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Polarimetric sensing by orthogonality breaking has been recently proposed as an alternative technique for per-
forming direct and fast polarimetric measurements using a specific dual-frequency dual-polarization (DFDP)
source. Based on the instantaneous Stokes-Mueller formalism to describe the high-frequency evolution of the
DFDP beam intensity, we thoroughly analyze the interaction of such a beam with birefringent, dichroic and
depolarizing samples. This allows us to confirm that orthogonality breaking is produced by the sample diatten-
uation, whereas this technique is immune to both birefringence and diagonal depolarization. We further analyze
the robustness of this technique when polarimetric sensing is performed through a birefringent waveguide, and
the optimal DFDP source configuration for fiber-based endoscopic measurements is subsequently identified.
Finally, we consider a stochastic depolarization model based on an ensemble of random linear diattenuators,
which makes it possible to understand the progressive vanishing of the detected orthogonality breaking signal
as the spatial heterogeneity of the sample increases, thus confirming the insensitivity of this method to diagonal
depolarization. The fact that the orthogonality breaking signal is exclusively due to the sample dichroism is
an advantageous feature for the precise decoupled characterization of such an anisotropic parameter in samples
showing several simultaneous effects.

OCIS codes: (110.5405) Polarimetric imaging, (120.5410) Polarimetry, (260.2130) Ellipsometry and
polarimetry, (100.1930) Dichroism
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1. Introduction

Polarimetric imaging systems are of growing interest for
many applications like remote sensing [1], astronomy
[2], defense [3, 4], biomedicine [5–8], synthetic-aperture
radar [9], and machine or enhanced vision [10, 11]. Ac-
tive polarimetric techniques allow valuable information
of a given scene or sample to be retrieved from the
measure of its anisotropic and depolarizing properties.
Mueller polarimetry is the most exhaustive active tech-
nique, as it completely characterizes the polarimetric pa-
rameters of an object. This technique typically implies
registering 16 images using different approaches to mod-
ulate the measurement in the spatial, temporal, and/or
spectral domain [12–17]. However, the complexity of
the system and the loss of performance entailed by the
different multiplexing methods have led to propose sev-
eral simplified polarimetric techniques which optimize
the measurement of some specific polarimetric proper-
ties at a high performance [18–21].
In this context, the implementation of fiber-guided po-

larimetric imaging systems constitutes a challenging is-
sue, due to the fact that the state of polarization of the
illuminating beam is modified by the optical waveguide

∗ Corresponding author: noe.ortega@univ-rennes1.fr

in an uncontrolled way. This is a remarkable aspect to
be adressed for endoscopic applications, where the op-
tical fiber stress-induced birefringence is the dominant
effect on beam polarization [22]. The feasibility of a
multimodal endoscopic system including cross-polarized
imaging has been demonstrated for Barett’s metapla-
sia imaging [23]. However, such a technique provides
an orientation-dependent contrast, which entails some
drawbacks for in vivo applications. Moreover, the fact
that the polarimetric elements and the CCD camera are
placed in the distal end of the endoscope is quite restric-
tive in terms of miniaturization. Regarding Mueller po-
larimetry, a narrow band 3×3Mueller polarimetric endo-
scope was presented and validated ex vivo on a Sprague-
Dawley rat [24]. However, the use of a rigid endoscope is
unfeasible for most practical applications. Finally, a full
Mueller endoscopic polarimeter, based on a first charac-
terization of the optical fiber using a micro-switchable
mirror before every Mueller matrix acquisition, was pro-
posed in [25]. Recently, this novel technique has been
combined with a spectral encoding of polarimetric chan-
nels to significantly reduce the acquisition time [26].

Recently, we proposed a novel polarimetric imaging
modality based on the orthogonality breaking sensing
principle [27]. This technique uses a dual-frequency
dual-polarization (DFDP) coherent source, and is based
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on the measurement of the detected intensity compo-
nent at the radio-frequency beatnote after interaction
with the sample or scene under analysis. This tech-
nique enables a subset of its polarimetric properties to
be determined from a single acquisition at both high
speed and high dynamic range. The first implementa-
tion of a polarimetric contrast microscope by orthogo-
nality breaking was presented in [28]. A modified source
architecture, enabling the linear diattenuation and optic
axis of the sample to be completely characterized, was
subsequently described and validated in [29]. Though in-
sensitive to birefringence effects which are predominant
in biological tissues, this technique provides an alterna-
tive method to characterize biological anisotropic struc-
tures. Indeed, biological tissues usually show both bire-
fringence and dichroism sharing the same anisotropy axis
[30, 31]. As a result, biological anisotropic structures can
nonetheless be addressed by measuring their diattenua-
tion properties, provided the measurement dynamics is
high enough. However, all these previous works on or-
thogonality breaking imaging [27–29] were focused on
specific examples and particular measurement configu-
rations. The in-depth analysis of the physical origin of
the orthogonality breaking signal amplitude and phase,
in relation with the polarimetric properties of the sam-
ple and the characteristics of the illumination system, is
still an open question.

In this work, we develop a comprehensive theoretical
model of orthogonality breaking sensing based on the
instantaneous Stokes vector and the Mueller calculus.
This approach makes it possible to describe the inter-
action of the DFDP beam with anisotropic depolarizing
samples. Based on this method, we develop a thorough
analysis of the orthogonality breaking signal characteris-
tics for both free-space and fiber-guided measurements.
The results are presented for the basic types of optical
elements, namely isotropic absorbers, elliptical, circular,
and linear retarders and diattenuators, and diagonal de-
polarizers. This theoretical analysis is then completed
with a detailed discussion, based on both simulations
and experimental measurements, which allows us to con-
clude that the orthogonality-breaking technique is defi-
nitely not sensitive to diagonal depolarization. Through-
out this work, a special emphasis is made on the prac-
tical implications of each configuration for experimental
polarimetry.

This paper is organized as follows: the instantaneous
Stokes vector description of a polarized light beam is
reviewed in Section 2, before applying it to the specific
characterization of the DFDP source in Section 3. Us-
ing the instantaneous Stokes-Mueller formalism, we then
thoroughly study in Section 4 how this type of laser
source can be used for free-space polarimetric sensing by
the orthogonality breaking principle. The influence of an
optical waveguide on orthogonality breaking sensing is
then investigated in Section 5 to analyze the potential
of this technique for endoscopic applications. Lastly, a
discussion on the sensitivity of this technique to depo-

larization is presented in Section 6 using a stochastic
model of linear diattenuation with random optic axis
orientation, before the conclusion of this work is given
in Section 7.

