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ITERATED BOOLEAN RANDOM VARIETIES AND
APPLICATION TO FRACTURE STATISTICS MODELS

DOMINIQUE JEULIN, FONTAINEBLEAU

March 15, 2016

Abstract. Models of random sets and of point processes are introduced to
simulate some specific clustering of points, namely on random lines in R2
and R3 and on random planes in R3. The corresponding point processes are
special cases of Cox processes. The generating distribution function of the
probability distribution of the number of points in a convex set K and the
Choquet capacity T (K) are given. A possible application is to model point
defects in materials with some degree of alignment. Theoretical results on the
probability of fracture of convex specimens in the framework of the weakest
link assumption are derived, and are used to compare geometrical effects on
the sensitivity of materials to fracture.

1. Introduction

Point processes showing clustering effects are interesting models to simulate non-
homogenous location of points in space, as seen for instance for some defects in
materials: for polycrystals modellled by random tessellations, defects can be located
on the grain boundaries; in composite materials, they can appear on fibers of a
network. The aim of this paper is to introduce some random sets models based
on point processes reproducing these kinds of situation, and to study some of their
theroretical probabilistic properties.
After a reminder on random sets obtained from Boolean random varieties in

Rn, two-steps varieties in Rn are introduced and characterized. The cases of point
processes in R2 and in R3 are detailed to generate random points on lines and
on planes. A three-steps Poisson points in R3 enables us to take into account
alignements in Poisson planes. All these point processes are particular cases of Cox
point processes, for which the generating function of the probability distribution
of the number of points in a convex set K and the Choquet capacity T (K) are
calculated.
In a last section, we make use of iterated Boolean varieties to propose new

probabilistic models of fracture based on the weakest link assumption, that can be
applied to model the intergranular fracture of polycrystals or the fiber fracture of
composites.

1991 Mathematics Subject Classification. 60G55, 60D05, 52A22.
Key words and phrases. Boolean model, Boolean varieties, Cox process, weakest link model,

fracture statistics, mathematical morphology .
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2. Reminder on Boolean random varieties

In this section are given the construction of Boolean random sets based on ran-
dom varieties in Rn, and their main probabilistic properties, namely their Choquet
capacity.

2.1. Construction and properties of the linear Poisson varieties model in
Rn. A geometrical introduction of the Poisson linear varieties is as follows (Math-
eron 1975): a Poisson point process {xi(ω)}, with intensity θk(dω) is considered
on the varieties of dimension (n− k) containing the origin O, and with orientation
ω. On every point xi(ω) is located a variety with dimension k, Vk(ω)xi , orthogonal
to the direction ω. By construction, we have Vk = ∪xi(ω)Vk(ω)xi . For instance in
R3 can be built a network of Poisson hyperplanes Πα (orthogonal to the lines Dω

containing the origin) or a network of Poisson lines in every plane Πω containing
the origin.

Definition 1. In Rn, n Poisson linear varieties of dimension k (k = 0, 1, ..., n−1)
Vk, can be built: the Poisson point process for k = 0 , and the Poisson hyperplanes
for k = n − 1. For k ≥ 1, a network of Poisson linear varieties of dimension k
can be considered as a Poisson point process in the space Sk × Rn−k, with inten-
sity θk(dω)µn−k(dx); θk is a positive Radon measure for the set of subspaces of
dimension k, Sk, and µn−k is the Lebesgue measure of Rn−k.

If θk(dω) is any Radon measure, the obtained varieties are anisotropic. When
θk(dω) = θk dω, the varieties are isotropic. If the Lebesgue measure µn−k(dx) is
replaced by a measure θn−k(dx), non stationary random varieties are obtained.
The probabilistic properties of the Poisson varieties are easily derived from their

definition as a Poisson point process.

Theorem 1. The number of varieties of dimension k hit by a compact set K is a
Poisson variable, with parameter θ(K):

(2.1) θ(K) =

∫
θk(dω)

∫
K(ω)

θn−k(dx) =

∫
θk(dω) θn−k(K(ω))

where K(ω) is the orthogonal projection of K on the orthogonal space to Vk(ω),
Vk⊥(ω). For the stationary case,

(2.2) θ(K) =

∫
θk(dω) µn−k(K(ω))

The Choquet capacity T (K) = P{K ∩ Vk 6= ∅} of the varieties of dimension k is
given by

(2.3) T (K) = 1− exp

(
−
∫
θk(dω)

∫
K(ω)

θn−k(dx)

)
In the stationary case, the Choquet capacity is

(2.4) T (K) = 1− exp

(
−
∫
θk(dω) µn−k(K(ω))

)
Proof. By construction, the random varieties Vk(ω) induce by intersection on every
orthogonal variety of dimension n−k, Vk⊥(ω), a Poisson point process with dimen-
sion n − k and with intensity θk(dω)θn−k(dx). Therefore, the contribution of the
direction ω to N(K), is the Poisson variable N(K,ω) with intensity θn−k(K(ω)).
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Since the contributions of the various directions are independent, Eq. (2.1) results
immediately. �

Proposition 2. Consider now the isotropic (θk being constant) and stationary
case, and a convex set K. Due to the symmetry of the isotropic version, we can
consider θk(dω) = θk dω as defined on the half unit sphere (in Rk+1) of the di-
rections of the varieties Vk(ω). The number of varieties of dimension k hit by a
compact set K is a Poisson variable, with parameter θ(K) given by:

(2.5) θ(K) = θk

∫
µn−k(K(ω)) dω = θk

bn−kbk+1
bn

k + 1

2
Wk(K)

where bk is the volume of the unit ball in Rk (bk =
πk/2

Γ(1 +
k

2
)

) (b1 = 2, b2 = π, b3 =

4

3
π), and Wk(K) is the Minkowski’s functional of K, homogeneous and of degree

n− k (Matheron 1975).

