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ITERATED BOOLEAN RANDOM VARIETIES AND
APPLICATION TO FRACTURE STATISTICS MODELS

DOMINIQUE JEULIN, FONTAINEBLEAU

March 15, 2016

ABSTRACT. Models of random sets and of point processes are introduced to
simulate some specific clustering of points, namely on random lines in R2
and R3® and on random planes in R3. The corresponding point processes are
special cases of Cox processes. The generating distribution function of the
probability distribution of the number of points in a convex set K and the
Choquet capacity T'(K) are given. A possible application is to model point
defects in materials with some degree of alignment. Theoretical results on the
probability of fracture of convex specimens in the framework of the weakest
link assumption are derived, and are used to compare geometrical effects on
the sensitivity of materials to fracture.

1. INTRODUCTION

Point processes showing clustering effects are interesting models to simulate non-
homogenous location of points in space, as seen for instance for some defects in
materials: for polycrystals modellled by random tessellations, defects can be located
on the grain boundaries; in composite materials, they can appear on fibers of a
network. The aim of this paper is to introduce some random sets models based
on point processes reproducing these kinds of situation, and to study some of their
theroretical probabilistic properties.

After a reminder on random sets obtained from Boolean random varieties in
R™, two-steps varieties in R™ are introduced and characterized. The cases of point
processes in R? and in R3 are detailed to generate random points on lines and
on planes. A three-steps Poisson points in R3 enables us to take into account
alignements in Poisson planes. All these point processes are particular cases of Cox
point processes, for which the generating function of the probability distribution
of the number of points in a convex set K and the Choquet capacity T(K) are
calculated.

In a last section, we make use of iterated Boolean varieties to propose new
probabilistic models of fracture based on the weakest link assumption, that can be
applied to model the intergranular fracture of polycrystals or the fiber fracture of
composites.

1991 Mathematics Subject Classification. 60G55, 60D05, 52A22.
Key words and phrases. Boolean model, Boolean varieties, Cox process, weakest link model,
fracture statistics, mathematical morphology .
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2. REMINDER ON BOOLEAN RANDOM VARIETIES

In this section are given the construction of Boolean random sets based on ran-
dom varieties in R™, and their main probabilistic properties, namely their Choquet
capacity.

2.1. Construction and properties of the linear Poisson varieties model in
R™. A geometrical introduction of the Poisson linear varieties is as follows (Math-
eron 1975): a Poisson point process {z;(w)}, with intensity 0y (dw) is considered
on the varieties of dimension (n — k) containing the origin O, and with orientation
w. On every point x;(w) is located a variety with dimension k, Vi (w).,, orthogonal
to the direction w. By construction, we have Vi = Uy, (4)Vi(w)s,. For instance in
R3 can be built a network of Poisson hyperplanes II, (orthogonal to the lines D,
containing the origin) or a network of Poisson lines in every plane II,, containing

the origin.

Definition 1. In R™, n Poisson linear varieties of dimension k (k =0,1,...,n—1)
Vi, can be built: the Poisson point process for k =0 , and the Poisson hyperplanes
for k =n—1. For k > 1, a network of Poisson linear varieties of dimension k
can be considered as a Poisson point process in the space Sy x R™ ™% with inten-
sity O (dw)p,,_(dx); Ok is a positive Radon measure for the set of subspaces of
dimension k, Sy, and u,_, 1is the Lebesgue measure of R"™F.

If 0;(dw) is any Radon measure, the obtained varieties are anisotropic. When
0r(dw) = 0k dw, the varieties are isotropic. If the Lebesgue measure p,,_.(dx) is
replaced by a measure 6,,_(dx), non stationary random varieties are obtained.

The probabilistic properties of the Poisson varieties are easily derived from their
definition as a Poisson point process.

Theorem 1. The number of varieties of dimension k hit by a compact set K is a
Poisson variable, with parameter 0(K):

(2.1) 0(K) = / O (dow) /K ) = / O (dw) O (K (@)

where K(w) is the orthogonal projection of K on the orthogonal space to Vi(w),
Vs (w). For the stationary case,

(2.2) 0(K) = / 01 (o) fy_ 1 (K ()

The Choquet capacity T(K) = P{K N Vi # &} of the varieties of dimension k is
given by

(2.3) T(K)=1—exp <—/9k(dw)/K( )Qn_k(daj)>

In the stationary case, the Choquet capacity is
(2.0 T(K) = 1= oxp (- [01d) o 4K ()

Proof. By construction, the random varieties Vj(w) induce by intersection on every
orthogonal variety of dimension n—k, Vj,1 (w), a Poisson point process with dimen-
sion n — k and with intensity 6y (dw),—x(dz). Therefore, the contribution of the
direction w to N(K), is the Poisson variable N(K,w) with intensity 6,,_; (K (w)).
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Since the contributions of the various directions are independent, Eq. (2.1) results
immediately. ([l

