing

the analytical formulation of the Jacobian of f , thanks to a

symbolic library. These parameters are used in a Newton’s

descent algorithm to project a given configuration on the con-

straint. The user implements these elements by overloading

the abstract class DifferentiableFunction. Several

concrete constraints are implemented in HPP, among which:

• orientation and / or position (for inverse kinematics);

• relative orientation and / or position of two bodies;

• static equilibrium;

• position of the center of mass;

• distance between bodies;

• contact between a robot body and a surface.

https://github.com/flexible-collision-library/fcl
http://moveit.ros.org/
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Fig. 1: Example of level sets of two functions f and g in the

configuration space. A global path (blue) is decomposed as

elementary paths in each level set. Note that every elementary

path lie in a unique level set. For illustration purposes, one

can consider the Lfs(f) constraints as relative to floors, and

the Lgs
(g) constraints as relative to stairs, for a problem

consisting in navigating through floors.

Additionally, HPP can also handle inequality constraints,

written in the form f(q) ≤ c. One motivational example for

inequality constraints is to address a scenario where a robot

carries a glass containing a liquid that must not be spilled.

This can be expressed by constraining the angle between the

glass inclination and to be lesser than a threshold value, and

thus be automatically handled by HPP in the planning.

B. Constraint graphs

Furthermore, HPP supports constraint graphs [11]. This

representation has the huge advantage of allowing the inte-

gration of the discrete, higher-level task scheduling problem

into the motion planning problem.

A constraint graph can be seen as a finite state machine,

with special nodes and transitions. Each node is characterized

by a constraint. The constraint is the level set of a function

f denoted by Lc0
(f) = {q ∈ C|f(q) = c0}. Lc0

is a

submanifold of the configuration space. The submanifolds

form a foliation of the configuration space, and intersect

in a combinatorial manner. Sampling configurations at the

intersection of the submanifolds is required to travel between

the level sets. A metaphor for this issue is to consider

the problem of going from one floor to another floor of

a building, which requires to cross some stairs. Each floor

and staircase can be seen as level sets, illustrated in Fig. 1.

In general, the probability to sample configurations at the

intersection of manifolds is small or null. A constrained

motion planner must account for this property and explicitly

bias the sampling, typically using the projectors presented in

Section III-A.

HPP is provided with an implementation of such algo-

rithm, called Manipulation-RRT, presented in details a paper

submitted to IEEE IROS [18]. It takes a constraint graph as

input, and automatically generates a motion that respects the

transition rules of the graph. This formulation can be used

to address simultaneously various problems such as quasi-

static locomotion (Fig. 2), advanced manipulation (Fig. 3),

and even more complex problems, which require multiple

manipulations of the same object (such as the Hanoı̈ towers

game).

Fig. 2: “Constraint graph” for quasi-static walk on flat

ground. Such locomotion requires the Center Of Mass lying

above the support polygon defined by the contact points at all

times. The difficulty to handle the transition between double

and simple support phases is automatically addressed with

this constraint graph. DS stands for Double Support, SS for

Single Support, and COML (resp COMR) for the Center Of

Mass lying above the left (resp. right) foot.

Fig. 3: “Constraint graph” for a manipulation scenario in-

volving two boxes. The graph is similar to the walking graph.

The “pre-graph” constraints correspond to a box being in

contact with a surface, with the robot gripper seizing them.

From this state the box can be released safely (“free”), or

grasped and moved along with the effector (“grasp”).

IV. USING HPP

HPP can be used either as an off-the self motion planner,

or as a research tool to implement and test new algorithms.

Similarly to existing softwares, it provides Python bindings.

Additionally benchmarking tools compatible with the OMPL

API are provided. Lastly, a unique feature of HPP is the

automatic export of computed motion to the Blender [19]

animation software for high-quality presentation videos.

A. CORBA Architecture

The client / server CORBA architecture adopted by HPP

is an essential asset. It allows to consider integration with

other softwares developed in different languages, as well

as distributed execution on different robots and computers.

One such integration is delivered in HPP in the form of

exhaustive Python bindings. Efficient C++ algorithms can

http://www.corba.org/


be easily called from simpler Pythons scripts, and allows to

interact with the software using a command line interpreter,

thus enhancing interactivity.

Thus these bindings are really useful for fast prototyping

and testing new algorithms. Setting up a problem, and even

implementing a new motion algorithm, only requires a few

lines of code, as shown in the following lines.

B. Setting up and solving a problem

HPP is delivered with tutorials addressing classic or con-

strained motion planning, available on the documentation.

