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Abstract

In this paper we study how to make joint exten-
sions of stochastic orderings and interval orderings
so as to extend methods for comparing random vari-
ables, from the point of view of their respective loca-
tion or magnitude, to fuzzy random variables. The
main idea is that the way fuzzy random variables
are interpreted affects the choice of the compari-
son methods. We distinguish three views of fuzzy
random variables, according to which various com-
parison methods seem to make sense. This paper
offers an approach toward a systematic classifica-
tion of combinations of stochastic and interval or
fuzzy interval comparison methods.

Keywords: fuzzy random variables, stochastic or-
dering, interval ordering, possibility theory

1. Introduction

The concept of fuzzy random variable, that extends
the classical definition of random variable, was in-
troduced by Féron [24] in 1976. Later on, several
authors, and especially Kwakernaak [34], Puri and
Ralescu [38], Kruse and Meyer [33], Diamond and
Kloeden [21], proposed other variants. More re-
cently Krätschmer [31] surveyed all of these defini-
tions and proposed a unified mathematical formal
approach. In all of these papers, a fuzzy random
variable is defined as a function that assigns a fuzzy
subset to each possible output of a random experi-
ment. The different definitions in the literature dis-
agree on the measurability conditions imposed to
this mapping, and in the properties of the output
space, but all of them intend to model situations
that combine fuzziness and randomness.

A fuzzy random variable taking values on the set
of fuzzy numbers whose supports are in the real line
then generalizes both the notion of random vari-
able and the notion of interval. An interesting is-
sue is then the following: how to compare the rel-
ative magnitude of two fuzzy random variables in
agreement with existing methods for comparing the
locations of random variables [16, 40] and existing
methods for comparing intervals [25]?

Like for random sets, there is not a unique in-
tuition behind the various definitions of fuzzy ran-
dom variables originally proposed in the literature.
While Feron [24], Puri and Ralescu [38], Diamond

and Kloeden [21] view a fuzzy random variable as
the extension of a random set to a random mem-
bership function, Kwakernaak [34], and Kruse and
Meyer [33] consider that this membership function
models the imprecise perception of an ill-known
classical random variable. This divergence of views,
inherited from the same one existing for random sets
directly impacts the choice of suitable definitions
for extensions of traditional statistical techniques to
fuzzy random variables, as well as for basic notions
like independence, and conditioning [12].

In this paper, we consider how the methods for
ordering fuzzy random variables from the point of
view of their relative locations can be affected by
these semantic considerations. By convention in
the following, random variables are denoted by x#,
y#, sets by capitals A, B, etc., random sets by
“sharped” capitals X#, Y #, fuzzy sets by tilded
capitals Ã, B̃, etc., and fuzzy random variables as
X̃#, Ỹ #. Moreover we denote by x the mean value
of a random variable x#, and likewise X the mean
value of a random set X#, X̃ the mean value of a
fuzzy random variable X̃#.

2. The three understandings of fuzzy

random variables

As pointed out in recent publications [23, 11], the
notion of set, here a closed interval for simplicity,
may be used to model three types of information

• Ontic situation: the precise description of a set-
valued entity. For instance, the time interval
some action has needed to be performed.
• Epistemic situation: The imprecise description

of a deterministic point-valued quantity. For
instance a time interval representing an agent
’s knowledge about a birth-date.
• Random epistemic situation: The imprecise de-

scription of a random point-valued quantity.
For instance, a time interval representing the
distribution of temperatures in a day.

While the same mathematical entity is needed to
represent such situations, in the first case the set
represents the collection of its elements (it is con-
junctive), and has an ontic flavor (the nature of the
represented object is set-theoretic), while in the sec-
ond case, the set contains mutually exclusive values,
one of which is the real one (the set is disjunctive),



and has an epistemic flavor. The same applies, in
the last situation, except that now, we deal with a
disjunctive set of (frequentist) probability distribu-
tions, one of which being the real one.

The same distinctions can be made for fuzzy sets.
A fuzzy interval Ẽ can stand for an ontic entity,
or an epistemic representation. For instance, in
the ontic view, it can be a gradual time interval,
where the membership grade µẼ(r) represents to
what extent the action performed during Ẽ is en-
gaged, with the idea that this engagement gradu-
ally starts from the beginning and stops gracefully,
rather than abruptly. On the contrary, in the epis-
temic view, the fuzzy interval is a gradual represen-
tation of the agent’s uncertainty about an ill-known
point value, µẼ(r) being the degree of possibility
πx(r) that x = r [22]. Operationally, πx(r) can
be viewed as the minimal selling price for a gam-
ble that returns 1 euro if x = r, following the view
of Walley [43]. Under a random epistemic view,
Ẽ represents the set of probability distributions
P(Ẽ) = {P : ∀A,P (A) ≤ Π(A) = supr∈A µẼ(r)},
containing the actual distribution.