Proposition 2. Consider now the isotropic (0 being constant) and stationary
case, and a convex set K. Due to the symmetry of the isotropic version, we can
consider Oy (dw) = 0y dw as defined on the half unit sphere (in R¥*1) of the di-
rections of the varieties Vi(w). The number of varieties of dimension k hit by a
compact set K is a Poisson variable, with parameter (K) given by:

bn—rbr+1 k+1
(2.5) OK) = 00 [ 1,4 (w)) do = 0,2 22 (1)
k)2
where by, is the volume of the unit ball in R* (b, = 7/€) (by =2,by = ,bg =
1+ 5)

4
§7r), and Wi(K) is the Minkowski’s functional of K, homogeneous and of degree
n —k (Matheron 1975).

The following examples are useful for applications:

e When k£ = n — 1, the varieties are Poisson planes in R™; in that case,
0(K) =0,_1nW,_1(K) = 0,_1A(K), where A(K) is the norm of K (av-
erage projected length over orientations).

e In the plane R? are obtained the Poisson lines, with §(K) = 0L(K), L
being the perimeter.

e In the three-dimensional space R3are obtained Poisson lines for k = 1 and

Poisson planes for k& = 2. For Poisson lines, §(K) = %95([() and for

Poisson planes, §(K) = 6M (K), where S and M are the surface area and
the integral of the mean curvature.

2.2. Boolean random varieties. Boolean random sets can be built, starting

from Poisson varieties and a random primary grain (Jeulin 1991; Jeulin 1991a,
Jeulin 2015a).

Definition 2. A Boolean model with primary grain A’ is built on Poisson linear
varieties in two steps: i) we start from a network Vi; ii) every variety Vi, is dilated
by an independent realization of the primary grain A’. The Boolean RACS A is
given by

A=UVia @ A

By construction, this model induces on every variety V;,1 (w) orthogonal to Vi (w)
a standard Boolean model with dimension n — k, with random primary grain A’(w)
and with intensity 6(w)dw. The Choquet capacity of this model immediately fol-
lows, after averaging over the directions wj; it can also be deduced from Eq. (2.4),
after replacing K by A’ @ K and averaging.

Theorem 3. The Choquet capacity of the Boolean model built on Poisson linear
varieties of dimension k is given by

(2.6 T(K) = 1-exp (~ [ 04(0) o (4 (0) & K ()
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For isotropic varieties, the Choquet capacity of Boolean varieties is given by

bp_kbry1 k+1

(2.7) T(K)=1-exp (—Gk ™ 5

WA @ K))
Particular cases of Eq. (2.6) are obtained when K = {z} (giving the probability

qg=P{z € A°} = exp (—/Gk(dw) unk(A’(w))) and when K = {z,x+ h}, giving
the covariance of A°, Q(h) :

(2. Q) = o exp ([ 0u(d) Kror. T T @)

where K,,_j(w,h) = T,_, (A (w) N A", (w)) and ¥ (w) is the unit vector with the
direction w. For a compact primary grain A’, there exists for any h an angular
sector where K,,_x(w,h) # 0, so that the covariance generally does not reach its
sill, at least in the isotropic case, and the integral range, obtained by integration of
the correlation function, is infinite. Consider now some examples in R? and in R3.

2.2.1. Fibers in 2D. In the plane can be built a Boolean model on Poisson lines.

For an isotropic lines network (figure 1), and if A’ @ K is a convex set, we have,
from equation (2.7):

(2.9) T(K)=1—-exp (-0 L(A' & K))

If A’ @ K is not a convex set, the integral of projected lengths over a line with the
orientation varying between 0 and 7 must be taken. If A" and K are convex sets,
we have L(A’ @ K) = L(A’) + L(K). Consider now the isotropic case. Using for

A’ arandom disc with a random radius R (with expectation R) and for K a disc
with radius r, equation 2.9 becomes:

T(r)=1-—exp (—27r9(§—|— 7‘))
T(0) = P{x € A} =1 — exp(—270R)

which can be used to estimate § and R , and to validate the model.
In R3, can be built a Boolean model on Poisson planes or on Poisson lines.

