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Abstract

The problems of the interaction between a vibrating structure and
a fluid have been studied by many authors, see for example the inter-
esting article [7] and their references. The principal objective of this
work is to investigate the solvability of some problems of interaction
between structure and fluid by a mathematical method based upon the
analytic semigroups and fractional powers of operators and which can
be applied to wider range of physical situations. In this paper, we de-
velop this method on a three-dimensional model of interaction between
a vibrating structure and a light fluid occupying a bounded domain
in IR

3. This model was introduced in J. Sound Vibration 177 (1994)
[3] by Filippi-Lagarrigue-Mattei for an one-dimensional clamped thin
plate, extended by an infinite perfectly rigid baffle. Intissar and Jeribi
have shown in J. Math. Anal. Appl. (2004) [4] the existence of a
Riesz basis of generalized eigenvectors of this one-dimensional model.
A two-dimensional model of the vibration and the acoustic radiation of
a baffled rectangular plate in contact with a dense fluid was considered
by Mattei in J. Sound Vibration (1996) [9].
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1 Introduction to the equations of our model

We consider a light fluid occupying

Ω = {(x, y, z) ∈ IR3; 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ h}

a bounded domain of IR3 with boundary ∂Ω and a plate displacing on
Γ1 = {(x, y, z) ∈ R3; z = 0}⋂

Ω. We define Γ2 by ∂Ω = Γ1 ∪ Γ2.
Let p(x, y, z) be the pressure of the fluid and u(x, y) the displacement of the
structure then we seek nontrivial solutions of the following coupling problem

(Pfluid)











−∆xyzp(x, y, z) = ω2p(x, y, z)
p|Γ2

= 0
∂
∂z
p|Γ2

(x, y, 0) = ρω2u(x, y)
and

(Dplate)











∆2
xyu(x, y)−mω2u(x, y) + p(x, y, 0) = f(x, y), (x, y) ∈ Γ1

u|∂Γ1
= 0

∆xyu|∂Γ1
= 0

where
∆xyz = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
, ∆xy = ∂2

∂x2 + ∂2

∂y2
and ∆2

xy = ∂4

∂x4 + 2 ∂4

∂x2∂y2
+ ∂4

∂y4

- f(x, y) is an excitation source.
- The mechanical parameters of the plate are its surface density m and its
thickness h.
- The fluid is characterized by its density ρ and its wave-number ω.
- For an interesting construction of the theory of plates see [10], § 27, p.182-
206 and the references therein.
Now let Ω̃ = [0, a]× [0, b] with the boundary ∂Ω̃.
Taking into account the equations of the fluid and the equation of the structure-
fluid coupling, we obtain the following problem

(P)











p
′′ − Ap = 0
p′(0) = ρω2u

p(h) = 0

where p′ = ∂
∂z
p, p′′ = ∂2

∂z2
p and A = −(∆xy + ω2I) is an unbounded operator

acting on the Hilbert space L2(Ω̃) with the domain
D(A) = {v ∈ L2(Ω̃);Av ∈ L2(Ω̃) and v|∂Ω̃ = 0}.
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The operator −∆xy is positive definite on its domain which consists of func-
tions vanishing at the boundary of the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

We give a mathematical study of the above problem (P) in the next section.

2 Existence and uniqueness theorems of (P)

By L2(0, h, L2(Ω̃), we denote the Hilbert space of strongly measurable and
square summable functions z −→ p(z) from [0, h] into L2(Ω̃), with norm

||| p |||2=
∫ h

0
|| p ||2 dz < ∞ where || . || is the norm of L2(Ω̃).

We consider the boundary value problem (P) and look for a solution of this
problem in the space
W 2

2 (0, h,D(A), L2(Ω̃)) = {p ∈ L2(0, h, L2(Ω̃));Ap ∈ L2(0, h, L2(Ω̃)) and p′′ ∈
L2(0, h, L2(Ω̃))} where D(A) is equipped with its norm.

