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We consider the problem of minimizing a given n-variate polynomial f over the hypercube [-1, 1] n . An idea introduced by Lasserre, is to find a probability distribution on [-1, 1] n with polynomial density function h (of given degree r) that minimizes the expectation [-1,1] n f (x)h(x)dµ(x), where dµ(x) is a fixed, finite Borel measure supported on [-1, 1] n . It is known that, for the Lebesgue measure dµ(x) = dx, one may show an error bound O(1/ √ r) if h is a sum-of-squares density, and an O(1/r) error bound if h is the density of a beta distribution. In this paper, we show an error bound of

dx (the well-known measure in the study of orthogonal polynomials), and h has a Schmüdgen-type representation with respect to [-1, 1] n , which is a more general condition than a sum of squares. The convergence rate analysis relies on the theory of polynomial kernels, and in particular on Jackson kernels. We also show that the resulting upper bounds may be computed as generalized eigenvalue problems, as is also the case for sum-of-squares densities.

Introduction 1.Background results

We consider the problem of minimizing a given n-variate polynomial f ∈ R[x] over the compact set K = [-1, 1] n , i.e., computing the parameter

f min = min x∈K f (x). (1.1)
This is a hard optimization problem which contains, e.g., the well known NP-hard maximum stable set and maximum cut problems in graphs (see, e.g., [START_REF] Park | Rank of Handelman hierarchy for Max-Cut[END_REF][START_REF] Park | Handelman rank of zero-diagonal quadratic programs over a hypercube and its applications[END_REF]). It falls within box-constrained (aka bound-constrained) optimization which has been widely studied in the literature. In particular iterative methods for boundconstrained optimization are described in the books [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF][START_REF] Fletcher | Practical Methods of Optimization[END_REF][START_REF] Gill | Practical Optimization[END_REF], including projected gradient and active set methods. The latest algorithmic developments for box-constrained global optimization are surveyed in the recent thesis [START_REF] Pál | Global optimization algorithms for bound constrained problems[END_REF]; see also [START_REF] Hager | A new active set algorithm for box constrained optimization[END_REF] and the references therein for recent work on active set methods, and a list of applications. The box-constrained optimization problem is even of practical interest in the (polynomially solvable) case where f is a convex quadratic problem, and dedicated active set methods have been developed for this case; see [START_REF] Hungerländer | A feasible active set method for strictly convex quadratic problems with simple bounds[END_REF].

In this paper we will focus on the question of finding a sequence of upper bounds converging to the global minimum and allowing a known estimate on the rate of convergence. It should be emphasized that it is in general a difficult challenge in non-convex optimization to obtain such results. Following Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Lasserre | A new look at nonnegativity on closed sets and polynomial optimization[END_REF], our approach will be based on reformulating problem (1.1) as an optimization problem over measures and then restricting to subclasses of measures that we are able to analyze. Sequences of upper bounds have been recently proposed and analyzed in [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF][START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF], in the present paper we will propose new bounds for which we can prove a sharper rate of convergence. We now introduce our approach.

As observed by Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], problem (1.1) can be reformulated as

f min = min µ∈M(K) K f (x)dµ(x),
where M(K) denotes the set of probability measures supported on K. Hence an upper bound on f min may be obtained by considering a fixed probability measure µ on K. In particular, the optimal value f min is obtained when selecting for µ the Dirac measure at a global minimizer x * of f in K.

Lasserre [START_REF] Lasserre | A new look at nonnegativity on closed sets and polynomial optimization[END_REF] proposed the following strategy to build a hierarchy of upper bounds converging to f min . The idea is to do successive approximations of the Dirac measure at x * by using sum-of-squares (SOS) density functions of growing degrees. More precisely, Lasserre [START_REF] Lasserre | A new look at nonnegativity on closed sets and polynomial optimization[END_REF] considered a set of Borel measures µ r obtained by selecting a fixed, finite Borel measure µ on K (like, e.g., the Lebesgue measure) together with a polynomial density function that is a sum-of-squares (SOS) polynomial of given degree r.

When selecting for µ the Lebesque measure on K this leads to the following hierarchy of upper bounds on f min , indexed by r ∈ N:

f (r) K := inf h∈Σ[x]r K h(x)f (x)dx s.t. K h(x)dx = 1, (1.2) 
where Σ[x] r denotes the set of sum-of-squares polynomials of degree at most r.