2.2.2. Boolean model on Poisson planes in R . A Boolean model built on Poisson
planes generates a structure with strata. On isotropic Poisson planes, we have for
a convex set A’ @ K by application of equation (2.7):

(2.10) T(K)=1-exp (—9 M(A @ [v())

When A’ and K are convex sets, we have M (A’ @ K) = M(A)+ M(K). If A’ & K
is not convex, T'(K) is expressed as a function of the length [ of the projection over

the lines D, by T(K) =1 — exp <—0/ I(A'(w) @ K(w)) dw). For instance if
2mster

A’ is a random sphere with a random radius R (with expectation R) and K is a
sphere with radius r, equation 2.10 becomes:

T(r)=1—exp(—4n0(R+71))

T(0) = P{z € A} =1 — exp(—470R)

which can be used to estimate 6 and R , and to validate the model.
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2.2.3. Boolean model on Poisson lines in R3. A Boolean model built on Poisson
lines generates a fiber network, with possible overlaps of fibers. On isotropic Poisson
lines, we have for a convex set A’ ® K

(2.11) T(K)=1— exp (fa %S(A’ ® f())

If A’ @ K is not a convex set, T(K) is expressed as a function of the area A of the
projection over the planes I1,, by

(2.12) T(K)=1—exp (éefzmerA(Al(w) o K(w)) dw>

If A’ is arandom sphere with a random radius R (with expectation R and second
moment E(R?)) and K is a sphere with radius 7, equation 2.11 becomes:

T(r) =1 —exp (—7°0(B(R?) + 2rR+1%))
T(O) = P{l‘ c A} =1 eXp(—WQHE(RQ))

which can be used to estimate 6, E(R?) and R , and to validate the model. A model
of Poisson fibers parallel to a plane, and with a uniform distribution of orientations
in the plane was used to model cellulosic fiber materials (Delisée et al. 2001). In
(Schladitz et al. 2006), non isotropic dilated Poisson lines were used to model and
to optimize the acoustic absorption of nonwoven materials.

3. TwO STEPS BOOLEAN VARIETIES

It is possible to generate further Boolean models by iteration of Poisson varieties.
For instance in R?, we first consider Poisson lines, and in a second step Poisson
points on every line. These points are germs to locate primary grains A’ to gen-
erate a Boolean model. Compared to the standard Boolean model, this one shows
alignments of grains. Similarly in R?® we can start from Poisson planes Vs, and
use Poisson lines Vi3 in every plane to generate a Boolean model with fibers. In
contrast with Poisson fibers in R3, this model generates a random set with some
coplanar fibers. Such long range random sets could mimic specific microstructures
with an order in a lower dimension subspace of R”, such as preferred germination
of objects on specific planes or lines.

These models are based on doubly stochastic Poisson random variables for which
the Choquet capacity can be obtained.

Definition 3. Two steps random varieties are defined as follows: starting from
Poisson linear varieties Vi, of dimension k and with intensity 0y (dw) in R™, Poisson
linear varieties Vg with dimension 0 < k' < k and with intensity 0y (dw) are
implanted on each Vio. Then each Vi:g is dilated by independent realizations of a
random compact primary grain A” C R™ to generate the Boolean RACS A:

A= UgVig @ A

Remark 1. By construction, when k' = 0 the varieties Viyg are a particular case
of a Cox process driven by the random set Vi, and the derived random set A is a

Cox Boolean model (Jeulin 2012).

In what follows the purpose is restricted to the stationary and isotropic case,
with the two intensities 6, and 0.
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Theorem 4. The number N(K) of varieties of dimension k' < k hit by the
compact set K is a random variable with generating function

(31)  Gul(s,K) = E{s""} = exp [xarWi(K) [p} (Orrar (1 - 5), K) — 1]]

where ay = w&% and ¢y (A, K) is the Laplace transform of the random

variable Wi (K N Vio) , Wi being the Minkowski functional homogeneous with
degree k — k' in RF:

(3.2) o (A, K) = E{exp [- AWy (K N Vi)]}

the mathematical expectation being taken over the realizations Vi,. As a conse-
quence, the Choquet capacity of the Boolean RACS A built on the Poisson linear
varieties Vi using a deterministic primary grain A’ is derived from Gy(0, A’ ® K),
E {} being the expectation with respect to the random variety Vi :

(3.3) 1-T(K)

= exp [—Hkaka(A/ @ K) [1 — FE{exp [—Hk/ak,Wk/ (Ao Kn Vk)] }]]
Proof. The random number Ny of varieties Vi, hit by K is a Poisson variable
with expectation ,a, Wy (K). On each Vi, are generated Ny varieties Visg, Ny

being a Poisson variable with expectation 6y ap Wy (K NVy). For a random section
K N Viq, the generating function of Ny is

(34) F(S) = exp [—Gk/ak/Wk/ (K N Vka)(l - S)]
Taking the expectation of (3.4) with respect to Wi/ (K N Vi,) and then of T'(s)Vr
gives (3.1). O

The Choquet capacity requires the use of the Laplace transform ¢, (A, A’ ® K ).
It is not easy to expressed them in a closed form for specific compact sets K
and A’. However the required distribution functions and their Laplace transforms
can be estimated by simulation of the random variables obtained from random
variables Wy, (A’ & Kn Via) obtained from random sections. Examples of closed
form expressions are given now for two-steps Poisson points in R? and in R3.

3.1. Poisson points on Poisson lines in the plane. Starting from Poisson lines
in the plane, a 1D Poisson point process is independently generated on each lines.