The history of fuzzy random variables is not sim-
ple as it was started by two separate groups with
respectively epistemic and ontic views in mind [12].
The first papers are those of Kwakernaak [34, 35] in
the late seventies, clearly underlying an epistemic
view of fuzzy sets, a line followed up by Kruse and
Meyer [33]. They view a fuzzy random variable as
a (disjunctive) fuzzy set of classical random vari-
ables (those induced by selection functions compati-
ble with the random fuzzy set). It represents what is
known about an underlying ill-known random vari-
able. These works can thus be viewed as extending
the framework of Dempster’s upper and lower prob-
abilities [18] based on a probability space (Ω,A, P )
and a multivalued mapping X# : Ω → I, the set
of closed intervals of the real line. Here we con-
sider a fuzzy set-valued mapping X̃#, where X̃(ω)
defines a possibility distribution restricting the pos-
sible values of x(ω). The degree of possibility that
x# is the random variable underlain by the fuzzzy
random variable X̃# is

πX̃#(x#) = inf
ω∈Ω
µX̃(ω)(x(ω)) (1)

For each level α ∈ (0, 1], the interval X̃α(ω) = {s ∈
R : µX̃(ω)(s) ≥ α} is the image of ω via a multi-

ple valued mapping X̃#
α . It is an epistemic random

set. Statistical quantities defined from it are fuzzy-
valued. For instance, Kruse and Meyer [33] clearly
define the variance of a fuzzy random variable as a
fuzzy set of positive reals induced by applying the
extension principle to the variance formula. Like-
wise, the probability of an event becomes restricted
by a fuzzy interval in the real line [6, 13]. The ev-
idence theory counterpart of this view deals with
belief functions having fuzzy focal elements [44].

An alternative epistemic view of fuzzy random
variables was more recently proposed in the spirit of

Walley [42], in terms of a convex set of probabilites
induced on the reals [15]. Now, the fuzzy mapping
X̃ is viewed as a conditional possibility distribution
π(r|ω) = µX̃(ω)(r), which yields for each ω a family

Pω(X̃) of probability measures defined as

{P (·|ω) : ∀A,P (A|ω) ≤ Π(A|ω) = sup
r∈A

µX̃(ω)(r)}.

As a consequence, we have partial information
about the probability distribution P ′ induced by
(Ω,A, P, X̃) on R for each conditional probability
P (·|ω) in the set Pω(X̃). In fact, this probabil-
ity measure is given by the following formula, for a
measurable set B:

P ′(B) =

∫

Ω

P (B|ω) dP (ω),where,

P (B|ω) ≤ Π(B|ω) = sup
b∈B

X̃(ω)(b), ∀ω ∈ Ω.

So we induce a convex set of probability measures on
the real line from (Ω,A, P, X̃). This credal set turns
out to be the one induced by the random set con-
structed from the fuzzy random variable X̃# con-
sidering realizations X̃α(ω), (ω, α) ∈ Ω× [0, 1], with
a probability distribution which is the product P⊗λ
between P on Ω and the uniform one λ on the unit
interval.

In contrast, the line initiated in the mid-1980’s by
Puri and Ralescu [38] is in agreement with conjunc-
tive random set theory. A fuzzy random variable is
then viewed as a random conjunctive fuzzy set, i.e.
a classical random variable ranging in a set of (mem-
bership) functions. This line of research has been
considerably extended so as to adapt classical statis-
tical methods to functional data [9, 27]. The main
issue is to define a space of functions equipped with
a suitable metric structure [21, 41]. In this theory of
random fuzzy sets, a scalar distance between fuzzy
sets is instrumental when defining variance viewed
as a mean squared deviation from the fuzzy mean
value [30], in the spirit of Fréchet. A scalar variance
can be established on this basis and it reflects the
variability of membership functions. It makes sense
if for instance, membership functions are models of
linguistic terms and some “term variability" must
be evaluated given a set of responses provided by
a set of people in natural language. The existence
of three views of fuzzy random variables, the one
initiated by Kwakernaak and the one proposed by
Puri and Ralescu, and the one based on conditional
possibility distributions is acknowledged, surveyed
and discussed in [12, 11].