The following examples are useful for applications:

• When k = n − 1, the varieties are Poisson planes in Rn; in that case,
θ(K) = θn−1nWn−1(K) = θn−1A(K), where A(K) is the norm of K (av-
erage projected length over orientations).

• In the plane R2 are obtained the Poisson lines, with θ(K) = θL(K), L
being the perimeter.

• In the three-dimensional space R3are obtained Poisson lines for k = 1 and
Poisson planes for k = 2. For Poisson lines, θ(K) =

π

4
θS(K) and for

Poisson planes, θ(K) = θM(K), where S and M are the surface area and
the integral of the mean curvature.

2.2. Boolean random varieties. Boolean random sets can be built, starting

from Poisson varieties and a random primary grain (Jeulin 1991; Jeulin 1991a,
Jeulin 2015a).

Definition 2. A Boolean model with primary grain A′ is built on Poisson linear
varieties in two steps: i) we start from a network Vk; ii) every variety Vkα is dilated
by an independent realization of the primary grain A′. The Boolean RACS A is
given by

A = ∪αVkα ⊕A′

By construction, this model induces on every variety Vk⊥(ω) orthogonal to Vk(ω)
a standard Boolean model with dimension n−k, with random primary grain A′(ω)
and with intensity θ(ω)dω. The Choquet capacity of this model immediately fol-
lows, after averaging over the directions ω; it can also be deduced from Eq. (2.4),
after replacing K by A′ ⊕ Ǩ and averaging.

Theorem 3. The Choquet capacity of the Boolean model built on Poisson linear
varieties of dimension k is given by

(2.6) T (K) = 1− exp

(
−
∫
θk(dω) µn−k(A′(ω)⊕ Ǩ(ω))

)
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For isotropic varieties, the Choquet capacity of Boolean varieties is given by

(2.7) T (K) = 1− exp

(
−θk

bn−kbk+1
bn

k + 1

2
W k(A′ ⊕ Ǩ)

)
Particular cases of Eq. (2.6) are obtained when K = {x} (giving the probability

q = P{x ∈ Ac} = exp

(
−
∫
θk(dω) µn−k(A′(ω))

)
and when K = {x, x+h}, giving

the covariance of Ac, Q(h) :

(2.8) Q(h) = q2 exp

(∫
θk(dω) Kn−k(ω,

−→
h .−→u (ω))

)
where Kn−k(ω, h) = µn−k(A′(ω) ∩ A′−h(ω)) and −→u (ω) is the unit vector with the
direction ω. For a compact primary grain A′, there exists for any h an angular
sector where Kn−k(ω, h) 6= 0, so that the covariance generally does not reach its
sill, at least in the isotropic case, and the integral range, obtained by integration of
the correlation function, is infinite. Consider now some examples in R2 and in R3.

2.2.1. Fibers in 2D. In the plane can be built a Boolean model on Poisson lines.

For an isotropic lines network (figure 1), and if A′ ⊕ Ǩ is a convex set, we have,
from equation (2.7):

(2.9) T (K) = 1− exp
(
−θ L(A′ ⊕ Ǩ)

)
If A′ ⊕ Ǩ is not a convex set, the integral of projected lengths over a line with the
orientation varying between 0 and π must be taken. If A′ and K are convex sets,
we have L(A′ ⊕ Ǩ) = L(A′) + L(K). Consider now the isotropic case. Using for
A′ a random disc with a random radius R (with expectation R) and for K a disc
with radius r, equation 2.9 becomes:

T (r) = 1− exp
(
−2πθ(R+ r)

)
T (0) = P{x ∈ A} = 1− exp(−2πθR)

which can be used to estimate θ and R , and to validate the model.
In R3, can be built a Boolean model on Poisson planes or on Poisson lines.

2.2.2. Boolean model on Poisson planes in R3 . A Boolean model built on Poisson
planes generates a structure with strata. On isotropic Poisson planes, we have for
a convex set A′ ⊕ Ǩ by application of equation (2.7):

(2.10) T (K) = 1− exp
(
−θ M(A′ ⊕ Ǩ)

)
When A′ and K are convex sets, we have M(A′⊕ Ǩ) = M(A′) +M(K). If A′⊕ Ǩ
is not convex, T (K) is expressed as a function of the length l of the projection over

the lines Dω by T (K) = 1− exp

(
−θ
∫
2πster

l(A′(ω)⊕ Ǩ(ω)) dω

)
. For instance if

A′ is a random sphere with a random radius R (with expectation R) and K is a
sphere with radius r, equation 2.10 becomes:

T (r) = 1− exp(−4πθ(R+ r))

T (0) = P{x ∈ A} = 1− exp(−4πθR)

which can be used to estimate θ and R , and to validate the model.
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2.2.3. Boolean model on Poisson lines in R3. A Boolean model built on Poisson
lines generates a fiber network, with possible overlaps of fibers. On isotropic Poisson
lines, we have for a convex set A′ ⊕ Ǩ