Proposition 5. The generating function G (s) of the random number of points
Np(K) contained in a conver set K in R? with perimeter L(K), random intercept
length L(K) (with Laplace transform ¢ (A, K)), is given by

(3.5) Gk(s) = exp (=01 L(K)(1 — ¢, (0(1 - s), K)))
We have
(3.6) 1-T(K) = Q(K) = exp (=01 L(K)(1 — ¢.(0, K)))

The Choquet capacity of the corresponding Boolean model for convex sets K
and A’ is obtained by replacing K by (A’ ® K) in equation 3.6.

Proof. K hits a Poisson random number of lines Np with parameter 6; L(K'). Each
chord with random length L(K) contains a Poisson number of points with parame-
ter 0L(K) and generating function

D(s, L(K)) = exp (—OL(K)(1 - 5))
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After deconditioning with respect to L(K), with Laplace transform ¢, (A, K), we
obtain the generating function I'(s, K) = E {T'(s, L(K))} = ¢ (6(1—s), K). Then
we consider the sum of Np realizations of the random variable L(K) to obtain
equation 3.5 by expectation with respect to Np:

Gk(s) = En,{pL(0(1—s),K)""}
exp (01 L(K)(pr(0(1 = s), K) — 1))

O

When K is the disc C(r) with radius r, the generating function of the random
number of points Np(r) in C(r) is obtained by

G(s,r) =exp[—27r01(1 — ¢ (6(1 — 5),7))]
with ¢ (A, r) given by equation 7.1 or 7.2. We have
Q(r) = exp[=2mr01 (1 — ¢ (6,7))]

3.2. Poisson points on Poisson planes in R3?. This point process is obtained
in two steps:

(1) We start with Poisson planes in R3 (consider here the isotropic case), with
intensity 6o

(2) On each Poisson plane, is generated a 2D Poisson point process, with in-
tensity 6.

Proposition 6. The generating function Gi(s) of the random number of points
Np(K) contained in a convex set K is given by

(3.7 Gk (s) =exp[—02M(K)(1 — 94001 —s), K Nx))]
and we get
(3.8) 1= T(K) = QK) = exp [-02M(K)(1 — (6, K (7))

with:M (K): integral of mean curvature of K; A(K Nw): area of sections of K by
a random plane m, with Laplace transform 1 4(A, K N )

The Choquet capacity of the corresponding Boolean model for convex sets K
and A’ is obtained by replacing K by (A’ @ K) in equation 3.8.

Proof. The random number of planes N, (K) hit by K is a Poisson variable with
parameter 0o M (K). Each plane 7 cuts K according to a convex random set with
area A(K N ), containing a Poisson number of points, with parameter  A(K) and
generating function

I'(s, A(K)) = exp (—0A(K)(1 — 5))

After deconditioning with respect to A(K), with Laplace transform i 4 (A, K N ),
we obtain the generating function I'(s, K) = E4 {I'(s, A(K))} = ¢ 4(0(1—s), KNr).
Then we consider the sum of N realizations of the random variable A(K) to obtain
equation 3.7 by expectation with respect to N;:

Gk(s) = En, {¢,(0(1—s),Knm)N~}
= exp[laM(K)(¢4(0(1—s),KNm)—1)]
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The generating function G(s,r) of the random number of points Np(r) in the
sphere with radius r is given by

G(s,r) = exp [—4nrb2(1 — Y(On(1 — s),7))]
and
1-=T(r) = Q(r) = exp [—4nrb2(1 — (07, r))]
with (see equation 7.4)
exp(~Ar?) 7 exp(y?)dy
A

w(Av T) =

3.3. Poisson points on Poisson lines in R3. This point process is obtained in
two steps:
(1) We start from isotropic Poisson lines in R?, with intensity 6,
(2) On each Poisson line, a 1D Poisson point process with intensity 6 is gener-
ated.

Proposition 7. The generating function G (s) of the random number of points
Np(K) contained in a convex set K is given by

(3.9) Gic(s) = exp [~ TOLS(E)(L = ¢ (0(1 = 5), K)|
so that
(3.10) 1= T(K) = QUK) = exp [~ T01S(K)(1 - (0, K)]

where S(K) is the surface area of K, and ¢ (X, K) the Laplace transform of a
random chord L(K) in K.

The Choquet capacity of the corresponding Boolean model for convex sets K
and A’ is obtained by replacing K by (A’ @ K) in equation 3.10.