Remark 2.1 a) The operator A is positive in the sense of Krein [8] i.e.
that A has the property

∃c > 0; || (A+ βI)−1 || ≤ c

1 + β
∀β > 0 (1)

b) A generates the analytic semigroup e−zA, z > 0.

From this remark, we can (see for example [11]) define an interpolation
space between D(Am) and L2(Ω̃)(m ∈ IN and θ ∈]0, 1[) by

[L2(Ω̃), D(Am)]θ = {p ∈ L2(Ω̃);
∫ ∞

0
z2m(1−θ)−1 || Ame−zAp ||2

L2(Ω̃)
dz < ∞}

Now we begin by recalling the definition of the Fourier multiplier and a
theorem of Mikhlin-Schwartz ([2], p.1181) which we shall use in the study of
the problem (P).

Definition 2.2 Let H be a Hilbert space and L(H) denote the space of
bounded linear operators acting in H. Let φ ∈ L2(IR,H) and F (φ) its Fourier
transform

F (φ) =
1√
2π

∫ +∞

−∞
e−iξxφ(x)dx.

Let T : IR −→ L(H) such that ξ −→ T (ξ), the application T is called a Fourier
multiplier if there exists M > 0 such that for φ ∈ L2(IR,H) we have

|| F−1TF (φ) ||L2(IR,H) ≤ M || φ ||L2(IR,H)
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Theorem 2.3 (Mikhlin-Schwartz [2])
If T : IR −→ L(H) is continuously differentiable and the following inequalities
hold:
there exists M > 0 such that || T (ξ) ||≤ M and || T ′(ξ) ||≤ M

|ξ| for all ξ 6= 0,

then T (ξ) is a Fourier multiplier.

By virtue of this theorem, we obtain the following lemma

Lemma 2.4 Let T (ξ) = ξ
√
A(ξ2I+A)−1 where A is the operator of problem

(P) and ||
√
A || denotes the norm associated to the domain D(

√
A), then

i) T (ξ) is a Fourier multiplier.
ii) There exists M > 0 such that || p′ ||L2(IR,D(

√
A))≤ M || p ||W 2

2
(IR,D(A),L2(Ω̃))

for all p ∈ W 2
2 (IR,D(A), L2(Ω̃)).

Proof

i) As A is positive in the sense of Krein, we get from (1)

|| (A+ ξ2I)−1 || ≤ c
1+ξ2

and || T (ξ) ||=|| ξ
√
A(ξ2I + A)−1 ||≤ c|ξ|||

√
A||

1+ξ2

≤ c ||
√
A || .

Now, we have T ′(ξ) =
√
A(ξ2I + A)−1 − 2ξ

√
A(ξ2I + A)−2 and therefore

|| T ′(ξ) ||≤||
√
A(ξ2I + A)−1 || (1 + 2 || ξ(ξ2I + A)−1 ||)

≤ (1 + c
2|ξ|
1+ξ2

) ||
√
A(ξ2I + A)−1 || ≤ (1 + c) ||

√
A(ξ2I + A)−1 ||

≤ M
|ξ| where M = c(1 + c) ||

√
A || .

We can see that T (ξ) = ξ
√
A(ξ2I + A)−1 verifies the assumptions of the

Mikhlin-Schwartz theorem and consequently, it is a Fourier multiplier.

ii) Let p(z) ∈ W 2
2 (IR,D(A), L2(Ω̃))), the function q(z) = p′′(z) − Ap(z) is

in L2(IR, L2(Ω̃)) and its Fourier transform can therefore be written as
F (q) = −ξ2F (p)− AF (p).Then F (p) = −(ξ2I + A)−1F (q). But,
|| p′ ||L2(IR,D(

√
A))=||

√
Ap′ ||L2(IR,L2(Ω̃)) = || F−1

√
AF (p′) ||L2(IR,L2(Ω̃)) =

|| F−1
√
AξF (p) ||L2(IR,L2(Ω̃)) = || F−1

√
Aξ(ξ2I + A)−1F (q) ||L2(IR,L2(Ω̃))

= || F−1T (ξ)F (q) ||L2(IR,L2(Ω̃)).