2. Instantaneous Stokes vector

Firstly, we consider a fluctuating optical plane wave de-
scribed by its transverse electric field. The reference
frame is set so that propagation is along the z axis in a
right-handed Cartesian coordinate system xyz, and thus
the complex electric field at a specific point z0 can be
resolved into a pair of orthogonal polarization states:

~E(t) =

[

E1(t)
E2(t)

]

. (1)

The corresponding instantaneous Stokes vector is a 4-
element real vector

~S(t) =







S0(t)
S1(t)
S2(t)
S3(t)






(2)

whose elements are the instantaneous Stokes parame-
ters, defined in terms of the complex electric field com-
ponents as [32]:

S0(t) = E1(t)E
∗
1 (t) + E2(t)E

∗
2 (t), (3)

S1(t) = E1(t)E
∗
1 (t)− E2(t)E

∗
2 (t), (4)

S2(t) = E1(t)E
∗
2 (t) + E∗

1 (t)E2(t), (5)

S3(t) = i [E1(t)E
∗
2 (t)− E∗

1 (t)E2(t)] . (6)

The first component S0(t) = ~E(t)†~E(t) is the instanta-
neous intensity of the field, with † denoting the Hermi-
tian conjugate.
The instantaneous Stokes vector completely charac-

terizes the state of polarization (SOP) of a partially po-
larized light beam, except its absolute phase. The con-
ventional Stokes parameters are the ensemble averages
of the instantaneous Stokes parameters. Assuming sta-
tionarity and ergodicity, the conventional Stokes vector
is :

~S = 〈~S(t)〉 =







〈S0(t)〉
〈S1(t)〉
〈S2(t)〉
〈S3(t)〉






, (7)

which involves the following time average:

〈X(t)〉 = lim
T→∞

1

T

∫ T

0

X(t)dt. (8)

It is worth to recall that the conventional Stokes pa-
rameters are defined in this way simply because in most
experimental setups the fluctuations of the electric field
are produced at optical frequencies, which are obviously
many orders of magnitude higher than those achievable
by the fastest photodetector (so far, ultrafast optical
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measurements can only be performed by specific tech-
niques like nonlinear optical gating or interferometric
detection, which are able to indirectly measure light in-
tensity as well as its time delay). However, in the next
section it is shown that the instantaneous Stokes vector
is a very useful way to characterize DFDP sources.

3. Dual-frequency dual-polarization source

3.A. General equations

Assuming a dual-frequency dual-polarization (DFDP)
source whose two orthogonal modes propagate along the
z axis, its transversal electric field can be expressed as:

~E(t) =
E0√
2
e−i2πνt

([

a1
b1

]

+
√
γe−i2π∆νt

[

a2
b2

])

, (9)

where ∆ν is the frequency shift between both modes,
and γ accounts for a possible intensity unbalancing be-
tween them. Taking into account the orthogonality con-
dition between the SOP’s of the two polarization modes,
the components ai and bi in the cartesian basis can be
parameterized in the following general form:

a1 = cosα cos ǫ− i sinα sin ǫ,

b1 = sinα cos ǫ+ i cosα sin ǫ,
(10)

and

a2 = − sinα cos ǫ+ i cosα sin ǫ,

b2 = cosα cos ǫ + i sinα sin ǫ,
(11)

where α is the polarization ellipse azimuth and ǫ is its
ellipticity [32]. These equations verify the polarization
orthogonality condition a1a

∗
2 + b1b

∗
2 = 0. We set α = 0

without loss of generality, as we later consider optical
elements with arbitrary azimuth. From Eqs. (2-6), the
instantaneous Stokes vector of a general DFDP source
is:

~S(t) = I0











1
1−γ
1+γ cos(2ǫ)− 2

√
γ

1+γ sin(2ǫ) sin(∆ωt)

2
√
γ

1+γ cos(∆ωt)
1−γ
1+γ sin(2ǫ) + 2

√
γ

1+γ cos(2ǫ) sin(∆ωt)











, (12)

where I0 = |~E(t)|2 = (1+ γ)E2
0/2 and with ∆ω = 2π∆ν

denoting the angular frequency that corresponds to the
interference between both modes. The frequency shift
∆ν can be tuned to values within the radio-frequency
(RF) range, typically from several MHz up to tens of
GHz. It can be observed that the instantaneous intensity
S0(t) of this DFDP illumination is constant and equal
to I0.

3.B. Linear and circular DFDP source

On the one hand, if the DFDP source provides two
purely-linear orthogonal SOP’s, then ǫ = 0 and the in-
stantaneous Stokes vector is:

~SL(t) = I0











1
1−γ
1+γ

2
√
γ

1+γ cos(∆ωt)

2
√
γ

1+γ sin(∆ωt)











. (13)

Moreover, if a perfectly balanced source is used (γ = 1),
~SL(t) simplifies to:

~SL(t) = I0







1
0

cos(∆ωt)
sin(∆ωt)






, (14)

which corresponds to an instantaneous Stokes vector
continuously oscillating at an angular frequency ∆ω
from a linear ±45◦ SOP to a purely circular one, as
shown in the Poincaré sphere representation included in
Fig. 1.a.

Fig. 1. Poincaré sphere representation of the instantaneous
Stokes vector at the output of the (a) linear DFDP (dual-
frequency dual-polarization) balanced source, and (b) circu-
lar DFDP balanced source.

On the other hand, if we consider a circular DFDP
source, ǫ = π/4 and the instantaneous Stokes vector is
given by:

~SC(t) = I0











1

−2
√
γ

1+γ sin(∆ωt)

2
√
γ

1+γ cos(∆ωt)
1−γ
1+γ











, (15)

which reduces to the following expression for a balanced
source:

~SC(t) = I0







1
− sin(∆ωt)
cos(∆ωt)

0






. (16)

It can be observed that the latter instantaneous Stokes
vector oscillates along all the possible linear SOP’s, as
depicted in Fig. 1.b. The advantages of each of these
sources for polarimetric measurements are analyzed in
the next sections.

4. Free-space orthogonality breaking sensing

In this section, we focus on free-space orthogonality
breaking sensing, in which the source beam directly im-
pinges on the sample. According to the Mueller calculus,

the output Stokes vector ~Sout(t) after interaction with
an anisotropic depolarizing medium is given by:

~Sout(t) = M~Sin(t), (17)
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where M is the Mueller matrix of the sample and ~Sin(t)
is the input Stokes vector. It is worth recalling that
this equation is valid for both the instantaneous and the
conventional Stokes vector. All the subsequent results
assume that the propagation direction is kept constant,
so the measurement is made in transmission. The pro-
cedure can be equivalently developed for the reverse di-
rection (reflection or backscattering configuration) pro-
vided that M is replaced by its corresponding Mueller
matrix for the reverse direction:

M̂ = OM
T
O

−1, (18)

where O = diag(1, 1,−1, 1) if the reversal coordinate
system x̂ŷẑ is set as x̂ = −x, ŷ = y and ẑ = −z [32] (or
alternatively x̂ = x, ŷ = −y and ẑ = −z).
In the remainder of this paper we will focus on the

study of the detected intensity signal Iout(t), which is
a linear combination of the input instantaneous Stokes
vector determined by the first row of the Mueller matrix:

Iout(t) =
[

M11 M12 M13 M14

]

~Sin(t). (19)

4.A. Isotropic absorber

The Mueller matrix of an isotropic absorber is the iden-
tity matrix weighted by the isotropic absorption coeffi-
cient ρ such that Mabs = ρI, and hence the output in-
tensity is simply Iout(t) = ρI0. In this trivial case, it is
straighforward to verify that the orthogonality between
the two SOP’s generated by a general DFDP source is
unaltered by the sample, and consequently the measured
intensity remains constant in time.