Code Listing 1 provides an example code for setting up a

problem. It shows that the helper class ProblemSolver

can be used to customize a problem solver: a single operation

is required to change any component of the planning (here,

the motion planner type and the path optimization algorithm).

Listing 1: Python code to set up and solve a problem

from hpp.corbaserver.pr2 import Robot

robot = Robot ("pr2")

robot.setJointBounds ("base_joint_xy",

[-6, -3, -5, -3])

from hpp.corbaserver import ProblemSolver

ps = ProblemSolver (robot)

ps.selectPathPlanner("VisibilityPrmPlanner")

ps.addPathOptimizer("GradientBased")

# copy the initial configuration

q_init = robot.getCurrentConfig ()

q_goal = q_init [::]

# ask the robot to move backwards

q_goal [0:2] = [-6, -3]

from hpp.gepetto import Viewer

r = Viewer (ps)

# helper function to load the obstacle mesh

# into both viewer and problem solver

r.loadObstacleModel ("iai_maps",

"kitchen_area", "kitchen")

ps.setInitialConfig (q_init)

ps.addGoalConfig (q_goal)

ps.solve ()

Constraints and constraint graphs are created by instan-

ciating provided or user-defined classes. For arbitrary con-

straints, the constraint graph has to be specified manually.

For placement constraints, as in Fig. 3, the constraint graph

can be automatically built with helper functions.

C. Testing, benchmarking, and presenting results

In HPP productiveness is enhanced with tools for gener-

ating comparative results and demonstrations.

First, HPP is compatible with the benchmarking API of

OMPL (although as of today not all features are imple-

mented). A Python script can be used to produce the desired

output, thus facilitating comparison with other algorithms.

We used this API for the benchmarks presented in Section V.

Then, HPP is delivered with a viewer based on Open-

SceneGraph, the Gepetto viewer (Viewer in Listing 1). The

Fig. 4: Pipedream-Ring, Abstract and Cubicles benchmarks.

viewer can receive Python command line prompts, and be

used via a GUI, for testing problems.

Lastly, HPP includes Python methods to automatically ex-

port a computed motion to the open-source Blender software.

Entire paths can be exported with a simple method call,

and loaded into Blender by executing a Python script. This

allows the automatic production of clearer, better looking

demonstrations of scientific contributions.

D. Extending HPP

Thanks to the modular architecture of HPP, any part of a

motion planning algorithm can be extended and used in a

transparent manner with the rest of the framework. Thanks

to the CORBA architecture, it is also trivial to implement

the Python bindings for new user-defined methods. For

prototyping purposes, it is even possible to write a complete

motion planning algorithm in a few lines of Python. For

instance, the standard RRT planner can be implemented with

the short code provided in the Appendix.

V. RESULTS

A. Benchmarks

We compared the performance of the implementation

of the RRT-connect algorithm of OMPL and HPP. OMPL

proposes other planners, not implemented in HPP. We did

not find other benchmarks from other softwares to compare

ourselves too. This benchmark shows that the efficiency of

the default planner of HPP is comparable to OMPL.

To carry out the comparison, we used the benchmark

database provided by OMPL, picking the three problems

solved with RRT-Connect. Figure 4 shows a screen capture

of each of the three problems1. To provide a comparison

as fair as possible, we had to take into account some

implementation details of OMPL and HPP. Firstly, OMPL

uses a range parameter, which determines the maximum

distance between two nodes in the roadmap, automatically

computed for each scenario. Depending on the benchmark,

this value can improve or slow down the computation time.

The HPP implementation does not use such parameter.

Secondly, HPP includes a continuous collision checking

method, additionally to the classic discretized one. The

advantage of this method is that it does not require spec-

ifying a discretization step to test collisions along a path.

A continuous collision test has a higher atomic cost than a

discretized one, but in general it improves the computation

1In the third scenario (Pipedream-Ring), no mesh of the ring-shaped robot
was provided by OMPL, so we replaced it with a ring mesh of 982 triangles.

http://projects.laas.fr/gepetto/hpp/hpp-doc/index.html
http://plannerarena.org/
http://tinyurl.com/h53m4ke
http://www.openscenegraph.org/
http://www.openscenegraph.org/
http://tinyurl.com/z9c8y6v
https://www.blender.org/
http://plannerarena.org


scenario min time (s) avg time (s) max time (s)

HPP-D HPP-C OMPL OMPL-NR HPP-D HPP-C OMPL OMPL-NR HPP-D HPP-C OMPL OMPL-NR

1. Pipedream-Ring 0.065 0.043 0.458 0.618 1.242 2.053 2.998 4.237 6.519 7.356 10.483 14.071
2. Abstract 0.159 0.408 23.523 14.345 47.654 34.395 106.866 106.814 257.573 178.013 296.518 269.94
3. Cubicles 0.049 0.024 0.096 0.118 0.271 0.130 0.277 0.329 0.902 0.946 0.665 1.059

scenario avg number of nodes success rate (%) time-out (s)