The convergence to f min of the bounds f (r) K is an immediate consequence of the following theorem, which holds for general compact sets K and continuous functions f . Theorem 1.1 [10, cf. Theorem 3.2] Let K ⊆ R n be compact, let µ be an arbitrary finite Borel measure supported by K, and let f be a continuous function on R n . Then, f is nonnegative on K if and only if

K f g 2 dµ ≥ 0 ∀g ∈ R[x].
Therefore, the minimum of f over K can be expressed as

f min = inf h∈Σ[x] K f hdµ s.t. K hdµ = 1.
(1.3)

In the recent work [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF], it is shown that for a compact set K ⊆ [0, 1] n one may obtain a similar result using density functions arising from (products of univariate) beta distributions. In particular, the following theorem is implicit in [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF].

Theorem 1.2 [3] Let K ⊆ [0, 1
] n be a compact set, let µ be an arbitrary finite Borel measure supported by K, and let f be a continuous function on R n . Then, f is nonnegative on K if and only if

K f hdµ ≥ 0 for all h of the form h(x) = n i=1 x βi i (1 -x i ) ηi K n i=1 x βi i (1 -x i ) ηi , (1.4) 
where the β i s and η i s are nonnegative integers. Therefore, the minimum of f over K can be expressed as

f min = inf h K f hdµ s.t. K hdµ = 1, (1.5) 
where the infimum is taken over all beta-densities h of the form (1.4).

For the box K = [0, 1] n and selecting for µ the Lebesgue measure, we obtain a hierarchy of upper bounds f H r converging to f min , where f H r is the optimum value of the program (1.5) when the infimum is taken over all beta-densities h of the form (1.4) with degree r.

The rate of convergence of the upper bounds f (r) K and f H r has been investigated recently in [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF] and [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF], respectively. It is shown in [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF] 

that f (r) K -f min = O(1/ √ r)
for a large class of compact sets K (including all convex bodies and thus the box [0, 1] n or [-1, 1] n ) and the stronger rate

f H r -f min = O(1/r) is shown in [3] for the box K = [0, 1] n . While the parameters f (r)
K can be computed using semidefinite optimization (in fact, a generalized eigenvalue computation problem, see [START_REF] Lasserre | A new look at nonnegativity on closed sets and polynomial optimization[END_REF]), an advantage of the parameters f H r is that their computation involves only elementary operations (see [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF]).

Another possibility to get a hierarchy of upper bounds is grid search, where one takes the best function evaluation at all rational points in K = [0, 1] n with given denominator r. It has been shown in [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF] that these bounds have a rate of convergence in O(1/r 2 ). However, the computation of the order r bound needs an exponential number r n of function evaluations.

New contribution

In the present work we continue this line of research. For the box K = [-1, 1] n , our objective is to build a new hierarchy of measure-based upper bounds, for which we will be able to show a sharper rate of convergence in O(1/r 2 ). We obtain these upper bounds by considering a specific Borel measure µ (specified below in (1.7)) and polynomial density functions with a so-called Schmüdgen-type SOS representation (as in (1.6) below).

We first recall the relevant result of Schmüdgen [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF], which gives SOS representations for positive polynomials on a basic closed semi-algebraic set (see also, e.g., [START_REF] Prestel | Positive Polynomials -From Hilbert's 17th Problem to Real Algebra[END_REF], [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF]Theorem 3.16], [START_REF] Marshall | Positive Polynomials and Sums of Squares[END_REF]).

Theorem 1.3 (Schmüdgen [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF])

Consider the set K = {x ∈ R n | g 1 (x) ≥ 0, . . . , g m (x) ≥ 0} where g 1 , . . . , g m ∈ R[x],
and assume that K is compact. If p ∈ R[x] is positive on K, then p can be written as p = I⊆[m] σ I i∈I g i , where σ I (I ⊆ [m]) are sum-of-squares polynomials.

For the box K = [-1, 1] n , described by the polynomial inequalities 1-x 2 1 ≥ 0, . . . , 1-x 2 n ≥ 0, we consider polynomial densities that allow a Schmüdgen-type representation of bounded degree r:

h(x) = I⊆[n] σ I (x) i∈I (1 -x 2 i ), (1.6) 
where the polynomials σ I are sum-of-squares polynomials with degree at most r -2|I| (to ensure that the degree of h is at most r). We will also fix the following Borel measure µ on [-1, 1] n (which, as will be recalled below, is associated to some orthogonal polynomials):

dµ(x) = n i=1 π 1 -x 2 i -1 dx. (1.7) 
This leads to the following new hierarchy of upper bounds f (r) for f min .

Definition 1.4 Let µ be the Borel measure from (1.7). For r ∈ N consider the parameters:

f (r) := inf h [-1,1] n f hdµ s.t. [-1,1] n hdµ = 1, (1.8)
where the infimum is taken over the polynomial densities h that allow a Schmüdgen-type representation (1.6), where each σ I is a sum-of-squares polynomial with degree at most r -2|I|.