4.B. Elliptical retarder

A sample with elliptical birefringence presents a Mueller
matrix of the following form [33]

MER =

[

1 ~0T

~0 M3×3

]

, (20)

where M3×3 is the 3 × 3 retardance sub-matrix, and
~0 = [0 0 0]T . It can be readily observed that the beam
intensity is unaltered by such a type of sample:

Iout(t) = I0, (21)

as expected for unitary polarization elements [32]. As a
result, the polarimetric orthogonality between the two
SOP’s provided by the DFDP source is preserved dur-
ing propagation through birefringent samples. This is
the property that was originally used to make orthogo-
nality breaking measurements insensitive to propagation
through fibers.

4.C. Diagonal depolarizer

The general expression of the Mueller matrix of a diag-
onal depolarizer sample is [32]:

M∆ =







1 0 0 0
0 PL1 0 0
0 0 PL2 0
0 0 0 PC






. (22)

Diagonal depolarizers are thus defined by the three depo-
larization parameters PL1, PL2, and PC . Such depolariz-
ers are the most usual ones. In the particular situation of
isotropic linear depolarization (like the one produced by
a turbid medium with randomly-located nearly spherical
particles [34]) PL1 = PL2. Furthermore, if completely
homogeneous depolarization is assumed, the sample is
usually called a pure depolarizer, and it can be quanti-
fied by a single parameter as PL1 = PL2 = PC .
In any case, the elements of the first row ofM∆ satisfy

M1j = 0 for j 6= 1, so according to Eq. (19) such a
sample does not modify the orthogonality of the two
orthogonally-polarized SOP’s, and the beam intensity is
expected to remain constant in time as Iout(t) = I0.
As a result, the instantaneous Stokes-Mueller calculus

detailed in this article indicates that the orthogonality-
breaking sensing principle is not able to provide a mea-
surement of diagonal depolarization. This is in contra-
diction with what was claimed in an anterior work [27],
and with some experimental results obtained in the same
reference which actually seemed to corroborate the pos-
sibility of characterizing depolarization. This aspect is
analyzed and discussed in detail in Section 6.

4.D. Diattenuator

4.D.1. Linear diattenuator

The Mueller matrix of a sample showing linear dichroism
is:

MLD = ρ









1 d cos(2φ) d sin(2φ) 0
d cos(2φ) 1+T

2 + 1−T
2 cos(4φ) 1−T

2 sin(4φ) 0
d sin(2φ) 1−T

2 sin(4φ) 1+T
2 − 1−T

2 cos(4φ) 0
0 0 0 T









, (23)

where ρ = (Tmax + Tmin)/2 accounts for the isotropic
absorption, d = (Tmax − Tmin)/(Tmax + Tmin) is the di-

attenuation coefficient, and T = 2
[

TmaxTmin

]
1
2 /(Tmax+

Tmin). Parameters Tmax and Tmin ≤ Tmax are the max-
imum and minimum transmittances respectively, being
both of them bounded between 0 and 1, so 0 6 d 6 1.
Finally, the parameter φ is the linear dichroism angle,
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i.e., the azimuth of the maximum transmittance axis.
We note that MLD can be obtained from the Mueller
matrix of an elliptical diattenuator (explicitly derived
in Appendix A for the sake of generality) by setting
ǫ = 0. An ideal polarizer corresponds to a perfect linear
dichroic sample showing Tmax = 1 and Tmin = 0, so
ρ = 1/2, d = 1 and T = 0.
In this section and in the remainder of this article

we will consider a perfectly balanced source (γ = 1).
Indeed, the equations of the output intensity for a linear
diattenuator using a non-balanced linear and circular
DFDP source have been included in Appendix B for the
sake of completeness, and they show that the balanced
configuration is actually the most advantageous one for
characterizing the sample properties with the highest
dynamics.
According to Eq. (19), if a linear diattenuator is illu-

minated with a balanced linear DFDP source, the first
element of the instantaneous output Stokes vector is:

IoutL(t) = ρI0 [1 + d sin(2φ) cos(∆ωt)] , (24)

where the subscript L indicates the use of linear illumi-
nation states. This equation shows the essential charac-
teristic of the orthogonality breaking sensing principle,
namely an AC component in the output intensity which
is due to the interference of the two SOP’s, partially
projected onto each other by the interaction with the
diattenuator. Provided that the source can be tuned to
set the frequency difference to a value that lies within
the bandwidth of commercially-available detectors, it is
then perfectly possible to observe the intensity beatnote
with a fast photodiode.
According to the previous equation, the DC and AC

components of the output intensity are respectively:

I0outL = ρI0, (25)

I∆ωX
outL = ρI0d sin(2φ), (26)

the superscript X accounting for the in-phase component
of the beatnote signal at ∆ω.
The Orthogonality Breaking Contrast (OBC) is a

scalar parameter defined from the DC and AC compo-
nents of the detected signal as:

OBC =
I∆ω
out

I0out
, (27)

where I∆ω
out =

√

(

I∆ωX
out

)2
+
(

I∆ωY
out

)2
is the amplitude of

the detected beatnote signal. In this case, the quadra-

ture component I∆ωY
outL is null, so I∆ω

outL = |I∆ωX
outL | and the

OBC is thus:

OBCL = d| sin(2φ)|. (28)

Concerning the phase of the AC signal, in this case it is
obviously zero as ∠I∆ω

outL = arctan
(

I∆ωY
outL /I

∆ωX
outL

)

. Con-
sequently, when a linear DFDP source is used, the beat-
note component does not undergo any phase delay while

interacting with the dichroic sample, and the beatnote
intensity depends on both the diattenuation coefficient
d and the linear dichroism angle φ. It can be observed
that the OBC takes a maximum value of d for a linear
diattenuator oriented at φ = 45◦. This property has
been used in previous works to calibrate the measure-
ment system [27, 28].
If a circular DFDP source is now considered, the dif-

ferent components of the output intensity are:

I0outC = ρI0, (29)

I∆ωX
outC = ρI0d sin(2φ), (30)

I∆ωY
outC = −ρI0d cos(2φ), (31)

where the subscript C denotes circular illumination
states. In this case the OBC and the beatnote signal
phase are respectively:

OBCC = d, (32)

∠I∆ω
outC = 2φ− π/2. (33)

From the latter equation, the linear dichroism orienta-
tion can be readily obtained by:

φ =
1

2

(

∠I∆ω
outC + π/2

)

. (34)

As a result, under circular illumination, the amplitude of
the beatnote signal is independent of the dichroism ori-
entation, giving access directly and without ambiguity
to the sample dichroism. Moreover, the linear dichroism
angle can be directly retrieved by the phase measure-
ment. Such a feature is actually quite advantageous for
linear dichroism sensing, as has been recently demon-
strated in a microscopic imaging set-up [29].