Proof. The random number of lines Np(K) hit by K is a Poisson variable with
parameter 5601S(K). Each line cuts K according to a random chord with length
L(K), containing a Poisson number of points with parameter §L(K) and with
generating function
I(s, L(K)) = exp(0L(K) (s — 1))

After deconditioning with respect to L(K), with Laplace transform ¢, (A, K), we
obtain the generating function I'(s, K) = E {T'(s, L(K))} = ¢ (6(1—s), K). Then
we consider the sum of Np realizations of the random variable L(K) to obtain
equation 3.9 by expectation with respect to Np:

Gk(s) = END{<PL(9(1_3)»K)ND}
= exp {_gelsa()(l —¢r(0(1 =), K))}
|

The generating function G(s,r) of the random number of points Np(r) in the
sphere with radius r is expressed from

log(G(s,r)) =
2

20t (1 - ————[1 - rd(1 —s))exp(—2r0(1 — s
0 <1 Gy 1 (1 2001 = 8) exp(-2r0(1 ))]>
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and

1—T(r) = Q(r) = exp [ﬂ201r2 <1 - (27«29)2 [1—(1+2r) exp(2r9)]>}

4. THREE-STEPS POISSON POINTS IN R?
A new point process is obtained by a three steps iteration: Poisson points on
2D Poisson lines contained in Poisson planes

(1) We start from Poisson planes in R? (isotropic case), with intensity 6o

(2) On each Poisson plane, a 2D Poisson lines process with intensity 6 is
generated

(3) On each line, a 1D Poisson point process with intensity 6 is given

Proposition 8. Consider a convex compact set K, with random planar sections
K Nn7. The generating function Gk (s) of the random number of points Np(K)
contained in the convex set K is given from
(4.1) log(G'k (s))
= —O:M(K)(Ex{exp[01L(K N7) (oL (0(1 —s), KN7) —1)]} — 1)

where E is the mathematical expectation over random sections. We get
(4Rp(1 -T(K)) =

log(Q(K)) =

—0, M(K)(Er {exp [01 L(K N ) (¢, (0, KNmw) —1)]} —1)

with perimeter L(K N ) of sections of K, with Laplace transform (A, K N ),
random chord of each planar section L(KN), with Laplace transform ¢ (A, KN).

The Choquet capacity of the corresponding Boolean model for convex sets K
and A’ is obtained by replacing K by (A’ @ K) in equation 4.2.

Proof. The random number of planes N, (K) hit by K is a Poisson variable with
parameter 8o M (K). Each plane 7 cuts K according to a convex random set with
random perimeter £(K N 7) hitting a Poisson number of lines, with parameter
01 L(K Nm). Each line cuts K N7 according to a random chord L(K N7) containing
a Poisson number of points with parameter §L(K) and generating function
I'(s,L(KNm)) =exp(—0L(KNm)(1—s))
For a given section K N, the generating function of the number of points on a line
is obtained by deconditioning over L(K N ), so that
I(s,KNm)=¢;(0(1—3s),KNm)

The generating function of the random number of points on K N 7 is given by
the expectation of I'(s, K N 7)Y, N being the Poisson variable with parameter
01 L(K Nr) and therefore

E{T(s, KNm)N} =exp[01L(K N7) (p,(0(1 — 5), K N ) —1)]
Deconditioning with respect to the random section K N7 gives
[(s, K) = Ex {exp [01.L(K N 7) (0, (0(1 = 5), K N) — 1)]}

Deconditioning now with respect to the Poisson number of planes N, (K), we take
the expectation of I'(s, K)N~(5) to get equation 4.1. a
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The generating function of the number of points of the process inside a sphere
with radius r is given by

log(G(s,))
= —4wlhyr(1 — Eg{exp 2101 R (¢ (6(1 —s), R) — 1)]})
with
Er {exp 2101 R (¢, (0(1 — 5), R) — 1)]}
= /0 exp [2m01u (@ (0(1 — 5),u) — 1)] f(u,r)du

o f(u,r): distribution function of the radius R of random sections of a sphere
e . (A R): Laplace transform of random chords of the disc with radius R

The Choquet capacity for a sphere with radius r is given by

log(1-=T(r)) = log(Q(r))
= —47lhyr (1 - /0 exp [2m01u (¢ (0,u) — 1)] f(u,r)du)

5. USE OF ITERATED BOOLEAN VARIETIES FOR PROBABILISTIC MODELS OF
FRACTURE BASED ON THE WEAKEST LINK ASSUMPTION

The standard weakest link model is based on the assumption that fracture in
a brittle material is initiated on the most critical defect, that controls the full
fracture process. For this model, it means that when there is at least one point
x in a specimen where the applied principal stress component o(z) is larger than
the local critical stress o.(x), the specimen is broken. Usually it is assumed that
the occurrence or absence of critical defects (generating fracture) of any volume
elements generate a set of independent events. After a decomposition of the volume
V into links v; and assuming that there is a fracture of the volume V when a single
link wv; is broken, a classical computation for independent events gives:

P{Non fracture} = H P{Non fracture of v;}

For v; — 0, P{fracture} ~ ®((o(z))dz, with ® increasing with the loading ¢ and
P{Non fracture of da} ~ 1 — ®((o(x))dz. Therefore with these assumptions,

P{Non fracture of V} = exp(—/ O(o(z))dz) =exp(—VP®(0¢q))
v
where the equivalent stress is defined from

®owy) = 35 [ B(ole)is

This assumption is equivalent to a distribution of point defects in a matrix with
0. = 00, according to a Poisson point process in space, with intensity ®(o), where
®(0) is the average number per unit volume of defects with a critical stress o. lower
than o.