3. Interval and stochastic rankings

In order to compare fuzzy random variables, one
must be in a position to compare intervals and to
compare random numbers, as well as fuzzy intervals.
Moreover fuzzy intervals can also be interpreted as
nested random intervals.



3.1. Comparing intervals

Let A = [a1, a2] and B = [b1, b2] be two intervals.
Comparing the intervals A and B, we have four re-
lations >i, i = 1, 2, 3, 4, defined in [4] as follows:

1. [a1, a2] ≥1 [b1, b2]⇔ a1 ≥ b2
2. [a1, a2] ≥2 [b1, b2]⇔ a1 ≥ b1
3. [a1, a2] ≥3 [b1, b2]⇔ a2 ≥ b2
4. [a1, a2] ≥4 [b1, b2]⇔ a2 ≥ b1.

The relation ≥1 is the strongest, ≥4 is the weakest,
≥2 and ≥3 are of intermediary strength.

In the case of ontic intervals, these comparisons
are akin to the proposals made by Allen [4] to com-
pare time intervals.

In fact, if [a1, a2] models an ill-known value x and
[b1, b2] and ill-known quantity y, x ≥1 y is a robust
inequality since it holds whatever the values of x
and y are; x ≥2 y expresses a pessimistic attitude
(if the higher x and y, the better); x ≥3 y expresses
an optimistic attitude; while x ≥4 y expresses an
adventurous attitude, since it may well be that y >
x when their values are known. These relations are
known in the literature. Denote A = [a1, a2] and
B = [b1, b2] for short.

• A >1 B ⇔ ¬(B ≥4 A). The strict relation
>1 is an interval order (Fishburn [25]). In the
case of independence between random variables
a and b, P (a > b) = 1 is generally equivalent
to Support(a) >1 Support(b).
• The simultaneous use of ≥2 and ≥3: A ² B if

and only if A ≥2 B and A ≥3 B. This is the
canonical order induced by the lattice structure
of intervals, equipped with the operations max
and min extended to intervals:
A ² B ⇔ max([a1, a2], [b1, b2]) = [a1, a2] ⇐⇒
min([a1, a2], [b1, b2]) = [b1, b2] (we call it lattice

interval order).

It makes sense to use the latter ordering when com-
paring non-independent quantities x and y. For in-
stance, if x and y depend on a parameter λ, so that
x = λa1 + (1− λ)a2 and y = λb1 + (1− λ)b2, then
x > y,∀λ implies x ² y, not x >1 y.

3.2. Stochastic orderings

Consider two random variables X : Ω → R and
Y : Ω → R defined on the same probability space
(Ω,A, P ). There are many kinds of stochastic or-
derings, most of which are presented in detail by
Shaked and Shantikumar [40]. In this paper, we
consider those that pertain to the relative location
of random quantities, i.e. comparing their respec-
tive magnitudes. There are three often found meth-
ods to compare random variables according to this
standpoint:

1. First order stochastic dominance [28]: X dom-
inates Y if P (X > x) ≥ P (Y > x),∀x ∈ R, or
equivalently, when P1(x,∞) ≥ P2(x,∞),∀x ∈

R, where P1 and P2 respectively denote the
probability measures induced by each variable.
We will denote it X ≥1st Y .

2. Dominance in the sense of expected utility [39]:
Given an increasing function u : R → R, X
dominates Y wrt u if EP (u(X)) ≥ EP (u(Y )).
We will denote it X ≥u Y . It is well known
that X ≥1st Y if and only if X ≥u Y , for
all increasing utility functions u : R → R. A
special case is Dominance in Expectation: X
dominates Y if EP (X) ≥ EP (Y ). This relation
represents the particular case of the previous
one, when the utility function u is the identity
function u(x) = x, ∀x ∈ R.

3. Statistical preference [16]: X is statistically
preferred to Y if P (X > Y ) + 0.5P (X =
Y ) ≥ 0.5. It is clear that the above inequal-
ity is equivalent to P (X > Y ) ≥ P (Y > X). It
is also related to the sign of the median of the
difference X − Y . In fact, in [14] the following
sequence of implications is established:
Me(X − Y ) > 0⇒ P (X > Y ) > P (Y > X)
⇒ P (X > Y ) ≥ P (X > Y )⇒ Me(X−Y ) ≥ 0.