4.D.2. Elliptical/circular diattenuator

The complete equations of the detected intensity when
the sample presents elliptical dichroism are included in
Appendix C. For the sake of conciseness, we shall only
consider here the very specific case of a circular diatten-
uator whose Mueller matrix is:

MCD = ρ







1 0 0 d
0 T 0 0
0 0 T 0
d 0 0 1






, (35)

which is obtained by setting ǫ = π/4 in the Mueller ma-
trix of an elliptical diattenuator (Appendix A), T and
d still corresponding to their initial definition given af-
ter Eq. (23). If the sample is illuminated with a linear
DFDP source, the resulting OBC and phase are:

OBCL = d, (36)

∠I∆ω
outL = π/2. (37)

These equations show that such a configuration is ac-
tually sensitive to circular dichroism, which is directly
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characterized by the OBC, while the phase of the beat-
note signal is constant. This latter information actu-
ally provides additional information about the dichroism
properties when a linear DFDP source is used, as it is
0 for linear dichroism, π/2 for circular dichroism, and
takes intermediate values for elliptical dichroism.
However, if a circular DFDP source is used, the OBC

completely vanishes:

OBCC = 0, (38)

which means that such a sample does not break the or-
thogonality between the circular SOP’s. This is due to
the fact that they are precisely the eigenstates of a cir-
cular diattenuator. Consequently, there is no beatnote
signal in this case.

5. Orthogonality breaking sensing through a waveg-
uide

In this section, orthogonality breaking sensing through
a waveguide is considered. It is thus assumed that
the source beam is delivered through a waveguide with
Mueller matrix Mwg1, when it impinges on the sample
still described by its Mueller matrix M, and is finally
collected by a second waveguide with Mueller matrix
Mwg2 (which is not necessarily the same as the illu-
mination one for the sake of generality), so the output
instantaneous Stokes vector is:

~Sout(t) = Mwg2MMwg1
~Sin(t). (39)

We define the intermediate Stokes vector ~Sout′(t) =

MMwg1
~Sin(t) as the instantaneous Stokes vector af-

ter interaction of the fiber-guided DFDP beam with the
sample. In general, it can be assumed that an opti-
cal waveguide behaves as a retarder [25] (with possible
isotropic loss, but with no dichroic effects). We thus
model it by the Mueller matrix of a birefringent element.
If we denote Iout′ the first element of the intermediate
Stokes vector, one can readily verify that Iout = Iout′ , as
the Mueller matrix of a unitary optical element does not
modify the beam intensity. A remarkable implication of
this fact is that the collecting fiber does not modify the
beatnote signal possibly produced by the sample, be-
cause such an information is exclusively carried by the

intensity. This means that we can focus our analysis
on the effect of the illuminating waveguide, while light
collection can be performed by any non-dichroic optical
waveguide.

Concerning the illuminating fiber, its effect is a modi-
fication of the orthogonal SOP’s provided by the source,
so it obviously has to be taken into account. The results
for isotropic absorbers, elliptical retarders, and diago-
nal depolarizers are not discussed in this section, as the
conclusions obtained in the previous section are valid
regardless the SOP’s of the DFDP illuminating beam.
Moreover, if we focus on biomedical applications, circu-
lar dichroism is extremely unusual in biological samples
[6, 35], so we will exclusively analyze fiber-guided orthog-
onality breaking sensing of linearly dichroic samples.
5.A. Waveguide acting as a circular retarder

Let us first consider a waveguide acting as a circular
retarder, whose Mueller matrix is:

MCR =







1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1






, (40)

θ being the optical rotation angle. If such a waveguide
is used to illuminate a linear diattenuator with a DFDP
source, it is easily shown that the results obtained in the
previous section hold, up to a rotation angle of value θ
due to optical rotation in the waveguide. Typically, one
has OBCL = d| sin(2(φ+θ))| with a linear DFDP source,
whereas OBCC = d and ∠I∆ω

outC = 2(φ + θ) − π/2 with
a circular DFDP source.

From these results, it is interesting to note that with
circular DFDP illumination states, the presence of an
illuminating waveguide acting as a rotator does not pre-
vent from measuring the diattenuation coefficient, while
the phase can be determined up to an additive term de-
pending on the fiber.

5.B. Waveguide acting as a linear retarder

More typically, an optical waveguide behaves as a linear
retarder, whose general Mueller matrix is:

MLR =









1 0 0 0
0 cos δ sin2(2ψ) + cos2(2ψ) (1− cos δ) cos(2ψ) sin(2ψ) − sin δ sin(2ψ)
0 (1 − cos δ) cos(2ψ) sin(2ψ) cos δ cos2(2ψ) + sin2(2ψ) sin δ cos(2ψ)
0 sin δ sin(2ψ) − sin δ cos(2ψ) cos δ









, (41)

with ψ denoting the linear birefringence orientation,
whereas δ stands for the retardation introduced between
the birefringence slow and fast axes [32].

Illuminating a linear diattenuator through a linearly
birefringent waveguide gives a lengthy expression of the
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output intensity, that can be simplified to:

I0outL = ρI0, (42)

I∆ωX
outL = I0ρd

[

sin(2ψ) cos(2(φ− ψ))

+ cos(2ψ) sin(2(φ− ψ)) cos δ

]

,

(43)

I∆ωY
outL = I0ρd sin(δ) sin(2(φ− ψ)). (44)

It can be checked that when the linear birefringence
axis of the waveguide is parallel to the linear dichroism
(ψ = φ), the previous equations are exactly the same as
the results obtained without the waveguide (Eqs. (25-
26)), i.e., I∆ω

outL,δ 6=0(t) − I∆ω
outL,δ=0(t) = 0. However, in

general the linear birefringence introduced by the waveg-
uide can modify the calculated parameters, and pro-
duces an intrincate expression of the OBC. Let us define
the bias of the measurement as

BL(t) =
I∆ω
outL,δ 6=0(t)− I∆ω

outL,δ=0(t)

I0outL
. (45)

With a linear DFDP source, the bias due to a linear
birefringent waveguide then reads

BL(t) = 2d sin

(

δ

2

)[

− cos(2ψ) sin

(

δ

2

)

cos(∆ωt)

+ cos

(

δ

2

)

sin(∆ωt)

]

sin(2(φ− ψ)).

(46)

If we consider the particular case of a slightly birefrin-
gent fiber (δ ≪ 1), the series expansion of BL(t) in δ
leads at first order in δ to

BL(t) = d sin(2(φ− ψ)) sin(∆ωt)δ +O(δ). (47)

If a circular DFDP source is now taken into account, the
output intensity components are:

I0outC = ρI0, (48)

I∆ωX
outC = I∆ωX

outL (49)

I∆ωY
outC = −I0ρd

[

cos(2ψ) cos(2(φ− ψ))

− sin(2ψ) sin(2(φ− ψ)) cos δ

]

.

(50)

Again, it can be verified that these equations coincide
with the free-space sensing ones for the particular case
in which the fiber optical axis is parallel to the sam-
ple linear dichroism (ψ = φ). Nonetheless, any other
situation leads to a modification of the results by the
retarding action of the waveguide. Applying the bias
defined in Eq. (45) to the circular DFDP source using
Eqs. (49) and (50), one gets

BC(t) = 2d sin

(

δ

2

)2

sin(2(φ−ψ)) cos(∆ωt−2ψ). (51)

If a slighly birefringent fiber is again considered, it can
be verified that the bias is null at first order in δ, and
that

BC(t) = d sin(2(φ−ψ)) cos(∆ωt−2ψ)
δ2

2
+O(δ2). (52)

The bias in this case is actually at order 2 in δ. This
is an interesting result, showing that the circular DFDP
source is more advantageous for orthogonality breaking
sensing through a linear birefringent waveguide, since
the measured OBC is less prone to be biased by a slight
birefringence in the waveguide.