(2.11) T (K) = 1− exp
(
−θ π

4
S(A′ ⊕ Ǩ)

)
If A′ ⊕ Ǩ is not a convex set, T (K) is expressed as a function of the area A of the
projection over the planes Πω by

(2.12) T (K) = 1− exp

(
−1

2
θ

∫
2πster

A(A′(ω)⊕ Ǩ(ω)) dω

)
If A′ is a random sphere with a random radius R (with expectation R and second
moment E(R2)) and K is a sphere with radius r, equation 2.11 becomes:

T (r) = 1− exp
(
−π2θ(E(R2) + 2rR+ r2)

)
T (0) = P{x ∈ A} = 1− exp(−π2θE(R2))

which can be used to estimate θ, E(R2) and R , and to validate the model. A model
of Poisson fibers parallel to a plane, and with a uniform distribution of orientations
in the plane was used to model cellulosic fiber materials (Delisée et al. 2001). In
(Schladitz et al. 2006), non isotropic dilated Poisson lines were used to model and
to optimize the acoustic absorption of nonwoven materials.

3. Two steps Boolean varieties

It is possible to generate further Boolean models by iteration of Poisson varieties.
For instance in R2, we first consider Poisson lines, and in a second step Poisson
points on every line. These points are germs to locate primary grains A′ to gen-
erate a Boolean model. Compared to the standard Boolean model, this one shows
alignments of grains. Similarly in R3 we can start from Poisson planes V2α and
use Poisson lines V1β in every plane to generate a Boolean model with fibers. In
contrast with Poisson fibers in R3, this model generates a random set with some
coplanar fibers. Such long range random sets could mimic specific microstructures
with an order in a lower dimension subspace of Rn, such as preferred germination
of objects on specific planes or lines.
These models are based on doubly stochastic Poisson random variables for which

the Choquet capacity can be obtained.

Definition 3. Two steps random varieties are defined as follows: starting from
Poisson linear varieties Vk of dimension k and with intensity θk(dω) in Rn, Poisson
linear varieties Vk′β with dimension 0 ≤ k′ < k and with intensity θk′(dω) are
implanted on each Vkα. Then each Vk′β is dilated by independent realizations of a
random compact primary grain A′ ⊂ Rn to generate the Boolean RACS A:

A = ∪βVk′β ⊕A′

Remark 1. By construction, when k′ = 0 the varieties Vk′β are a particular case
of a Cox process driven by the random set Vk, and the derived random set A is a
Cox Boolean model (Jeulin 2012).

In what follows the purpose is restricted to the stationary and isotropic case,
with the two intensities θk and θk′ .
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Theorem 4. The number N(K) of varieties of dimension k′ < k hit by the
compact set K is a random variable with generating function

(3.1) Gk′(s,K) = E{sN(K)} = exp [θkakWk(K) [ϕk′(θk′ak′(1− s),K)− 1]]

where ak′ =
bn−k′bk′+1

bn
k′+1
2 and ϕk′(λ,K) is the Laplace transform of the random

variable Wk′(K ∩ Vkα) , Wk′ being the Minkowski functional homogeneous with
degree k − k′ in Rk:
(3.2) ϕk′(λ,K) = E{exp [−λWk′(K ∩ Vk)]}
the mathematical expectation being taken over the realizations Vkα. As a conse-
quence, the Choquet capacity of the Boolean RACS A built on the Poisson linear
varieties Vk′ using a deterministic primary grain A′ is derived from Gk′(0, A

′⊕Ǩ),
E {} being the expectation with respect to the random variety Vkα:

1− T (K)(3.3)

= exp
[
−θkakWk(A′ ⊕ Ǩ)

[
1− E{exp

[
−θk′ak′Wk′(A

′ ⊕ Ǩ ∩ Vk)
]
}
]]

Proof. The random number Nk of varieties Vkα hit by K is a Poisson variable
with expectation θkakWk(K). On each Vkα are generated Nk′ varieties Vk′β , Nk′
being a Poisson variable with expectation θk′ak′Wk′(K∩Vk). For a random section
K ∩ Vkα, the generating function of Nk′ is
(3.4) Γ(s) = exp [−θk′ak′Wk′(K ∩ Vkα)(1− s)]
Taking the expectation of (3.4) with respect to Wk′(K ∩ Vkα) and then of Γ(s)Nk

gives (3.1). �

The Choquet capacity requires the use of the Laplace transform ϕk′(λ,A
′ ⊕ Ǩ).

It is not easy to expressed them in a closed form for specific compact sets K
and A′. However the required distribution functions and their Laplace transforms
can be estimated by simulation of the random variables obtained from random
variables Wk′(A

′ ⊕ Ǩ ∩ Vkα) obtained from random sections. Examples of closed
form expressions are given now for two-steps Poisson points in R2 and in R3.

3.1. Poisson points on Poisson lines in the plane. Starting from Poisson lines
in the plane, a 1D Poisson point process is independently generated on each lines.

Proposition 5. The generating function GK(s) of the random number of points
NP (K) contained in a convex set K in R2 with perimeter L(K), random intercept
length L(K) (with Laplace transform ϕL(λ,K)), is given by

(3.5) GK(s) = exp (−θ1L(K)(1− ϕL(θ(1− s),K)))

We have

(3.6) 1− T (K) = Q(K) = exp (−θ1L(K)(1− ϕL(θ,K)))

The Choquet capacity of the corresponding Boolean model for convex sets K
and A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation 3.6.