By virtue of the Mikhlin-Schwartz theorem and from property i) of this
lemma, we get || p′ ||L2(IR,D(

√
A)) ≤ M || q ||L2(IR,L2(Ω̃))= M || p′′−Ap ||L2(IR,L2(Ω̃))

≤ M(|| p′′ || + || Ap ||)L2(IR,L2(Ω̃)).
This leads to || p′ ||L2(IR,D(

√
A))≤ M || p ||W 2

2
(IR,D(A),L2(Ω̃)) which achieves the

proof of lemma 2.4.

Theorem 2.5 The function p(z), solution of the equation p′′(z)−Ap(z) = 0

belongs to W 2
2 (0, h,D(A), L2(Ω̃)) if and only if p(z) = e−z

√
Ap1 + e−(h−z)

√
Ap2

where p1, p2 ∈ [L2(Ω̃), D(
√
A)] 3

4

.
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Proof

i) Let p(z) ∈ W 2
2 (IR,D(A), L2(Ω̃)) be a solution of the equation

p′′(z)− Ap(z) = 0.

Let us put v1(z) = p′(z)−
√
Ap(z) then it is clear that

v
′

1(z) = p′′(z)−
√
Ap′(z) = p′′(z)−

√
A(v1(z) +

√
Ap(z)) = −

√
Av1(z)

i.e.
v

′

1(z) = −
√
Av1(z) (2)

Similarly, if we put v2(z) = p′(z) +
√
Ap(z), we obtain

v
′

2(z) =
√
Av2(z) (3)

As A is positive in the sense of Krein, we use the Krein theorem [8] on fractional
powers of operators and we deduce that -

√
A is the generator of an analytic

semigroup and any solution of the Cauchy problems (2) and (3) have the form

v1(z) = e−z
√
Av1(0) (4)

and
v2(z) = e−(h−z)

√
Av2(h) (5)

where v1(0), v2(h) ∈ [D(
√
A,L2(Ω̃)] 1

2

As 2
√
Ap(z) = v2(z)− v1(z), then we get

p(z) = −1

2
A− 1

2 (v1(z)− v2(z)) = −1

2
A− 1

2 [e−z
√
Av1(0)− e−(h−z)

√
Av2(h)] (6)

Therefore, p1 and p2 are given by

p1 = −1

2
A− 1

2v1(0) (7)

and

p2 =
1

2
A− 1

2v2(h) (8)

Consequently, the operator A− 1

2 acts in a bounded manner from L2(Ω̃) into
D(

√
A) and from D(

√
A) into D(A) where these spaces are equipped with their

norms.
Then by virtue of the interpolation theorem [8], A− 1

2 acts in a bounded
manner from[D(

√
A), L2(Ω̃)] 1

2

into [L2(Ω̃, )D(A)] 3
4

.

ii) The sufficiency of this theorem is trivial.
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Theorem 2.6 For u ∈ [L2(Ω̃), D(A)] 1
4

, the problem

(P)











p
′′ − Ap = 0
p′(0) = ρω2u

p(h) = 0

has an unique solution p(z) ∈ W 2
2 (0, h,D(A), L2(Ω̃)).

Proof

By virtue of theorem (2.5), a solution of the equation p
′′ −Ap = 0 has the

representation p(z) = e−z
√
Ap1 + e−(h−z)

√
Ap2 with p1, p2 ∈ [L2(Ω̃), D(A)] 3

4

The boundary conditions must verify the following system

(S)

{

−
√
Ap1 +

√
Ae−h

√
Ap2 = ρω2u

e−h
√
Ap1 + p2 = 0

From the second equation of the system (S), we obtain p2 = −e−h
√
Ap1.