6. Discussion

In this last section, we complement the preceding de-
scription of the orthogonality breaking signatures on
various optically anisotropic samples by a discussion on
the ability of this technique to sense depolarization. In-
deed, even though calculations using the instantaneous
Mueller-Stokes formalism in Section 4 show that the
technique yields no orthogonality breaking contrast on a
diagonal depolarizer, previous experimental results [27]
seem to be in contradiction with this statement.
In order to clarify this essential aspect, we first per-

formed a verification measurement using a linear DFDP
blue source at λ = 488 nm whose development was de-
tailed in a previous work [28]. The measurements were
performed in free-space for two different diffusing sam-
ples, namely a blue paper and a red paper. The detector
was fixed in a reflection configuration, with an incidence
angle of roughly 45◦ on the sample. This measurement
configuration was kept identical for both samples. As ex-
plained in detail in a previous work dealing with spectro-
polarimetric imaging of diffuse objects [36], illuminating
both samples with a visible blue source yields two differ-
ent situations. On the one hand, the main contribution
to the backscattered light when the blue paper is mea-
sured comes from volume multiple scattering, as the in-
coming light is weakly absorbed. This type of scattering
is very depolarizing, and its Mueller matrix corresponds
to a diagonal depolarizer. On the other hand, when the
red paper is used as a sample, the incident blue light
beam is strongly absorbed by the red pigments. Conse-
quently, the fraction of light reflected towards the detec-
tor mostly results from surface scattering, which implies
much weaker depolarization and possible anisotropy of
the reflection coefficients.
The measurements are presented in Fig. 2, which

shows the AC component of the detected intensity for
both samples using the linear DFDP source with the
states oriented in two different ways, namely along the
0◦ − 90◦ and the ±45◦ directions. In the first configu-
ration, the two linear states of the DFDP beam respec-
tively correspond to the so-called s and p polarization
components at the surface, whereas in the second con-
figuration both linear states have partial projections on
the s and p directions. It can be observed that the AC
component for the blue paper is almost zero regardless of
the linear states orientation (dotted light blue curve and



8

Fig. 2. AC component of the detected backscattered light
under blue illumination for a blue paper and linear modes
along the 0◦−90◦ directions (dotted light blue curve) and the
±45◦ directions (dashed dark blue curve), and for a red paper
along the same directions (dashed-dotted light red curve and
solid dark red curve respectively).

dashed dark blue curve respectively). In this case, the
dominant effect is volume multiple scattering as men-
tioned above, which constitutes an initial verification of
the fact that diagonal depolarization due to the sample
does not produce an orthogonality breaking signal. Re-
garding the red paper, one can note that there is a slight
variation from roughly no AC signal when the linear
modes are oriented at 0◦ − 90◦ (dashed-dotted light red
curve), to a substantial AC component when the modes
are along ±45◦ (solid dark red curve). This result is in
agreement with the expected behaviour, as in this case
surface effects are not masked by volume scattering, and
thus slight differences in the reflectance coefficients for
the s and p components of the incident light beam can
result in dichroic effects in the polarized fraction of the
detected backscattered light.

An appropriate interpretation of the aforementioned
discrepancy between these results and some of our pre-
vious ones requires a deeper insight into the physical
origins of depolarization. In the most general case, this
generic notion must obviously encompass (i) the opti-
cal anisotropic properties of the sample considered; but
also (ii) its local structural organization, including spa-
tial randomization effects; (iii) the properties of the il-
lumination field (e.g. spectral bandwidth); and (iv) the
characteristics of the detection setup (e.g. numerical
aperture [37] and spatial/spectral resolution). Describ-
ing a depolarizing medium with the Mueller matrix of
a diagonal depolarizer (as M∆ in Eq. (22)) implicitly
assumes full incoherent averaging over at least one of
the above aspects. However, in a broad range of experi-
mental setups the characteristics of the sensing/imaging
system only lead to a partial averaging operation. As
a result, the description of the sample by a diagonal
depolarizing Mueller matrix is no longer physically ap-
propriate in such cases.

In the remainder of this section, we propose to use a
simple stochastic model of the Mueller matrix of a de-
polarizing anisotropic medium consisting of the action
of random linear dichroic elements. It must be noted
that this description does not represent a fully compre-
hensive model of depolarization, as many physical pa-
rameters involved in light depolarization are neglected.
However, it is shown that it succesfully allows us to char-
acterize the progressive transition from a deterministic
anisotropic sample to a strongly random one (character-
ized by a Mueller matrix of a diagonal depolarizer) as
the averaging conditions evolve. We then analyze the
polarimetric properties of the resulting “macroscopic”
depolarizing Mueller matrix obtained, and we charac-
terize the orthogonality breaking signatures produced
by such a sample and physical sensing conditions. A
simple experimental validation using a synthetic depo-
larizing sample is also included. These results and dis-
cussions finally allow us to validate the calculations pre-
sented in this work, and to understand how the subtle
aspects discussed regarding the measurement conditions
were actually involved in our previous experimental mea-
surements.

6.A. Stochastic depolarization model of an ensemble
of random linear diattenuators

We consider the specific case of a dichroic depolarizing
medium in which depolarization is due to the hetero-
geneity of its anisotropy properties. For that purpose,
we consider that the incoming beam urdergoes random
local dichroic interactions, each polarization transforma-
tion having a diattenuation coefficient dµ, linear dichro-
ism angle φµ, isotropic absorption ρµ, and transmission
parameter Tµ, where µ denotes one realization of a ran-
dom event. The effect of a given random event on a
DFDP illumination beam is obviously strictly equivalent
to the one studied in Section 4, and can consequently be
represented by a single Mueller matrix MLDµ with the
same form as that given in Eq. (23). Consequently, the
Mueller matrix of a single random event is not depolar-
izing (Mueller-Jones matrix), as the individual polariza-
tion transformation is purely deterministic. In this case,
there is a well-known one-to-one relationship between
MLDµ and its corresponding Jones matrix, as stated in
Eq. (A-3) of Appendix A [38, 39].