Proof. K hits a Poisson random number of lines ND with parameter θ1L(K). Each
chord with random length L(K) contains a Poisson number of points with parame-
ter θL(K) and generating function

Γ(s, L(K)) = exp (−θL(K)(1− s))
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After deconditioning with respect to L(K), with Laplace transform ϕL(λ,K), we
obtain the generating function Γ(s,K) = EL {Γ(s, L(K))} = ϕL(θ(1−s),K). Then
we consider the sum of ND realizations of the random variable L(K) to obtain
equation 3.5 by expectation with respect to ND:

GK(s) = END
{
ϕL(θ(1− s),K)ND

}
= exp (θ1L(K)(ϕL(θ(1− s),K)− 1))

�

When K is the disc C(r) with radius r, the generating function of the random
number of points NP (r) in C(r) is obtained by

G(s, r) = exp [−2πrθ1(1− ϕL(θ(1− s), r))]
with ϕL(λ, r) given by equation 7.1 or 7.2. We have

Q(r) = exp [−2πrθ1(1− ϕL(θ, r))]

3.2. Poisson points on Poisson planes in R3. This point process is obtained
in two steps:

(1) We start with Poisson planes in R3 (consider here the isotropic case), with
intensity θ2

(2) On each Poisson plane, is generated a 2D Poisson point process, with in-
tensity θ.

Proposition 6. The generating function GK(s) of the random number of points
NP (K) contained in a convex set K is given by

(3.7) GK(s) = exp [−θ2M(K)(1− ψA(θ(1− s),K ∩ π))]

and we get

(3.8) 1− T (K) = Q(K) = exp [−θ2M(K)(1− ψA(θ,K ∩ π))]

with:M(K): integral of mean curvature of K; A(K ∩ π): area of sections of K by
a random plane π, with Laplace transform ψA(λ,K ∩ π)

The Choquet capacity of the corresponding Boolean model for convex sets K
and A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation 3.8.

Proof. The random number of planes Nπ(K) hit by K is a Poisson variable with
parameter θ2M(K). Each plane π cuts K according to a convex random set with
area A(K ∩ π), containing a Poisson number of points, with parameter θA(K) and
generating function

Γ(s,A(K)) = exp (−θA(K)(1− s))
After deconditioning with respect to A(K), with Laplace transform ψA(λ,K ∩ π),
we obtain the generating function Γ(s,K) = EA {Γ(s,A(K))} = ψA(θ(1−s),K∩π).
Then we consider the sum of Nπ realizations of the random variable A(K) to obtain
equation 3.7 by expectation with respect to Nπ:

GK(s) = ENπ
{
ψA(θ(1− s),K ∩ π)Nπ

}
= exp [θ2M(K)(ψA(θ(1− s),K ∩ π)− 1)]

�
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The generating function G(s, r) of the random number of points NP (r) in the
sphere with radius r is given by

G(s, r) = exp [−4πrθ2(1− ψ(θπ(1− s), r))]
and

1− T (r) = Q(r) = exp [−4πrθ2(1− ψ(θπ, r))]

with (see equation 7.4)

ψ(λ, r) =
exp(−λr2)

∫ r√λ
0

exp(y2)dy

r
√
λ

3.3. Poisson points on Poisson lines in R3. This point process is obtained in
two steps:

(1) We start from isotropic Poisson lines in R3, with intensity θ1
(2) On each Poisson line, a 1D Poisson point process with intensity θ is gener-

ated.

Proposition 7. The generating function GK(s) of the random number of points
ND(K) contained in a convex set K is given by

(3.9) GK(s) = exp
[
−π

4
θ1S(K)(1− ϕL(θ(1− s),K))

]
so that

(3.10) 1− T (K) = Q(K) = exp
[
−π

4
θ1S(K)(1− ϕL(θ,K))

]
where S(K) is the surface area of K, and ϕL(λ,K) the Laplace transform of a
random chord L(K) in K.

The Choquet capacity of the corresponding Boolean model for convex sets K
and A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation 3.10.

Proof. The random number of lines ND(K) hit by K is a Poisson variable with
parameter π

4 θ1S(K). Each line cuts K according to a random chord with length
L(K), containing a Poisson number of points with parameter θL(K) and with
generating function

Γ(s, L(K)) = exp(θL(K)(s− 1))

After deconditioning with respect to L(K), with Laplace transform ϕL(λ,K), we
obtain the generating function Γ(s,K) = EL {Γ(s, L(K))} = ϕL(θ(1−s),K). Then
we consider the sum of ND realizations of the random variable L(K) to obtain
equation 3.9 by expectation with respect to ND:

GK(s) = END
{
ϕL(θ(1− s),K)ND

}
= exp

[
−π

4
θ1S(K)(1− ϕL(θ(1− s),K))

]
�

The generating function G(s, r) of the random number of points NP (r) in the
sphere with radius r is expressed from

log(G(s, r)) =

−π2θ1r2
(

1− 2

(2rθ(1− s))2 [1− (1 + 2rθ(1− s)) exp(−2rθ(1− s))]
)
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and

1− T (r) = Q(r) = exp

[
−π2θ1r2

(
1− 2

(2rθ)2
[1− (1 + 2rθ) exp(−2rθ)]