For a homogeneous applied stress field o(z) = o,

P{Non fracture of V} = exp(—V®(0))
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For the Weibull model, the function ®(o) is power law in o: ®(c) = 0(c — gg)™
and P{Non fracture of V'} follows a 3 parameters Weibull distribution.

The weakest link model corresponds to a "Infimum" Boolean random function
with point support primary random functions (PRF), and is immediately extended
to any PRF with a support having almost surely compact sections (Jeulin 1991,
2001, 2012, 2015a) .

In what follows the weakest link model is extended to the case of the various
point processes introduced in the first parts of this paper. It allows for clustering
of defects on Poisson varieties. A comparison is made with the standard Poisson-
based model and between the various models, when using the same function ®(o)
for point defects.

5.1. Fracture statistics for Poisson point defects on Poisson lines in R2.
As seen before, a two steps point process can be used to locate random defects:
(1) Poisson lines in R? (isotropic case), with intensity 0,
(2) On each Poisson plane, a 1D Poisson point process of point defects acting
in fracture, with intensity 6 replaced by ®(o) in equation 3.6.

We get

(5.1) P{or = o} = exp (=01L(K)(1 — ¢ (®(0), K)))
When K is the disc with radius 7,

(5.2) Plor = o} = Q(r,0) = exp 21701 (o1 (2(0), 1) — 1)]

5.2. Comparison of Fracture statistics for Poisson points and for points
on lines in R2. In the plane, the average number of Poisson points contained in
the disc of radius r is

E{Np(r)} = nr%0,

The average number of Poisson lines hit by the disc is 27rf;. Therefore, the
average number of points of the two-step process on lines is 2nr6:0E{L}, E{L}
being the average chord of the disc. We have —7wK’(0) = 277 and then —K'(0) = 2r,

wr2

so that E{L} = 52 = 7%. The average number of points on lines is given by :

E{Np(r)} = 27rr(9197rg = 7%r20,0

To compare the two fracture statistics, we consider the same average number of
defects in the disc, so that we have to use

02 = 7T919
We have
log (P{or = o}p) —log (P{or = o}L)
- 7T919 2
= 271'7’01 (]. QOL(H,T) m?ﬂ“ )

= 2mrb; (1 —or(0,r)— 9%7")
Using the parameter aw = 20r we have to compute

21, (1 — g (StruveL(—1,a) — Bessell(1,a)) — %a)
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From numerical calculation, it turns out that this expression remains negative for
any « and then

(P{O’RZO'}p)<P{O'RZO'}L

This result is satisfied for any intensity ®(c). In 2D, it is easier to break a
specimen with Poisson point defects than with point defects on Poisson lines.

5.3. Fracture statistics for Poisson point defects on Poisson planes in R3.
As earlier, we locate point defects according to a two steps point process:

(1) Poisson planes in R? (isotropic case), with intensity 6
(2) On each Poisson plane, 2D Poisson point process of point defects, with
intensity 6 replaced by ®(o) in equation 3.8.

Considering the Poisson tessellation generated by Poisson planes, this model
figures out point defects located on grain boundaries, generating intergranular frac-
ture. We get

(5.3) Plog > o}r =exp[—02M(K)(1 — v 4(P(0), K N7))]

In the case of a spherical specimen with radius r,

(5.4) Plogr > o}r = exp[—4nrls(1 — (7 ®(0),r))]
with ¢ (A, r) given by equation 7.4.

5.4. Fracture statistics for Poisson point defects on Poisson lines in R3.
A model of long fiber network with point defects is obtained from Poisson lines,
where we replace 6 by ®(o) in equation 3.10:

(5.5) Plor = o}p = exp [~ T0S(K)(1 - ¢(2(0), K))|

In the case of a spherical specimen with radius r,

(56}3{0'3 Z O'}D =

2
exp {730173(1 -

W [1—(1+2r®(0)) exp(2r®(a))]]

5.5. Comparison of Fracture statistics for Poisson points and for points
on planes. With consider the fracture of a sphere of sphere of radius r containing
a random number of points Np(r) with a given average.

For the standard Poisson point process,

4
E{Np(’r‘)} = 5777‘393
For Poisson points on Poisson planes,
8
E{Np(?‘)} = §7T27‘3929

For a fixed average number of defects in the sphere of radius r, we get

03 = 27’('029
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Using the same intensity ®(c) =60 for the two processes

log(Plor > o}p)—log(P{or > 0}x)
Or?
= drrf, (1 — (O, r) — 2)
and
Pl{op >0}y < P{og > o}p for r’®(o) < 1.8
Given the same statistics of defects ®(c), for low applied stresses, or at a small
scale, the "intergranular" fracture probability is higher than the standard proba-
bility of fracture. For high applied stresses the reverse is true, and the material
is less sensitive to "intergranular" fracture. The two probability curves cross for
r?®(o) ~ 1.8.