The macroscopic Mueller matrix of the sample that
determines the detected intensity now implies averag-
ing over random events, i.e., M∆

LD = 〈MLDµ〉µ. For the
sake of simplicity, let us assume that the random variable
φµ is independent from dµ and ρµ. Regarding its proba-
bility density function, we propose to adopt a convenient
statistical model for angular random variables, namely
the Wrapped-Gaussian Distribution (WGD), with aver-
age value φ̄ and variance σ2

φ [40]. The definition and
main properties of WGD’s, which basically correspond
to normal probability distributions ‘wrapped’ around
the unit circle, are recalled in Appendix D. Using these
properties, the ensemble-averaged Mueller matrix of the
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sample is:

M
∆
LD = 〈MLDµ〉µ = ρ̄









1 d̄ cos 2φ̄ e−2σ2
φ d̄ sin 2φ̄ e−2σ2

φ 0

d̄ cos 2φ̄ e−2σ2
φ

1+〈T 〉
2 + 1−〈T 〉

2 cos 4φ̄ e−8σ2
φ (1 − 〈T 〉) cos 2φ̄ sin 2φ̄ e−8σ2

φ 0

d̄ sin 2φ̄ e−2σ2
φ (1− 〈T 〉) cos 2φ̄ sin 2φ̄ e−8σ2

φ
1+〈T 〉

2 − 1−〈T 〉
2 cos 4φ̄ e−8σ2

φ 0
0 0 0 〈T 〉









, (53)

where, for the sake of generality, random variables Tmin

and Tmax are simply assumed to admit average values
Tmin and Tmax, hence ρ̄ = (Tmax + Tmin)/2, and we
set d̄ = (Tmax − Tmin)/2ρ̄.
From this matrix, the output intensity can be ob-

tained from Eq. (19) (in the same way as the calculations
detailed in Sections 4 and 5), and it is quite straightfor-
wardly shown that the orthogonality breaking contrast
obtained for this sample is

OBCL = d̄e−2σ2
φ | sin 2φ̄| (54)

in the case of linear input polarization states, whereas
circular states would yield

OBCC = d̄e−2σ2
φ , and ∠I∆ω

outC = 2φ̄− π

2
. (55)

These results are very similar to the case of determinis-
tic transformations of the state of polarization (Eq. (28)
and Eqs. (32) and (33)), up to a “fading” factor of the

beatnote amplitude equal to e−2σ2
φ . As a result, a strong

dispersion of the dichroism orientations would blur the
orthogonality breaking signal produced by the diattenu-
ation properties of the sample. Once again, one can note
that using circular input states is more favourable, since
the mean value of the diattenuation orientation φ̄ can be
retrieved from the measurement of the beatnote phase,
provided the beatnote amplitude is not completely at-
tenuated.
To further analyze the previous results, let us now

assume that the diattenuation angle φµ is the only ran-
dom parameter, d, ρ and T being now considered as
deterministic. On the one hand, it can be immediately
observed that when σφ → 0, M∆

LDσφ→0 = MLD, which

corresponds to the trivial case of a deterministic sam-
ple, whose measurement using the orthogonality break-
ing technique obviously yields the same results as those
obtained in the previous sections. On the other hand,
when the angular distribution becomes strongly random-
ized (i.e., σφ ≫ 1), the Mueller matrix tends to the form
of a diagonal depolarizer:

M
∆
LDσφ≫1 = ρ diag

[

1, (1 + T )/2, (1 + T )/2, T
]

. (56)

We recall that if dichroism is perfect (d = 1), then T = 0
and the previous matrix corresponds to a sample that
completely depolarizes the fourth element of the Stokes

vector, and reduces by 0.5 the DOP of any linear input
SOP. For other values of T , the depolarization strength
of such a diagonal depolarizer for each Stokes vector ele-
ment varies. In any case, it is verified that the resulting
intensity is constant Iout(t) = ρI0 (in agreement with
the results obtained in Section 4.C for diagonal depo-
larizers), so no orthogonality breaking signal appears.
Apart from that, we note that M

∆
LDσφ≫1 turns out to

be proportional to the identity matrix (isotropic absorp-
tion) when T → 1 (or equivalently d → 0). These fea-
tures confirm that the presented approach makes it pos-
sible to simply model the continuous transition from a
non-depolarizing sample characterized by a determinis-
tic polarization transformation on the one hand, to a
fully depolarizing sample depending on the statistical
properties of the random diattenuation parameters on
the other hand.
The polarimetric properties of the stochastic Mueller

matrix obtained above can now be quantified by several
parameters. The first one is the diattenuation coeffi-
cient, that can be calculated from M

∆
LD (assuming again

that φµ is the only random parameter) by [33]

D =

√

∑4
j=2(M

∆
LD)21j

(M∆
LD)11

= de−2σ2
φ , (57)

showing that it scales exactly as the OBC with the an-
gular dispersion. As a result, on this sample, the or-
thogonality breaking technique using circular states for
instance would provide a direct measure of the effective

linear diattenuation of the sample (as OBCC = D =

de−2σ2
φ), and of the average diattenuation orientation φ̄.

The evolution of the effective dichroism D is plotted in
Fig. 3.(a) as a function of σφ and of log10 Tmax/Tmin

(which is 0 for an isotropic sample and tends to infinity
for a perfect polarizer). It can be seen that the effective
linear dichroism rapidly decreases with σφ, whereas it
increases for higher log10 Tmax/Tmin as expected. The
evolution of D for σφ = 0 corresponds to the diatten-
uation coefficient of a linear diattenuator with a fixed
deterministic orientation.
It is now interesting to analyze the depolarizing prop-

erties of the M
∆
LD matrix. There are several depolar-

ization metrics that can be used to quantify the depo-
larizing properties of a sample [33, 41–45]. In this work
we use the Cloude entropy, which is a well-established
metric to characterize the overall depolarizing nature
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Fig. 3. (a) Evolution of the effective diattenuation coef-
ficient D as a function of angular dispersion σφ and of
log

10
Tmax/Tmin. (b) Evolution of the Cloude entropy S as

a function of angular dispersion σφ and of log
10

Tmax/Tmin.
Evolution of the diattenuation coefficient D (c) and of the
Cloude entropy S (d) as a function of log

10
Tmax/Tmin for

σφ = 0 (blue), σφ = 1/2 (red), and σφ = 2 (magenta).

of a given Mueller matrix [41]. The Cloude entropy is

given by S = −∑4
i=1 λ

′
i log4 λ

′
i, where λ

′
i = λi/

∑4
j=1 λj

are the normalized eigenvalues of the 4 × 4 Cloude co-
herency matrix [41], whose derivation from M

∆
LD is de-

tailed in Appendix E. The Cloude entropy S is plotted
in Fig. 3.(b) as a function of σφ and of log10 Tmax/Tmin.
To facilitate the physical interpretation, the evolution of
parameters D and S with log10 Tmax/Tmin for three dif-
ferent values of σφ (namely 0, 1/2 and 2) are respectively
plotted in Figs. 3.(c) and (d).

It can be seen in Fig. 3.(b) that the Cloude en-
tropy S increases with σφ, thus evidencing that depo-
larization is stronger as the angular dispersion grows.
On the other hand, the Cloude entropy increases with
log10 Tmax/Tmin. The Mueller matrix of the sample
at σφ = 0 or log10 Tmax/Tmin = 0 corresponds to a
deterministic Mueller matrix, hence leading to a null
entropy. The Cloude entropy reaches a maximum at
S = 0.75 for high values of σφ and significant anisotropy
(log10 Tmax/Tmin 6= 0). It can be noted that the max-
imum Cloude entropy does not reach unity, simply be-
cause the stochastic model of the sample considered does
not lead to a complete depolarization of any input SOP,
as we have only considered the subset of random linearly
dichroic events without including elliptical dichroism.

More generally, the joint analysis of the plots in
Fig. 3.(a) and 3.(b) clearly confirms the gradual evo-
lution of M∆

LD from a deterministic Mueller matrix of a
diattenuator (S = 0, D 6= 0) to a depolarizing Mueller
matrix (maximum S, D → 0) when the angular disper-
sion σφ increases, as predicted by Eq. (53). In other
words, we observe that the intrinsic dichroic properties
of the sample gradually vanishe as more orientations of

the dichroism are taken into account by increasing σφ,
providing the sample with a “macroscopic” depolarizing
nature.