Although very common in the decision-theoretic lit-
erature for the construction of valued preference re-
lations [17], or voting theory (it is the Condorcet
pairwise dominance method), the last comparison
method is not considered in [40].

4. Three different procedures for ranking

FRVs

One may use the three interpretations of fuzzy ran-
dom variables to justify methods for ranking them.
For instance, under the ontic view in the line of
Puri and Ralescu, the problem of comparing fuzzy
random variables is one of randomizing some ex-
isting ordering between fuzzy sets representing ob-
jective entities. In that case we assume that the
fuzzy set ordering is given by considerations related
to the application. In contrast, if the fuzzy random
variable represents a fuzzy set of ill-known random
variables, it sounds more natural to start with a
suitable comparison method for comparing random
variables, and extend it to the interval or the fuzzy
interval case, for instance via the extension princi-
ple. In the third view of the fuzzy random vari-
able as a convex set of probabilities, one can apply
comparison techniques coming from imprecise prob-
ability theory, in the spirit of what has been done
recently in [10]. Alternatively, we can then turn
the fuzzy random variable into a random set, using
α-cuts, and enlarging the probability space.

4.1. Comparison of ontic fuzzy random

variables

Here we assume that there exists some natural way
of comparing fuzzy intervals understood as repre-
senting gradual objects. This is a direct extension



of the theory of random sets as described by Kendall
[29] or Matheron [36]. We consider a general notion
of ranking of fuzzy objects including:

1. (Partial) pre-orders. For any pair of fuzzy ob-
jects, some of the following situations will take
place: Ã is strictly preferred to B̃, B̃ is strictly
preferred to Ã, Ã and B̃ are equivalent, or Ã
and B̃ are incomparable. Thus, it can be iden-
tified with a 4-valued mapping defined on the
collection of pairs of fuzzy objects.

2. Fuzzy preference relations, i.e., mappings as-
signing a value R(Ã, B̃) ∈ [0, 1] to each pair of
fuzzy objects, expressing to what extent Ã is
at the right side of B̃. Such a value indicates
the degree of preference of the first object over
the second one.

If we wish to extend expectation dominance to
this case, we can first compute the fuzzy averages
of X̃# and Ỹ #, which are fuzzy objects X̃ and Ỹ ,
and use one of the above methods to compare these
fuzzy expected objects.

Using partial preorders, one may for instance first
defuzzify the objects in some way and get intervals.
It can be done by taking the average cut of the fuzzy
interval X̃, namely, the Aumann integral [5] X =
∫ 1

0
X̃αdα with respect to the uniform distribution,

where X̃α is the α-cut of X̃. Then, we can indeed
distinguish between the following situations:

• X̃# strictly expectation-dominates Ỹ # (X̃# >

Ỹ #) if infX > supY ;
• X̃# and Ỹ # are expectation-equivalent if X =
Y ;
• X̃# and Ỹ # are expectation-incomparable if

neither infX ≥ supY nor inf Y ≥ supX.

Note that taking the average cut of the Puri-Ralescu
fuzzy expectation of X̃# yields the same result as
taking the random set expectation of the average
cut of the fuzzy realizations X̃(ω)’s. This kind of
comparison of fuzzy random variables is proposed
in [37].

A natural way of extending this view with degrees
is to consider a usual degree of overlap of X̃ and Ỹ
as

ov(X̃, Ỹ ) = sup
r

min(µX̃(r), µỸ (r)).

It measures the degree of consistency between X̃
and Ỹ after Zadeh [45]. Then we can compute the
degree of expectation-dominance of X̃# over Ỹ # as

R(X̃#, Ỹ #) =

{

1− ov(X̃, Ỹ ) if inf X̃1 > sup Ỹ 1;

0 otherwise

Then, R(X̃#, Ỹ #) = 1 really means that the aver-
age fuzzy set X̃ is at the right of Ỹ .

All methods for comparing fuzzy objects lend
themselves easily to an extension of statistical pref-
erence to fuzzy random variables X̃# and Ỹ #. In-
stead of computing average fuzzy sets, we apply the

above comparison to each pair (X̃(ω), Ỹ (ω)), and
we compute

SP (X̃# > Ỹ #) = P ({ω : X̃(ω) > Ỹ (ω)})

This approach is proposed by Montes et al. [37]
at the generic level. Special cases of this approach
for generalizing statistical preference to fuzzy ran-
dom variables can be found in [3], where one com-
putes P ({ω : R(X̃(ω), Ỹ (ω)) > α}). In particular,
the degree of overlap ov(X̃, Ỹ ) is replaced by other
fuzzy interval comparison indices, including several
ones where the two fuzzy sets (X̃(ω), Ỹ (ω)) are
viewed as nested random sets. In [2], the condition
X(ω) > Ỹ (ω) is tested based on the interval com-
parison of average cuts, or the Hurwicz-equivalent
of average cuts.