)]
4. Three-steps Poisson points in R3

A new point process is obtained by a three steps iteration: Poisson points on
2D Poisson lines contained in Poisson planes

(1) We start from Poisson planes in R3 (isotropic case), with intensity θ2
(2) On each Poisson plane, a 2D Poisson lines process with intensity θ1 is

generated
(3) On each line, a 1D Poisson point process with intensity θ is given

Proposition 8. Consider a convex compact set K, with random planar sections
K ∩ π. The generating function GK(s) of the random number of points ND(K)
contained in the convex set K is given from

log(GK(s))(4.1)

= −θ2M(K)(Eπ {exp [θ1L(K ∩ π) (ϕL(θ(1− s),K ∩ π)− 1)]} − 1)

where Eπ is the mathematical expectation over random sections. We get

log(1− T (K)) =(4.2)

log(Q(K)) =

−θ2M(K)(Eπ {exp [θ1L(K ∩ π) (ϕL(θ,K ∩ π)− 1)]} − 1)

with perimeter L(K ∩ π) of sections of K, with Laplace transform ψL(λ,K ∩ π),
random chord of each planar section L(K∩π), with Laplace transform ϕL(λ,K∩π).

The Choquet capacity of the corresponding Boolean model for convex sets K
and A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation 4.2.

Proof. The random number of planes Nπ(K) hit by K is a Poisson variable with
parameter θ2M(K). Each plane π cuts K according to a convex random set with
random perimeter L(K ∩ π) hitting a Poisson number of lines, with parameter
θ1L(K∩π). Each line cuts K∩π according to a random chord L(K∩π) containing
a Poisson number of points with parameter θL(K) and generating function

Γ(s, L(K ∩ π)) = exp (−θL(K ∩ π)(1− s))
For a given section K ∩π, the generating function of the number of points on a line
is obtained by deconditioning over L(K ∩ π), so that

Γ(s,K ∩ π) = ϕL(θ(1− s),K ∩ π)

The generating function of the random number of points on K ∩ π is given by
the expectation of Γ(s,K ∩ π)N , N being the Poisson variable with parameter
θ1L(K ∩ π) and therefore

E
{

Γ(s,K ∩ π)N
}

= exp [θ1L(K ∩ π) (ϕL(θ(1− s),K ∩ π)− 1)]

Deconditioning with respect to the random section K ∩ π gives
Γ(s,K) = Eπ {exp [θ1L(K ∩ π) (ϕL(θ(1− s),K ∩ π)− 1)]}

Deconditioning now with respect to the Poisson number of planes Nπ(K), we take
the expectation of Γ(s,K)Nπ(K) to get equation 4.1. �
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The generating function of the number of points of the process inside a sphere
with radius r is given by

log(G(s, r))

= −4πθ2r(1− ER {exp [2πθ1R (ϕL(θ(1− s), R)− 1)]})
with

ER {exp [2πθ1R (ϕL(θ(1− s), R)− 1)]}

=

∫ r

0

exp [2πθ1u (ϕL(θ(1− s), u)− 1)] f(u, r)du

• f(u, r): distribution function of the radius R of random sections of a sphere
• ϕL(λ,R): Laplace transform of random chords of the disc with radius R

The Choquet capacity for a sphere with radius r is given by

log(1− T (r)) = log(Q(r))

= −4πθ2r

(
1−

∫ r

0

exp [2πθ1u (ϕL(θ, u)− 1)] f(u, r)du

)
5. Use of Iterated Boolean varieties for probabilistic models of

fracture based on the weakest link assumption

The standard weakest link model is based on the assumption that fracture in
a brittle material is initiated on the most critical defect, that controls the full
fracture process. For this model, it means that when there is at least one point
x in a specimen where the applied principal stress component σ(x) is larger than
the local critical stress σc(x), the specimen is broken. Usually it is assumed that
the occurrence or absence of critical defects (generating fracture) of any volume
elements generate a set of independent events. After a decomposition of the volume
V into links vi and assuming that there is a fracture of the volume V when a single
link vi is broken, a classical computation for independent events gives:

P{Non fracture} =
∏
i

P{Non fracture of vi}

For vi → 0, P{fracture} ' Φ((σ(x))dx, with Φ increasing with the loading σ and
P{Non fracture of dx} ' 1− Φ((σ(x))dx. Therefore with these assumptions,

P{Non fracture of V } = exp(−
∫
V

Φ(σ(x))dx) = exp(−V Φ(σeq))

where the equivalent stress is defined from

Φ(σeq) =
1

V

∫
V

Φ((σ(x))dx

This assumption is equivalent to a distribution of point defects in a matrix with
σc =∞, according to a Poisson point process in space, with intensity Φ(σ), where
Φ(σ) is the average number per unit volume of defects with a critical stress σc lower
than σ.
For a homogeneous applied stress field σ(x) = σ,

P{Non fracture of V } = exp(−V Φ(σ))
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For the Weibull model, the function Φ(σ) is power law in σ: Φ(σ) = θ(σ − σ0)m
and P{Non fracture of V } follows a 3 parameters Weibull distribution.
The weakest link model corresponds to a "Infimum" Boolean random function

with point support primary random functions (PRF), and is immediately extended
to any PRF with a support having almost surely compact sections (Jeulin 1991,
2001, 2012, 2015a) .
In what follows the weakest link model is extended to the case of the various

point processes introduced in the first parts of this paper. It allows for clustering
of defects on Poisson varieties. A comparison is made with the standard Poisson-
based model and between the various models, when using the same function Φ(σ)
for point defects.