5.6. Comparison of Fracture statistics for Poisson points and for points
on lines. We consider again the fracture of a sphere of sphere of radius r containing
a random number of points Np(r) with a given average.

For the standard Poisson point process,

E{Np(r)} = %777“393
For Poisson points on Poisson lines,
E{Np(r)} = %71'27“3910
Given the average number of defects in the sphere of radius r, we have

93 = 71'019

Using the same intensity ®(c) = 6 for the two processes, and the auxiliary
variable oo = 2rf, we have

log(P{or = o}p)—log(P{or =0c}p)

— 20,2 (;(1 ~ (14 a)exp(—a)) — 1+ §a>

and

P{or >0}p < P{or > o}p
Therefore, given the same statistics of defects (o), the "fiber" fracture probability
is higher than the standard probability of fracture. The material is more sensitive
to point defects on fibers.

5.7. Comparison of Fracture statistics for Poisson points on planes and
for points on lines. For a given average number of defects in the sphere of radius
r, we have

1
020 = 56101

Taking 2rfp = 720, = «, we get 20,72 = 4mwrfy. Using the same intensity
®(c) =0 =0, =0p for the two processes, we get

log(P{or > o}x)—log(P{or > o}p)

w202 (w(0m.1) = 2501 - (14 )expl-a)) >0

o
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and therefore P{or > o}, > P{or > o} p for any distribution ®(c) of defects and
it is easier to break a specimen with defects on fibers than with defects on planes.

5.8. Fracture statistics for defects obtained in the three steps iteration.
We consider now a model of a long fibers in random planes, with point defects
located on the fibers, where 6 is replaced by ®(o) in equation 4.2. We have

log(P{UR > 0}3 iterations) =
02 M(K)(Ex {exp [01 L(K N7) (01 (2(0), KNm) —1)]} —1)

For fracture statistics of the sphere with radius r,

IOg(P{UR > 0}3 itcrations) =

Anlr < /0 " exp 27010 (0, (®(c), 1) — 1)] f(u, ) — 1)

5.9. Comparison of Fracture statistics for Poisson points and for the three
steps iteration. We study the fracture statistics of a sphere of radius r containing
a random number of points Np(r) with a given average.

For the standard Poisson point process,

E{Np(r)} = %771"393
For Poisson points on Poisson lines on Poisson planes,
E{Np(r)} = gmﬁ(egolezw?)
Given an average number of defects in the sphere of radius r, we have
05 = 272050,0

To compare fracture statistics of Poisson points and of the three iterations case, we
use the ratio
4 937‘3 - 4 27‘(202919 2
54027‘ n g 402 "
With auxilliary variables 20r = a and 617 = 3, we have to compare %77291047" =
%772056 to

2
= §7T29107"2

- " exp [~ 200y (1 — o (o1, (6, w)] (s r)dr
0

Using = = y and du = rdy, we get

1
Y
1-— exp [—2m01ry (1 — 0,r ——d
/O p[=2m01ry (1 — (0, 7y))] T

Y

= 1- /0 exp [=27By (1 — ¢.,(0,7y))] \/17_76@

We make a comparison by numerical calculation of the integral over «, for a
given . For § =0.01, 0.1, 1 and 10,

P{UR Z 0}3 iterations -~ P{UR Z U}’P
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5.10. Comparison of Fracture statistics for Poisson points on Poisson
planes and for the three steps iteration. We fix the average number of points
in the sphere with radius r. For Poisson points on Poisson planes

8
B{N2(1)} = 37200
and for 3 iterations
4
E{NP (7")}3 iterations — 571-7-3 (9291927{'2)

To keep the same average values, we fix
20271—077 = 271'92019

Taking 6, = 6 to get the same statistics over points, and - identical for the two
models, in order to keep the same scale for the Poisson polyedra, we get 767 = 1

and 091 = 1/71'.
With auxilliary variables 20r = « and 617 = 3, we have to compare
1—(0r,r)
and

1- / exp [~2nBy (1 — o, (8, 71))] ﬁdy

For 8 =0.01, 0.1, 0.5, 0.75, numerical calculations give

P{UR Z 0}3 iterations > P{UR 2 U}ﬂ'

For g =1,
P{or > 0}3iterations < P{or > 0}r when a < 1.99
P{or > 0}3iterations > P{or > 0} when a > 1.99
For g =2, 10,

P{UR > 0}3 iterations < P{UR > U}ﬂ'
6. CONCLUSION

The models of random sets and point processes studied in this paper were de-
signed to simulate some specific clustering of points, namely on random lines in
R? and R? and on random planes in R3. A possible application is to model point
defects in materials with some degree of alignment. We derived general theoretical
results, useful to compare geometrical effects on the sensitivity of materials to
fracture. Based on the presented theoretical results, applications can be looked for
from statistical experimental data.