In the case where a degree of dominance between
fuzzy intervals is provided, we can also compute the
average preference degree:

SP (X̃# > Ỹ #) =

∫

Ω

R(X̃(ω), Ỹ (ω))dP (ω)

In any case, X̃# statistically dominates Ỹ # if
SP (X̃# > Ỹ #) > 0.5.

For stochastic dominance, we need to define the
meaning of the comparison between a fuzzy ontic in-
terval and a real-valued threshold c. It can be done
in a way similar to the case of comparing two fuzzy
intervals as the comparison we need is a special case
thereof.

For instance, we can be interested in checking
whether X̃(ω) lies in the area beyond c, by test-
ing whether inf X̃(ω) > c or not. A less demanding

criterion is to check whether X̃(ω) does not lie in
the area before c, by testing whether sup X̃(ω) > c

or not. If the meaning of X̃(ω) > c is fixed, then
the stochastic dominance can be defined as usual:
X̃# stochastically dominates Ỹ # if P (X̃# > c) ≥
P (Ỹ # > c). Alternatively, we can consider the ex-
tent to which fuzzy intervals X̃(ω) is strongly above
c as:

R∗(X̃(ω), c) = 1− µX̃(ω)(c) if inf X̃(ω)1 > c;

0 otherwise

Likewise the extent to which a fuzzy interval X̃(ω)
is weakly above c is:

R∗(X̃(ω), c) = µX̃(ω)(c) if sup X̃(ω)1 < c;

1 otherwise

Defining an extension of stochastic dominance
would need two thresholds: c on the real line, and
α ∈ [0, 1] for the degree of dominance: X̃# stochas-
tically dominates Ỹ # if P ({ω : R(X̃(ω), c) ≥ α}) ≥
P ({ω : R(Ỹ (ω), c) ≥ α}),∀α ∈ [0, 1],∀c ∈ R, for



R = R∗ or R∗. Of course we can restrict this prop-
erty by fixing the threshold α or by fixing two dif-
ferent thresholds αX and αY in each side of the in-
equality. Moreover instead of using the same com-
parison index R we can also use different ones (a
weak and a strong) in each side of the inequality.
This extension of stochastic dominance has been
used in [1, 2] under various forms.

4.2. Comparing fuzzy sets of random

variables

In this situation, the fuzzy random variable has an
epistemic flavor. It is viewed as a possibility dis-
tribution over a set of classical random variables.
The uncertainty pervading the knowledge of ran-
dom variables must then be propagated over to the
results of stochastic comparisons.

A natural idea is then to fuzzify random vari-
able comparisons using the extension principle. For
instance suppose the stochastic comparison gives
a partial pre-order. After applying the Extension
Principle, a possibility distribution defined over the
4-elements universe {greater, less, equivalent, in-
comparable} is obtained. A decision based on such a
possibility measure will take place afterwards, which
is a known problem in fuzzy preference modeling
[26].

More precisely, suppose we decide to compare
random variables x# and y# by their average x, y
and extend this comparison to fuzzy random vari-
ables X̃# and Ỹ #. We can compute the degree of
possibility of dominance as:

Π(X̃# >av Ỹ
#) = sup

x#,y#:x>y

min(πX̃#(x#), πỸ #(y#))

It is easy to see that considering the fuzzy ex-
pectation X̃ with membership function πX̃(r) =

supr=x πX̃#(x#), then it holds Π(X̃# >av Ỹ
#) =

Π(X̃ > Ỹ ) where

Π(X̃ > Ỹ ) = sup
r>s

min(πX̃(r), πỸ (s)).

Likewise, using a similar approach, we can de-
fine degrees of possibility of stochastic dominance:
Π(X̃# >SD Ỹ

#) =

sup
x#,y#:x#>SDy#

min(πX̃#(x#), πỸ #(y#))

or of statistical preference: Π(X̃# >SP Ỹ
#) =

sup
x#,y#:P (x#>y#)>P (y#>x#)

min(πX̃#(x#), πỸ #(y#)).