5.1. Fracture statistics for Poisson point defects on Poisson lines in R2.
As seen before, a two steps point process can be used to locate random defects:

(1) Poisson lines in R2 (isotropic case), with intensity θ1
(2) On each Poisson plane, a 1D Poisson point process of point defects acting

in fracture, with intensity θ replaced by Φ(σ) in equation 3.6.

We get

(5.1) P{σR ≥ σ}L = exp (−θ1L(K)(1− ϕL(Φ(σ),K)))

When K is the disc with radius r,

(5.2) P{σR ≥ σ}L = Q(r, σ) = exp [2πrθ1(ϕL(Φ(σ), r)− 1)]

5.2. Comparison of Fracture statistics for Poisson points and for points
on lines in R2. In the plane, the average number of Poisson points contained in
the disc of radius r is

E{NP (r)} = πr2θ2

The average number of Poisson lines hit by the disc is 2πrθ1. Therefore, the
average number of points of the two-step process on lines is 2πrθ1θE{L}, E{L}
being the average chord of the disc. We have−πK ′(0) = 2πr and then−K ′(0) = 2r,
so that E{L} = πr2

2r = π r2 . The average number of points on lines is given by :

E{NP (r)} = 2πrθ1θπ
r

2
= π2r2θ1θ

To compare the two fracture statistics, we consider the same average number of
defects in the disc, so that we have to use

θ2 = πθ1θ

We have

log (P{σR ≥ σ}P )− log (P{σR ≥ σ}L)

= 2πrθ1

(
1− ϕL(θ, r)− πθ1θ

2πrθ1
πr2
)

= 2πrθ1

(
1− ϕL(θ, r)− θπ

2
r
)

Using the parameter α = 2θr we have to compute

2πrθ1

(
1− π

2
(StruveL(−1, α)−BesselI(1, α))− π

4
α
)



12 DOMINIQUE JEULIN, FONTAINEBLEAU

From numerical calculation, it turns out that this expression remains negative for
any α and then

(P{σR ≥ σ}P ) < P{σR ≥ σ}L
This result is satisfied for any intensity Φ(σ). In 2D, it is easier to break a

specimen with Poisson point defects than with point defects on Poisson lines.

5.3. Fracture statistics for Poisson point defects on Poisson planes in R3.
As earlier, we locate point defects according to a two steps point process:

(1) Poisson planes in R3 (isotropic case), with intensity θ2
(2) On each Poisson plane, 2D Poisson point process of point defects, with

intensity θ replaced by Φ(σ) in equation 3.8.

Considering the Poisson tessellation generated by Poisson planes, this model
figures out point defects located on grain boundaries, generating intergranular frac-
ture. We get

(5.3) P{σR ≥ σ}π = exp [−θ2M(K)(1− ψA(Φ(σ),K ∩ π))]

In the case of a spherical specimen with radius r,

(5.4) P{σR ≥ σ}π = exp [−4πrθ2(1− ψ(πΦ(σ), r))]

with ψ(λ, r) given by equation 7.4.

5.4. Fracture statistics for Poisson point defects on Poisson lines in R3.
A model of long fiber network with point defects is obtained from Poisson lines,
where we replace θ by Φ(σ) in equation 3.10:

(5.5) P{σR ≥ σ}D = exp
[
−π

4
θ1S(K)(1− ϕL(Φ(σ),K))

]
In the case of a spherical specimen with radius r,

P{σR ≥ σ}D =(5.6)

exp

[
−π2θ1r2(1−

2

(2rΦ(σ))2
[1− (1 + 2rΦ(σ)) exp(−2rΦ(σ))]

]
5.5. Comparison of Fracture statistics for Poisson points and for points
on planes. With consider the fracture of a sphere of sphere of radius r containing
a random number of points NP (r) with a given average.
For the standard Poisson point process,

E{NP (r)} =
4

3
πr3θ3

For Poisson points on Poisson planes,

E{NP (r)} =
8

3
π2r3θ2θ

For a fixed average number of defects in the sphere of radius r, we get

θ3 = 2πθ2θ
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Using the same intensity Φ(σ) = θ for the two processes

log(P{σR ≥ σ}P )− log(P{σR ≥ σ}π)

= 4πrθ2

(
1− ψ(θπ, r)− θr2

2

)
and

P{σR ≥ σ}π < P{σR ≥ σ}P for r2Φ(σ) < 1.8

Given the same statistics of defects Φ(σ), for low applied stresses, or at a small
scale, the "intergranular" fracture probability is higher than the standard proba-
bility of fracture. For high applied stresses the reverse is true, and the material
is less sensitive to "intergranular" fracture. The two probability curves cross for
r2Φ(σ) ' 1.8.