7. APPENDIX: LAPLACE TRANSFORMS FOR SECTIONS OF DISCS AND OF SPHERES

7.1. Random chords in a disc of radius r. Let L the random length of a chord
obtained by random sections of the disc with radius r (this means chords given by
intersections of the disc by lines with a uniform location along its diameter) .

Proposition 9. The cumulative distribution of the random variable L is given by

P{L<l}=1- 1-(217)2

forl < 2r.
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Proof. For any convex set A with geometrical covariogram K (h), the distribution

P{L < [} is given by the expression 1 — K'E’S;’ where K'(h) is also the projection

of AN Ay in the direction of vector h. For a disc with radius  in R? we get:

BRCONE
oortecor- () -+ (3)

The Laplace transform of the distribution of random chords L in a disc with
radius r is given by

and then

O

2r
lexp
(A,
) T 42 / /1
27
l

Using y = 5=, so that dl = 2rdy, ¢ (), r) can be derived using the formal

computation software Mathematica

1 ! 2ry2r
A = — —A2ry) —=d
SOL( ’ T) 472 A eXp( Ty) m Y

1
ydy
exp(—A2ry) ——
| eprory 2L
(7.1) = w/2[—Bessell(1,2Ar) + StruveL(—1,2Ar)]

“Z(=nn 7(2)7‘;)” we get

Using a power series for exp(—A2ry) =1+ Z:l
Pyrdy VT T

‘/]_—y2 _71—‘(14’%)

and therefore

VAT, e @an)r T
SOL()HT) - 1+7 — (_1) n' 1-\(1_’_77,T+1)
T 1=00 r)" n+2
(7.2) = 1+ g (—1)”(22!) ;EH},;

7.2. Random radius of sections of a sphere with radius R3. The cumulative
distribution function of the radius R of a random section of the sphere with radius
R3 is given by

P{R<r}=1- 1—<};3>2

The probability density function is given by

(7.3) f(r,R3) = 7
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By using y = gz we have Rzdy = dr. The Laplace transform of the distribution
of R is given by

Bs 1
or(A, R3) = B exp(—Ar)dr
0 3 .
1= ()
1 ng 1

= R3 exp(—AR3y)dy

o R V1-y?
1
y
= ———exp(—AR3y)d
/OM p( 3y)dy

= 7/2[—Bessell(1,AR3) + StruveL(—1, AR3)]
From ¢pr(\, R3) is obtained the Laplace transform of the perimeter of sections,
¥, (A, B(R3) Nm), replacing A\ by 2w A.
From the distribution of the radius R can be computed the Laplace transform
of R%:

Ep {exp(—AR*(R3))} = (X Rs)
R3 9 U
= exp(—Au’) ———==du
: 2 1= ()2
Using RLS =y and du = R3dy,
Eg {exp(—AR*(R3))}
RyyRgdy (! ydy

WYY | exp(=AR2y?) —LY
2 ,71_y2 . P( 39) 1—y2
Jx
exp(—AR3) [V exp(y?)dy
Rav/A

7.3. Random chords in a sphere with radius R3. We start with the geomet-
rical covariogram of the sphere with diameter a = 2R3.For h < a,

1
/ exp(—AR3y?)
0

(7.4) -

3h 1,k
KMh)y=V{|1--— -3
0 =v (1- 32+ 307)
31  3h?
K'(h) = ———t =
(h) V( 2a 2a3>
The cumulative distribution function is obtained by:
K'(1) ?
1—F(l):K/(O):1—¥,forl<a

and
2

F(l):a—z,forl<a
with density f(l)
2l
fi)= 5 fori<a

For a sphere with radius R3
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l
f(l) = @, for [ < 2R3

The Laplace transform of fI) is obtained from

1 2R3
oo (M Rs) = / Lexp(—Al)dI
0

2R}
Using y = 5 with dy = 55~
1 [2Rs
psp(NR3) = TRZ/O exp(—Al)2R3y(2R3)dy
3
1
= 2 / exp(—A2Rzy)ydy
0
Since
1
/ y exp(—ay)dy
0
1= (1+a)exp(—a)
we get
2
LA\ R3) = @Rs\)? [1 = (14 2R3A) exp(—2R3))]

WO
n!

Using a power series expansion of ¢(\,7), exp(—Ar?y?) = 14+ Y {°(-1)
We get:

tyrtlay o T (%)
o VITE T 2T )
T n!

and
1
YA ) = / exp(—)\rzyg)ﬂ
0 1—92
VT o (Ar2)"
2 ;( ) P(n+1+3)
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