These extensions of stochastic orderings, even if
in some sense unsurprizing and expected, have not
been found in the literature. Yet, this way of pro-
ceeding in the epistemic fuzzy random variable en-
vironment is the most natural. Alternatively, one
might consider swapping the fuzzy and stochas-
tic component, adopting the previously described

methods for comparing ontic fuzzy random sets, re-
placing the comparison of fuzzy objects by methods
for comparing possibility distributions (for instance
using methods proposed in [20], or more generally
any possibilistic ranking method). However, in that
case we are computing the objective probability (re-
lated to the sample space Ω) of subjective domi-
nance (pertaining to imprecision of information) of
one imprecise observation over another. This idea
of describing the variability of some subjective grad-
ual dominance looks much less natural that com-
puting the uncertainty pertaining to a population-
based stochastic ordering.

4.3. Fuzzy random variables as conditional

possibilities

Now we suppose that the fuzzy random variable rep-
resents imprecise possibilistic knowledge about an
objective conditional probability relating the sam-
ple space and the range of the random variable,
yielding a credal set on the real line [15]. The ex-
tension of stochastic orderings we can use are those
previously introduced by the authors [10], whereby
a standard method for comparing random variables
is combined with a standard method for comparing
intervals. Namely, let HX̃# be the credal set

{P ′ : P ′(B) =

∫

Ω

P (B|ω) dP (ω), P (B|ω) ≤ ΠX̃(ω)(B),∀B}

induced by the fuzzy random variable X̃#.
Equivalently, it comes down to enlarging the sam-

ple space Ω to Ω × [0, 1], equipped with the prod-
uct measure P ⊗ λ, where λ is Lebesgue measure,
and consider the random set X

#: (ω, α) Ô→ X̃α(ω),
based on α-cuts [6, 15]. Then we are back to the
problem of extending stochastic orderings with in-
terval orderings, or alternatively to randomize in-
terval orderings.

• Randomizing interval orderings. Suppose we
have chosen a way of comparing intervals, say
an ordering relation >I . Then we can

– compare the interval expectations X and
Y of X̃# and Ỹ # using >I , where

X =

∫

Ω

∫ 1

0

X̃α(ω)dαdP (ω)

For instance, we may be interested in
checking, in the spirit of Walley’s decision
rule [42] whether the lower expectation of
X

# − Y
# is positive or not, which comes

down to computing

X− Y = [inf X− sup Y, sup X− inf Y].

Then, this lower expectation is positive
whenever inf X > sup Y.

– Statistical Preference: Check if

P ⊗ λ({(ω, α) : X̃α(ω) >I Ỹα(ω)}) > 0.5.



Depending on the choice of the compari-
son between intervals (there are four pos-
sibilities) we then retrieve the extensions
of statistical preference to random inter-
vals proposed by Chanas and colleagues
[7, 8] for ranking fuzzy intervals viewed as
nested random sets.

– Stochastic Dominance: Check if

P ⊗ λ({(ω, α) : X̃α(ω) >I {c}}) >
P ⊗ λ({(ω, α) : Ỹα(ω) >I {c}}),

∀c ∈ R. Depending on the choice of the
comparison between an interval and a pre-
cise value (pessimistic, optimistic) we then
retrieve the extensions of stochastic domi-
nance to belief functions proposed by De-
noeux [19].

• Extending stochastic orderings using intervals.
The idea is again to consider specific selections
x#
s and y#s of the random set X̃α(ω) and Ỹα(ω)

and compare them using stochastic orderings.
This selection consists in suitable bounds of
X̃α(ω) and Ỹα(ω): for instance

– x#
s (ω, α) = inf X̃α(ω), and y#s (ω, α) =

sup Ỹα(ω) and compare them, which is a
randomized form of interval ordering.

– x
#
λ (ω, α) = λ inf X̃α(ω) + (1 −

λ) sup X̃α(ω), and y
#
λ (ω, α), defined

likewise, which is a randomized form of
Hurwicz ordering.

5. Conclusion

This paper has proposed a systematic investigation
of the various ways to jointly extend stochastic
orderings and interval orderings to fuzzy random
variables. We hope to have convinced the reader
that several points of view can be envisaged and
that the correct approach will depend about the
role played by the fuzzy random variable in the
given application, depending upon whether it
describes a random fuzzy object, or uncertainty
about a random variable, or yet as random interval
where uncertainty pertains to an ill-perceived
conditional probability measure.
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