5.6. Comparison of Fracture statistics for Poisson points and for points
on lines. We consider again the fracture of a sphere of sphere of radius r containing
a random number of points NP (r) with a given average.
For the standard Poisson point process,

E{NP (r)} =
4

3
πr3θ3

For Poisson points on Poisson lines,

E{NP (r)} =
4

3
π2r3θ1θ

Given the average number of defects in the sphere of radius r, we have

θ3 = πθ1θ

Using the same intensity Φ(σ) = θ for the two processes, and the auxiliary
variable α = 2rθ, we have

log(P{σR ≥ σ}D)− log(P{σR ≥ σ}P )

= π2θ1r
2

(
2

α2
(1− (1 + α) exp(−α))− 1 +

2

3
α

)
and

P{σR ≥ σ}D < P{σR ≥ σ}P
Therefore, given the same statistics of defects Φ(σ), the "fiber" fracture probability
is higher than the standard probability of fracture. The material is more sensitive
to point defects on fibers.

5.7. Comparison of Fracture statistics for Poisson points on planes and
for points on lines. For a given average number of defects in the sphere of radius
r, we have

θ2θπ =
1

2
θ1θD

Taking 2rθD = πr2θπ = α, we get π2θ1r2 = 4πrθ2. Using the same intensity
Φ(σ) = θ = θπ = θD for the two processes, we get

log(P{σR ≥ σ}π)− log(P{σR ≥ σ}D)

= π2θ1r
2

(
ψ(θπ, r)− 2

α2
(1− (1 + α) exp(−α))

)
> 0
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and therefore P{σR ≥ σ}π > P{σR ≥ σ}D for any distribution Φ(σ) of defects and
it is easier to break a specimen with defects on fibers than with defects on planes.

5.8. Fracture statistics for defects obtained in the three steps iteration.
We consider now a model of a long fibers in random planes, with point defects
located on the fibers, where θ is replaced by Φ(σ) in equation 4.2. We have

log(P{σR ≥ σ}3 iterations) =

θ2M(K)(Eπ {exp [θ1L(K ∩ π) (ϕL(Φ(σ),K ∩ π)− 1)]} − 1)

For fracture statistics of the sphere with radius r,

log(P{σR ≥ σ}3 iterations) =

4πθ2r

(∫ r

0

exp [2πθ1u (ϕL(Φ(σ), u)− 1)] f(u, r)du− 1

)
5.9. Comparison of Fracture statistics for Poisson points and for the three
steps iteration. We study the fracture statistics of a sphere of radius r containing
a random number of points NP (r) with a given average.
For the standard Poisson point process,

E{NP (r)} =
4

3
πr3θ3

For Poisson points on Poisson lines on Poisson planes,

E{NP (r)} =
4

3
πr3(θ2θ1θ2π

2)

Given an average number of defects in the sphere of radius r, we have

θ3 = 2π2θ2θ1θ

To compare fracture statistics of Poisson points and of the three iterations case, we
use the ratio

4

3

θ3r
3

4θ2r
=

4

3

2π2θ2θ1θ

4θ2
r2 =

2

3
π2θ1θr

2

With auxilliary variables 2θr = α and θ1r = β, we have to compare 1
3π

2θ1αr =
1
3π

2αβ to

1−
∫ r

0

exp [−2πθ1u (1− ϕL(ϕL(θ, u))] f(u, r)dr

Using u
r = y and du = rdy, we get

1−
∫ 1

0

exp [−2πθ1ry (1− ϕL(θ, ry))]
y√

1− y2
dy

= 1−
∫ 1

0

exp [−2πβy (1− ϕL(θ, ry))]
y√

1− y2
dy

We make a comparison by numerical calculation of the integral over α, for a
given β. For β = 0.01, 0.1, 1 and 10,

P{σR ≥ σ}3 iterations > P{σR ≥ σ}P
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5.10. Comparison of Fracture statistics for Poisson points on Poisson
planes and for the three steps iteration. We fix the average number of points
in the sphere with radius r. For Poisson points on Poisson planes

E{Nπ(r)} =
8

3
π2r3θ2πθπ

and for 3 iterations

E{NP (r)}3 iterations =
4

3
πr3(θ2θ1θ2π

2)

To keep the same average values, we fix

2θ2πθπ = 2πθ2θ1θ

Taking θπ = θ to get the same statistics over points, and θ2 identical for the two
models, in order to keep the same scale for the Poisson polyedra, we get πθ1 = 1
and θ1 = 1/π.
With auxilliary variables 2θr = α and θ1r = β, we have to compare

1− ψ(θπ, r)

and

1−
∫ 1

0

exp [−2πβy (1− ϕL(θ, ry))]
y√

1− y2
dy

For β = 0.01, 0.1, 0.5, 0.75, numerical calculations give

P{σR ≥ σ}3 iterations > P{σR ≥ σ}π
For β = 1,

P{σR ≥ σ}3 iterations < P{σR ≥ σ}π when α < 1.99

P{σR ≥ σ}3 iterations > P{σR ≥ σ}π when α > 1.99

For β = 2, 10,
P{σR ≥ σ}3 iterations < P{σR ≥ σ}π

6. Conclusion

The models of random sets and point processes studied in this paper were de-
signed to simulate some specific clustering of points, namely on random lines in
R2 and R3 and on random planes in R3. A possible application is to model point
defects in materials with some degree of alignment. We derived general theoretical
results, useful to compare geometrical effects on the sensitivity of materials to
fracture. Based on the presented theoretical results, applications can be looked for
from statistical experimental data.

7. Appendix: Laplace transforms for sections of discs and of spheres

7.1. Random chords in a disc of radius r. Let L the random length of a chord
obtained by random sections of the disc with radius r (this means chords given by
intersections of the disc by lines with a uniform location along its diameter) .