HPP-D HPP-C OMPL OMPL-NR HPP-D HPP-C OMPL OMPL-NR

1. Pipedream-Ring 2283 2452 16100 22681 100 100 100 100 20
2. Abstract 11927 10807 177914 181427 94 94 96 98 300
3. Cubicles 495 302 261 307 100 100 100 100 20

TABLE II: Results for 50 runs of each considered planner. Green values are used when the HPP implementation

performs better than all OMPL implementations. Red values are used when HPP performs worse than at least one OMPL

implementation. Statistics are only considered when the planning succeeded. A planning is considered to have failed after

running longer than the specified timeout value.

times because less tests are required by the planning (only

one test is required on collision free sections of a path,

regardless of its length).

To compare HPP and OMPL on an equivalent imple-

mentation of RRT-Connect, we consider on one hand a “no

range” version of OMPL (OMPL-NR), where the range is

set to a high value, thus not considered. On the other hand

we consider a HPP implementation that uses discretized

collision checking (HPP-D). The discretization step used

for the discrete collision checking is the same in HPP than

the one chosen in OMPL2. However to be exhaustive, and

to make sure the planners are also compared relatively to

their nominal use, we also included benchmarks performed

with the specificities of the softwares: we thus also consider

the standard “range” version of OMPL (OMPL), and the

continuous collision checking version of HPP (HPP-C).

Table II presents the results for all three scenarios and

implementations. The success rate represents the relative

number of runs that succeeded before a given maximum time

limit. When computing minimum, average and maximum

time values, only successful runs were considered. The runs,

single-threaded, were performed on a 64 bits computer with

8 processors of 1.2Ghz, 64Go or RAM.

In any considered case, HPP implementation presents

equivalent or better average computation times compared to

OMPL. The important point is that the performances remain

in the same order of magnitude between HPP and OMPL.

B. Use cases

HPP is already actively used for research purposes, some

of which are presented here. All the presented projects are

open source and accessible to the community on github.com.

Most involve constraint-based motion planning, for which

HPP is specifically designed, though other applications

demonstrate that HPP can be used for classic motion plan-

ning, or even be integrated within third-party simulations.

The results obtained are presented in the companion video.

1) NAMO and Manipulation: Manipulation-RRT is im-

plemented in the module hpp-manipulation. This al-

gorithm can be used indifferently for complex manipulation

2converted to the standard metric system from OMPL that uses inches.

and NAMO. A first example scenario shows the Baxter robot

permuting the positions of three boxes on a table (Fig. 5).

The only inputs specified are the start and goal configurations

of the boxes, as well as the constraint graph from Fig. 3,

extended to handle a third box. In the second example

the Romeo robot puts an object in a fridge (Fig. 6 while

maintaining equilibrium. Again, only the final position of

the object is specified. With the constraint graph the door is

automatically grasped and openend. These two examples are

developed in [18].

2) Gradient-based path optimization: hpp-core pro-

vides a gradient-based path optimizer to refine the indirect

paths generated by probabilistic planners [20]. The algorithm

is a Linearly Constrained Quadratic Program that modifies

the waypoints of a path to make it shorter. To do so,

constraints are automatically generated between the objects

that might collide during the optimization. Thus, only part

of the configuration variables are constrained at some points

of the path, while others are optimized. A result based on a

PR2 robot avoiding a table is presented in Fig. 7.

3) Acyclic contact planning: is a class of problem where

an under-actuated multiped robot must be in contact at every

configuration to maintain static equilibrium, and exert the

forces allowing it to move. We address this issue sequen-

tially: first, a path is computed for the root of the robot,

in a low dimensional space. Then along this path, a discrete

sequence of “key” contact configurations is computed. These

key frames are interpolated dynamically using a 3D pattern-

generator [21]. The first two steps are implemented in HPP,

using a planner called RB-RRT [22], [23], for Reachability-

Based planner. RB-RRT uses extensively position and orien-

tation constraints to maintain and generate contacts. It also

takes advantage of the flexibility of HPP to easily replace

the default sampling method for a variant of OB-PRM [24].

The pattern generator is implemented thanks to the Pinocchio

dynamics library [25], soon to be integrated with HPP. A stair

climbing using a handrail scenario is illustrated in Fig. 8.