6.B. Interpretation of experimental results

The previous results can be easily confirmed on a sim-
ple laboratory experiment. For that purpose, we used
the DFDP visible source (λ = 488 nm) emitting lin-
ear polarization states to shine a sample composed of
two orthogonally-oriented linear polaroid sheets placed
in juxtaposition to each other. A sketch of the sample is
presented in the inset of Fig. 4. The position of the laser
beam is then displaced along the sample, whose Mueller
matrix Ms can be written

Ms = A MLDφ=0 + (1−A)MLDφ=π/2, (58)

where A is the fraction of the laser spot area lying on
the horizontal polarizer. In the central position A =
1/2, so both polarizers equally contribute to the detected
intensity, and the resulting Mueller matrix is:

Mscenter = ρ diag
[

1, 1, T, T
]

. (59)

It is readily observed that such a Mueller matrix corre-
sponds to a diagonal depolarizer. The commercial po-
laroid sheets used satisfy T ≃ 0, so when the laser spot
is centered in the middle of the synthetic sample pro-
posed in this section (i.e., xb = 0), it behaves as a di-
agonal depolarizer that completely depolarizes the third
and fourth elements of the input Stokes vector, without
altering the second one appart from the isotropic ab-
sorption. As a result, such a sample provides an OBC
that evolves from a maximum value when the spot en-
tirely lies on a single polaroid sheet, to a null value when
it is placed at the center. The same conclusion can be
reached by separately calculating the output intensities
for φ = 0 and φ = π/2 using Eq. (26) and adding them,
which results in a destructive interference between both
beatnote signals in the central position since they show
a relative phase of π.
The OBC for this sample was measured using the pre-

viously reported setup in transmission [29]. The evolu-
tion of the OBC as a function of the beam position is
plotted in Fig. 4. This experimental curve follows the
expected behaviour, evidencing how the maximum or-
thogonality breaking contrast obtained on a perfectly
dichroic sample (extremal positions of the sample) is
gradually lost as the beam simultaneously interacts with
two orthogonally-oriented polarizers. Indeed, it is con-
firmed that when the beam is centered, both contribu-
tions from each half of the beam destructively interfere
on the detector, resulting in a null beatnote amplitude.
In light of all the above results, we are now able to

provide an interpretation of the discrepancy between the
theoretical predictions presented in Section 4 and the ex-
perimental observations at λ = 1.55 µm reported in [27].
In that work, orthogonality breaking measurements were
carried out in a fibered configuration, and then com-
pared to the control values determined with a standard
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Fig. 4. Evolution of the OBC and phase as a function of beam
position. Inset: sketch of the synthetic sample composed of a
juxtaposition of two orthogonally oriented polarizing sheets.
The illumination beam centered in xb is made to horizon-
tally scan across the sample, xb = 0 corresponding to the
juxtaposition edge of the two polarizing sheets.

free-space Stokes polarimeter at λ = 1.55 µm. Accord-
ing to the discussions presented in this section, the dif-
ference in the experimental conditions of both measure-
ments can have strong consequences on the measured
depolarization. Indeed, the standard Stokes polarime-
try measurements were carried out in free-space, with a
relatively high spot size on the sample and high numeri-
cal aperture for the light collection. Such an experimen-
tal configuration effectively implies a spatial averaging
operation over the sample surface and over several spa-
tial coherence areas (speckle grains) as discussed in [37].
However, the OB signals detected on the same samples
were collected through a standard single-mode SMF28
optical fiber whose FC-APC connector end was placed
in vicinity of the samples. Under such conditions, the
spatial or angular averaging is very moderate, which pre-
sumably corresponds to an intermediate position in the
aforementioned transition from a non-depolarizing sam-
ple to a depolarizing one. In that case, both the di-
attenuation coefficient and the sample depolarization lie
between their respective maximum and minimum values,
as shown in Fig. 3. Therefore, in light of the thorough
modelization proposed in this work and of the discussion
detailed in this section, we can conclude that the OBC
measured in [27] were most likely due to a moderate spa-
tial averaging of the local diattenuation properties of the
samples rather than pure depolarization.

7. Conclusion

In this work, the instantaneous Stokes-Mueller formal-
ism has been applied to conveniently describe the DFDP
beam used in the polarimetric sensing by orthogonal-
ity breaking technique, and to model the interaction
of such a beam with anisotropic depolarizing media.
Based on this formalism, we have thoroughly analyzed
the characteristics of the orthogonality breaking signal
after interacting with birefringent, dichroic, and depo-
larizing samples. It has thus be confirmed that this

measurement technique provides a direct characteriza-
tion of dichroic samples, and that using a circular DFDP
source makes it possible to readily determine the diat-
tenuation magnitude and orientation from the amplitude
and the phase of the detected intensity. Moreover, the
insensitivity of this technique to birefringence has been
confirmed both theoretically and experimentally. This
constitutes an interesting property for remote polarimet-
ric measurements, especially for endoscopic applications
involving optical fibers. We have consequently charac-
terized the influence of a birefringent waveguide on the
detected beatnote component, showing that the orthog-
onality breaking contrast is affected by a slight bias at
order two in the residual fiber birefringence when a cir-
cular DFDP source is used.

Lastly, we have proposed a simple stochastic model of
a depolarizing sample composed of randomly-oriented
linear diattenuators. Such an analytical model, along
with the results of a simple and meaningful laboratory
experiment, clearly illustrates the gradual orthogonal-
ity breaking contrast vanishing as the orientation ran-
domization of the sample increases, due to the destruc-
tive interference of the dephased individual orthogonal-
ity breaking beatnotes. All these considerations have
led us to reinterpret our first experimental results, in
which the observed orthogonality breaking contrast was
most likely due to the effective diattenuation of the sam-
ples rather than to their depolarizing properties. Con-
sequently, in light of the comprehensive model and the
experimental measurements presented in this work, it is
concluded that the orthogonality breaking technique is
insensitive to diagonal depolarization. This is an im-
portant property to be highlighted. Indeed, most po-
larimetric techniques are influenced by depolarization,
which encompasses many physical aspects, including the
structural properties of the sample, the detection ge-
ometry, and the source and detector bandwidth. Be-
ing exclusively sensitive to dichroism, the orthogonality
breaking technique is thus remarkably advantageous for
characterizing such a parameter without being affected
by other sample properties, hence potentially leading to
a more specific and robust sample characterization.