From the first equation of the same system, we deduce that
−
√
A(I + e−2h

√
A)p1 = ρω2u

and therefore
p1 = −ρω2A

−1

2 (I + e−2h
√
A)−1u

and
p2 = ρω2A

−1

2 e−h
√
A(I + e−2h

√
A)−1u.

Now we show that p1, p2 ∈ [L2(Ω̃), D(A)] 3
4

As u ∈ [L2(Ω̃), D(A)] 1
4

then we have A
−1

2 u ∈ [L2(Ω̃), D(
√
A)] 3

4

.

The operator (I + e−2h
√
A)−1 is bounded from L2(Ω̃) into L2(Ω̃) and by

virtue of the analyticity of semigroup, it acts in bounded manner from D(A)
into D(A).

Then by virtue of the interpolation theorem [11], the operator (I+e−2h
√
A)−1

acts in bounded manner from the space [L2(Ω̃), D(A)] 3
4

into the [L2(Ω̃), D(A)] 1
4

.

Consequently, p1 ∈ [L2(Ω̃), D(A)] 3
4

As p2 = −e−h
√
Ap1, then similarly we have p2 ∈ [L2(Ω̃), D(A)] 3

4

Therefore the solution of problem (P) is :
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p(z) = ρω2A
−1

2 (I + e−2h
√
A)−1[e−2h

√
Aez

√
A − e−z

√
A]u. (9)

with

p(0) = ρω2A
−1

2 (I + e−2h
√
A)−1[e−2h

√
A − I]u. (10)

As A = −(∆xy + ω2I), we put Kω = A
−1

2 (I + e−2h
√
A)−1[e−2h

√
A − I] then

from the equation (2.10) we get

p(x, y, 0) = ω2ρKωu(x, y). (11)

Now the system (Dplate) of the plate movement can be written in this form

(Pω)

{

∆2
xyu(x, y)− ω2[mI − ρKω]u(x, y) = f(x, y) on Γ1

u = ∆x,yu = 0 on ∂Γ1

In the following, we study the spectral properties of the above system (Pω).
We begin by considering the operator T = ∆2

xy acting on L2(Γ1) with minimal
domain D(T ) = {u ∈ C4(Γ1); u = ∆x,yu = 0 on ∂Γ1}.
Let H be the closure of D(T ) equipped with its norm, then we have the fol-
lowing classical spectral properties of T (see [10],theorem 3, p. 327)
1) D(T ) is dense in L2(Γ1).
2) There exists an operator G acting from L2(Γ1) into H such that
α) G is symmetric and positive.
β) G−1 is an extension of T .
γ) G is compact.
3) The functions umn(x, y) = sin(mπx

a
)sin(nπy

b
) ∈ D(T ) because they are in

C4(Γ1) and they satisfy the boundary conditions
umn(0, y) = umn(a, y) = umn(x, 0) = umn(x, b) = 0
and
∆xyumn(0, y) = ∆xyumn(a, y) = ∆xyumn(x, 0) = ∆xyumn(x, b) = 0.

4) Tumn(x, y) = λmnumn(x, y) where λmn = π4(m
2

a2
+ n2

b2
)2.

As Kω is bounded we deduce that GKω is compact and if 0 is not an eigen-
value of the operator T − ω2[mI − ρKω] then, for all f ∈ L2(Γ1), the problem
(Pω) has an unique solution in H.

For one-dimensional model the operator Kω is a Hankel operator and the
investigation of the existence of a generalized eigenvectors Riesz basis of the
operator T − ω2(mI − ρKω) is given in [4].
In this work we see that 0 is not an eigenvalue of the Dirichlet problem on the
rectangle associated to −∆xy.
In fact, by combining the Green’s formula for the Laplacian operator with the
Dirichlet’s condition we deduce that
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< −∆xyu, u > = −
∫ a

0

∫ b

0
u(x, y)∆xyu(x, y)dxdy

=
∫ a

0

∫ b

0
(| ∂u

∂x
|2 + | ∂u

∂y
|2)dxdy ≥ 0.