4) Elastic rod planning: A special case of manipulation

planning for an extensible elastic rod, either collision-free

or in contact [26]. We assume the rod can be handled

by grippers at one or both extremities. External libraries

https://github.com/humanoid-path-planner
http://tinyurl.com/gvxrojw
http://tinyurl.com/jsccfxv


(a) Start Configuration (b) Grasp green and red (c) Release red / grasp blue (d) Release blue and green (e) Goal configuration

Fig. 5: A complex manipulation example for the Baxter robot. The task is to swap the position of three boxes. This requires

a sequential task decomposition, automatically inferred by Manipulation-RRT .

(a) Start Configuration (b) Grasp object (c) Open fridge / place object (d) Close fridge door (e) Goal configuration

Fig. 6: A complex manipulation example for the Romeo robot. The task is to put an object in a fridge. The planner

automatically infers that the fridge door must be opened.

Start configuration Goal configuration

Fig. 7: Illustration of the path optimization algorithm. Given the start and goal configurations shown on the left, a rough

path is computed with a sampling-based planner (top). The path is reduced to limit the motion of all joints (bottom). The

red (resp. blue) curve denote the path followed by the right effector along the motion.

Start configuration wut wut wut Goal configuration

Fig. 8: Multi-contact planning for the HRP-2 robot climbing stairs using a handrail, a typical scenario proposed by the

DARPA challenge. Through a connection with the Pinocchio library, the plan can be executed on the real robot (right).



(QSERL and XDE) are used to compute the deformation and

the dynamics of the rod. This demonstrates the compatibility

of HPP with external software. A dedicated steering method,

which uses these libraries, is implemented within a slightly

modified RRT algorithm. This implementation allows to plan

a motion for an elastic rod egressing from a complex engine

through a small hole (Fig. 9).

VI. CONCLUSION

This paper introduces HPP, the Humanoid Path Planner,

a constraint-based motion planning software. HPP provides

a framework for easily testing and implementing algorithms

inspired from recent contributions from the scientific com-

munity, including Navigation and Among Movable Obsta-

cles, manipulation and acyclic contact planning.

To our knowledge no existing software provides imple-

mentations to address these issues in a unified manner.

While in theory it is possible to extend existing softwares

to implement these algorithms, integrating constraint-related

features from the conception of HPP allows for a simple

architecture, providing many helper methods to facilitate the

use of complex notions such as differentiable functions and

constraint graphs. Moreover, this unified architecture also

comes with excellent performances, and HPP is able to

compete with the best actual planning implementations on

the standard benchmarks.

Bindings of the API using a CORBA architecture allow

for fast prototyping and testing in Python, and a simple

integration with other softwares. It is also delivered with

benchmarking tools compatible with the OMPL benchmark

API, and Blender export functions for high-quality rendering.

HPP is already a mature software, which has been used to

implement several new scientific contributions, also demon-

strated in the companion video. They demonstrate the ability

to integrate HPP with complex third-party softwares, and

offer a glimpse of the future features that HPP will be

provided with. Among those, the integration of the Pinocchio

dynamic library holds the promise of a seamless framework

between motion planning and its execution on a real robot.
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Fig. 9: Extraction of a deformable elastic rod from an engine. The green rod shows the goal configuration, the yellow shows

the motion computed from the initial configuration(left picture). Engine model courtesy of Siemens-KineoCAM.

APPENDIX

Listing 2: Python implementation of a RRT

class MotionPlanner:

def __init__ (self, robot,

problemSolver):

self.robot = robot

self.ps = problemSolver

def solveBiRRT (self, maxIter = float("inf")):

self.ps.prepareSolveStepByStep ()

finished = False

nbCC = ps.numberConnectedComponents ()

iter = 0

while True:

#### RRT begin

qrand = robot.shootRandomConfig ()

newConfigs = list ()

for i in [0,1]:

## Extend connected components

qnear, dist = ps.getNearestConfig (qrand, i)

pathFullyValid, i_path =

ps.directPath (qnear, qrand)

l = ps.pathLength (i_path)

qnew = ps.configAtParam (i_path, l)

ps.addConfigToRoadmap (qnew)

newConfigs.append (qnew)

ps.addEdgeToRoadmap (qnear, qnew, i_path, True)

## Try connecting the new nodes together

for i in range (len(newConfigs)):

for j in range (i):

pathFullyValid, i_path =

ps.directPath (newConfigs[i], newConfigs[j])

if pathFullyValid:

ps.addEdgeToRoadmap (

newConfigs[i], newConfigs[j], i_path, True)

#### RRT end

## Check if the problem is solved.

nbCC = ps.numberConnectedComponents ()

if nbCC == 1:

# Problem solved

finished = True

break

iter = iter + 1

if iter > maxIter:

break

if finished:

self.ps.finishSolveStepByStep ()
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