Proposition 9. The cumulative distribution of the random variable L is given by

P{L < l} = 1−

√
1−

(
l

2r

)2
for l < 2r.
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Proof. For any convex set A with geometrical covariogram K(h), the distribution
P{L < l} is given by the expression 1 − K′(h)

K′(0) , where K
′(h) is also the projection

of A ∩Ah in the direction of vector h. For a disc with radius r in R2 we get:(
h

2

)2
+

(
K ′(h)

2

)2
= (r)

2

and then

(1− P{L < l})2 =

(
K ′(l)

K ′(0)

)2
= 1−

(
l

2r

)2
�

The Laplace transform of the distribution of random chords L in a disc with
radius r is given by

ϕL(λ, r) =
1

4r2

∫ 2r

0

l exp(−λl)√
1−

(
l
2r

)2 dl
Using y = l

2r , so that dl = 2rdy, ϕL(λ, r) can be derived using the formal
computation software Mathematica

ϕL(λ, r) =
1

4r2

∫ 1

0

exp(−λ2ry)
2ry2r√
1− y2

dy

=

∫ 1

0

exp(−λ2ry)
ydy√
1− y2

= π/2 [−BesselI(1, 2λr) + StruveL(−1, 2λr)](7.1)

Using a power series for exp(−λ2ry) = 1 +
∑i=∞
i−1 (−1)n (2λr)

n

n! we get∫ 1

0

yndy√
1− y2

=

√
π

2

Γ( 1+n2 )

Γ(1 + n
2 )

and therefore

ϕL(λ, r) = 1 +

√
π

2

i=∞∑
i−1

(−1)n
(2λr)n

n!

Γ( 1+n+12 )

Γ(1 + n+1
2 )

= 1 +

√
π

2

i=∞∑
i−1

(−1)n
(2λr)n

n!

Γ(n+22 )

Γ(n+32 )
(7.2)

7.2. Random radius of sections of a sphere with radius R3. The cumulative
distribution function of the radius R of a random section of the sphere with radius
R3 is given by

P{R < r} = 1−

√
1−

(
r

R3

)2
The probability density function is given by

(7.3) f(r,R3) =
r

R23

1√
1−

(
r
R3

)2
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By using y = r
R3
we have R3dy = dr. The Laplace transform of the distribution

of R is given by

ϕR(λ,R3) =

∫ R3

0

r

R23

1√
1−

(
r
R3

)2 exp(−λr)dr

=

∫ 1

0

R3y

R23

1√
1− y2

R3 exp(−λR3y)dy

=

∫ 1

0

y√
1− y2

exp(−λR3y)dy

= π/2 [−BesselI(1, λR3) + StruveL(−1, λR3)]

From ϕR(λ,R3) is obtained the Laplace transform of the perimeter of sections,
ψL(λ,B(R3) ∩ π), replacing λ by 2πλ.
From the distribution of the radius R can be computed the Laplace transform

of R2:

ER
{

exp(−λR2(R3))
}

= ψ(λ,R3)

=

∫ R3

0

exp(−λu2) u

r2
√

1− ( u
R3

)2
du

Using u
R3

= y and du = R3dy,

ER
{

exp(−λR2(R3))
}

=

∫ 1

0

exp(−λR23y2)
R3yR3dy

r2
√

1− y2
=

∫ 1

0

exp(−λR23y2)
ydy√
1− y2

=
exp(−λR23)

∫ R3

√
λ

0
exp(y2)dy

R3
√
λ

(7.4)

7.3. Random chords in a sphere with radius R3. We start with the geomet-
rical covariogram of the sphere with diameter a = 2R3.For h < a,

K(h) = V

(
1− 3

2

h

a
+

1

2
(
h

a
)3
)

K ′(h) = V

(
−3

2

1

a
+

3

2

h2

a3

)
The cumulative distribution function is obtained by:

1− F (l) =
K ′(l)

K ′(0)
= 1− l2

a2
, for l < a

and

F (l) =
l2

a2
, for l < a

with density f(l)

f(l) =
2l

a2
, for l < a

For a sphere with radius R3
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f(l) =
l

2R23
, for l < 2R3

The Laplace transform of fl) is obtained from

ϕSL(λ,R3) =
1

2R23

∫ 2R3

0

l exp(−λl)dl

Using y = l
2R3

with dy = dl
2R3

ϕSL(λ,R3) =
1

2R23

∫ 2R3

0

exp(−λl)2R3y(2R3)dy

= 2

∫ 1

0

exp(−λ2R3y)ydy

Since ∫ 1

0

y exp(−αy)dy

=
1− (1 + α) exp(−α)

α2

we get

ϕL(λ,R3) =
2

(2R3λ)2
[1− (1 + 2R3λ) exp(−2R3λ)]

Using a power series expansion of ψ(λ, r), exp(−λr2y2) = 1 +
∑∞

1 (−1)n
(λr2y2)

n!

n

.
We get:

∫ 1

0

y2n+1dy√
1− y2

=

√
π

2

Γ
(
2n+2
2

)
Γ
(
1 + 2n+1

2

)
=

√
π

2

n!

Γ
(
n+ 1 + 1

2

)
and

ψ(λ, r) =

∫ 1

0

exp(−λr2y2) ydy√
1− y2

= 1 +

√
π

2

∞∑
1

(−1)n
(
λr2
)n

Γ
(
n+ 1 + 1

2

)
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