If < −∆xyu, u > = 0 then of necessarly ∂u
∂x

= ∂u
∂y

= 0 since the integrand in
the above integral is non negative. But then u is constant and by virtue of the
boundary condition u = 0 on ∂Γ1, then u = 0
As T with the domain D(T ) = {u ∈ C4(Γ1); u = ∆x,yu = 0 on ∂Γ1} is ∆2

xy

then T is self adjoint and invertible.
The regularity of the operator T with this domain D(T ), allows us to use the
Keldysh’s theorem ([6], see below) or the results of ([2], theorem 12, p. 1204
) to show the completeness of the generalized eigenvectors of the following
eigenvalue problem

[T − ω2(mI − ρKω)]u(x, y) = λu(x, y); u ∈ D(T ), λ ∈ IC. (12)

Let H be a separable Hilbert space, L(H) the set of all bounded linear
operators in H, and C∞ the set of all compact operators in L(H).

A linear operator A acting in H is called an operator with a discrete spec-
trum if the whole of its spectrum σ(A) consists of eigenvalues of finite multi-
plicity, with the only possible limit point at infinity. If A is such an operator,
then N (r ,A) denotes the distribution function of its eigenvalues; that is, the
number of eigenvalues (counting multiplicity) in the disk | λ |≤ r.

A sufficient condition for an operator A to have a discrete spectrum is that
its resolvent Rλ(A) = (A− λI)−1 ∈ C∞ for at least one regular value λ (then
Rλ(A) ∈ C∞ for every regular λ).

If A is selfadjoint, then its spectrum is discrete if and only if Rλ(A) ∈ C∞.

The following definition was introduced by Keldysh [6].

Definition 2.7 An operator A is called an operator of finite order if it
belongs to Cp for some p ∈ (0,∞) where Cp denote the set of compact operators
such that

∑∞
n=1 s

p
n(A) < ∞, {sn}∞1 are the eigenvalues of the operator

√
A∗A

numbered in decreasing order and with multiplicity taken into account.

Theorem 2.8 (Keldysh’s theorem [6])
Let A be a normal operator of finite order acting on Hilbert space E whose
spectrum lies on a finite number of rays argλ = αk(k = 1, ...., N), αk+1 > αk. If
S is compact and I+S is invertible then the system of generalized eigenvectors
of (I + S)A is complete in E.
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Remark 2.9 T−1 ∈ Cp for all p > 1
4
.

Now for λ = 0 the problem (12) can be written as following

[T − ω2(mI − ρKω)]u(x, y) = 0; u ∈ D(T ). (13)

or

T−1(I − ρ

m
Kω)u(x, y) =

1

mω2
u(x, y); u ∈ D(T ). (14)

If ρ
m

is not in σ(Kω), we can use the Keldysh’s theorem to deduce the
completeness of the eigenfunctions of problem (13)

For λ 6= 0, by applying the operator G to the equation (12), we get

[I − ω2G(mI − ρKω)]u(x, y) = λGu(x, y); u ∈ D(T ). (15)

If 1
ω2 is not an eigenvalue of the operator G(mI −Kω), then the equation (13)

can be written as

[I − ω2G(mI −Kω)]
−1Gu(x, y) =

1

λ
u(x, y); u ∈ D(T ). (16)

In this case the operator [I−ω2G(mI−K)]−1G satisfies the completeness cri-
teria of the above Keldysh theorem [6] or the completeness criteria of Aimar-
Intissar-Paoli theorem given in [1] (see also the chapter IV of [5]) and conse-
quently the closure of the subspace spanned by all the generalized eigenvectors
of [T −ω2(mI−Kω)] corresponding to the eigenvalues which are different from
zero is dense in L2(Γ1).

References

[1] M.T. Aimar, A. Intissar, J.M. Paoli, Critéres de complétudes des vecteurs
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