The general method presented in this work provides
an in-depth analysis on the physical origin of the de-
tected signals in different measurement configurations.
These results allow orthogonality breaking sensing to be
adequately modeled, which paves the way for the opti-
mal design of orthogonality breaking imaging systems
with the capacity to perform direct and fast polarimet-
ric measurements at high dynamics. The future develop-
ment of this technique includes a systematic comparative
study with standard polarimetric imaging techniques in
various application contexts, and its extension to re-
mote endoscopic measurements through fiber bundles for
biomedical applications.
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Appendix A

A characteristic property of the Jones matrix of a gen-
eral dichroic sample is that its two eigenvalues are real

and take the form λ1 = T
1/2
max and λ2 = T

1/2
min, where

Tmax and Tmin are respectively the maximum and mini-

mum transmittances. If we consider the eigenvector ~Eeig

corresponding to the greatest eigenvalue:

~Eeig =

[

a
b

]

, (A-1)

the Jones matrix of any elliptic dichroic sample is, ac-
cording to Ref. [46]:

JED =

[

λ1aa
∗ + λ2bb

∗ (λ1 − λ2) ab
∗

(λ1 − λ2) ba
∗ λ2aa

∗ + λ1bb
∗

]

. (A-2)

If a and b are parameterized according to the general
expressions given in Eq. (10), the Mueller matrix MED

of an elliptical diattenuator can be readily obtained by
applying the well-known relationship between a Jones
matrix and its equivalent Mueller-Jones matrix:

M = T
(

J⊗ J
∗)
T

−1, (A-3)

where ⊗ stands for Kronecker product and matrix T is

T =







1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0






, (A-4)

which satisfies T
−1 = 1/2T† [39]. From the previous

equations, the explicit form of MED is found to be:

MED = ρ









1 dC2φC2ǫ dS2φC2ǫ dS2ǫ

dC2φC2ǫ
1+3T

4 + 1−T
4

[

C4ǫ + 2C4φS
2
2ǫ

]

1−T
2 S4φC

2
2ǫ

1−T
2 C2φS4ǫ

dS2φC2ǫ
1−T
2 S4φC

2
2ǫ

1+3T
4 + 1−T

4

[

C4ǫ − 2C4φS
2
2ǫ

]

1−T
2 S2φS4ǫ

dS2ǫ
1−T
2 C2φS4ǫ

1−T
2 S2φS4ǫ

1+T
2 − 1−T

2 C4ǫ









, (A-5)

where the compact notation Cn
kφ = cosn(kφ) and Sn

kφ =

sinn(kφ) has been used. The well-known matrix of an
ideal elliptical diattenuator [38] results from substituting
Tmax = 1 and Tmin = 0, so ρ = 1/2, d = 1 and T = 0 in
the previous equation.

Appendix B

We shall consider a linear diattenuator illuminated by a
non-balanced linear DFDP source, whose instantaneous
Stokes vector is given in Eq. (13). The output intensity
shows the following DC and in-phase AC components:

I0outL = ρI0 + d
1− γ

1 + γ
cos(2φ), (B-1)

I∆ωX
outL = 2ρI0

√
γ

1 + γ
d sin(2φ). (B-2)

It can be shown that the calculation of the OBC param-
eter according to Eq. (27) does not provide useful infor-
mation for characterizing the sample dichroism, as the
sample parameters ρ, d, and φ are strongly mixed. If a
non-balanced circular DFDP source is instead used, the
DC, in-phase and quadrature components of the output
intensity are:

I0outC = ρI0, I∆ωX
outC = I∆ωX

outL , (B-3)

I∆ωY
outC = −2ρI0d

√
γ

1 + γ
cos(2φ). (B-4)

In this case, the OBC and the beatnote signal phase are
respectively:

OBCC = 2d

√
γ

1 + γ
, and, ∠I∆ω

outC = 2φ− π/2. (B-5)

It should be noted that the OBC is directly the diat-
tenuation coefficient if γ = 1. Therefore, a balanced
source constitutes the most appropriate choice for our
purposes. Regarding the phase of the beatnote signal,
it enables the linear dichroism orientation to be readily
obtained, as discussed in Section 4.

Appendix C

We shall now consider a sample with elliptic dichroism,
whose Mueller matrix MED has been derived in Ap-
pendix A. Using a linear DFDP source, the output is:

I0outL = ρI0, (C-1)

I∆ωX
outL = ρI0d cos(2ǫ) sin(2φ), (C-2)

I∆ωY
outL = ρI0d sin(2ǫ), (C-3)

which results in the following parameters:

OBCL = d

√

sin2(2ǫ) + cos2(2ǫ) sin2(2φ), (C-4)

∠I∆ω
outL = arctan

[

tan(2ǫ)

sin(2φ)

]

. (C-5)

Using a circular DFDP source, the results are:

I0outC = ρI0, I∆ωX
outC = I∆ωX

outL , (C-6)

I∆ωY
outC = −ρI0d cos(2ǫ) cos(2φ), (C-7)

which leads to:

OBCC = d| cos(2ǫ)|, (C-8)

∠I∆ω
outC = 2φ− π/2. (C-9)
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We can highlight two aspects of this configuration. The
first one is that the measured diattenuation coefficient
d diminishes as a function of the dichroism ellipticity,
completely vanishing in the case of circular dichroism.
The second one is that the phase of the beatnote signal
is the same regardless of the sample ellipticity, so it can
be extracted in the same way as in Eq. (34).

Appendix D

Let θ be a random variable distributed according to a
Wrapped-Gaussian distribution (WGD) with probabil-
ity density function (pdf) [40]

fWG(θ;µ, σ) =
1√
2πσ

+∞
∑

k=−∞
e−

(

θ−µ+2k π

)2

2σ2 , (D-1)

where the parameters µ and σ respectively identify with
the mean and standard deviation of θ. Such a WGD
verifies the following property:

〈zn〉 =
∫

Γ

einθfWG(θ;µ, σ)dθ = einµe−
n2 σ2

2 , (D-2)

where z = eiθ, and Γ is an integration interval of length
2π. As a result, the first moments of z are thus 〈z〉 =

eiµe−
σ2

2 and 〈z2〉 = e2iµe−2σ2

and one has

〈sin θ〉 = e−
σ2

2 sinµ,

〈cos θ〉 = e−
σ2

2 cosµ.
(D-3)

Appendix E

The Cloude coherency matrix CM of a Mueller matrix
M can be straightfully derived from the relations given
in [41]: CM = (

∑4
j,k=1 Mjk ηjk)/4, with ηjk = T

(

σj ⊗
σ∗
k

)

T
†, where the σi, i∈[1,4] stand for the standard Pauli

matrices, and where T is given in Eq. (A-4). Using these
relations, one obtains the Cloude coherency matrix of
M

∆
LD (Eq. (53)), as

CM
∆
LD = ρ

[

CM
∆
LD,3×3

~0
~0T 0

]

, (E-1)

where the upper 3× 3 matrix CM
∆
LD,3×3 reads

ρ







1+〈T 〉 d̄ C2φ̄ e
−2σ2

φ d̄ S2φ̄ e
−2σ2

φ

d̄ C2φ̄ e
−2σ2

φ
1-〈T 〉

2

[

1+C4φ̄ e
−8σ2

φ

] 1-〈T 〉
2 S4φ̄ e

−8σ2
φ

d̄ S2φ̄ e
−2σ2

φ
1-〈T 〉

2 S4φ̄ e
−8σ2

φ
1-〈T 〉

2

[

1-C4φ̄ e
−8σ2

φ

]






.

(E-2)
It can be clearly seen that this matrix is of rank three as
soon as σφ 6= 0, whereas it is of rank one (independently
of σφ) when 〈T 〉 = 1 (isotropic case) thus leading to null
Cloude entropy (S = 0).
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