The convergence of the parameters f (r) to f min follows as a direct application of Theorem 1.1. A main result in this paper is to show that the bounds f (r) have a rate of convergence in O(1/r 2 ). Moreover we will show that the parameter f (r) can be computed through generalized eigenvalue computations.

Theorem 1.5 Let f ∈ R[x] be a polynomial and f min be its minimum value over the box [-1, 1] n . For any r large enough, the parameters f (r) defined in (1.8) satisfy:

f (r) -f min = O 1 r 2 .
As already observed above this result compares favorably with the estimate: [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF] for the bounds f (r) K based on using SOS densities. (Note however that the latter convergence rate holds for a larger class of sets K that includes all convex bodies; see [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF] for details.) The new result also improves the estimate: f H r -f min = O 1 r , shown in [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF] for the bounds f H r obtained by using densities arising from beta distributions.

f (r) K -f min = O 1 √ r shown in
We now illustrate the optimal densities appearing in the new bounds f (r) on an example.

Example 1.6 Consider the minimization of the Motzkin polynomial

f (x 1 , x 2 ) = 64(x 4 1 x 2 2 + x 2 1 x 4 2 ) -48x 2 1 x 2 2 + 1
over the hypercube [-1, 1] 2 , which has four global minimizers at the points ± 1 2 , ± 1 2 , and f min = 0. Figure 1 shows the optimal density function h * computed when solving the problem (1.8) for degrees 12 and 16, respectively. Note that the optimal density h * shows four peaks at the four global minimizers of f in [-1, 1] 2 . The corresponding upper bounds from (1.8) are f (12) = 0.8098 and f (16) = 0.6949. 

Strategy and outline of the paper

In order to show the convergence rate in O(1/r 2 ) of Theorem 1.5 we need to exhibit a polynomial density function h r of degree at most r which admits a SOS representation of Schmüdgen-type and for which we are able to show that

[-1,1] n f hdµ -f min = O(1/r 2
). The idea is to find such a polynomial density which approximates well the Dirac delta function at a global minimizer x * of f over [-1, 1] n . For this we will use the well established Polynomial Kernel Method (KPM) and more specifically we will use the Jackson kernel, a well known tool in approximation theory to yield best (uniform) polynomial approximations of continuous functions.

The paper is organized as follows. Section 2 contains some background information about the polynomial kernel method needed for our analysis of the new bounds f (r) . Specifically we introduce Chebyshev polynomials in Section 2.1 and Jackson kernels in Section 2.2, and then we use them in Section 2.3 to construct suitable polynomial densities h r giving good approximations of the Dirac delta function at a global minimizer of f in the box. We then carry out the analysis of the upper bounds on f min in Section 3.1 for the univariate case and in Section 3.2 for the general multivariate case, thus proving the result of Theorem 1.5. In Section Notation Throughout, Σ[x] denotes the set of all sum-of-squares (SOS) polynomials (i.e., all polynomials h of the form h = k i=1 p i (x) 2 for some polynomials p 1 , . . . , p k and k ∈ N) and Σ[x] r denotes the set of SOS polynomials of degree at most r (of the form h = k i=1 p i (x) 2 for some polynomials p i of degree at most r/2). For α ∈ N n , Supp(α) = {i ∈ [n] : α i = 0} denotes the support of α and, for α, β ∈ N n , δ α,β ∈ {0, 1} is equal to 1 if and only if α = β.

Background on the polynomial kernel method

Our goal is to approximate the Dirac delta function at a given point x * ∈ R n as well as possible using polynomial density functions of bounded degrees. This is a classical question in approximation theory. In this section we will review how this may be done using the polynomial kernel method and, in particular, using Jackson kernels. This theory is usually developed using the Chebyshev polynomials, and we start by reviewing their properties. We will follow mainly the work [START_REF] Weisse | The kernel polynomial method[END_REF] for our exposition and we refer to the handbook [START_REF]Handbook of Mathematical Functions with formulas, graphs, and mathematical tables[END_REF] for more background information.

Chebyshev polynomials

We will use the univariate polynomials T k (x) and U k (x), respectively known as the Chebyshev polynomials of the first and second kind. They are defined as follows:

T k (x) = cos(k arccos(x)), U k (x) = sin((k + 1) arccos(x)) sin(arccos(x)) for x ∈ [-1, 1], k ∈ N, (2.1) 
and they satisfy the following recurrence relationships:

T 0 (x) = 1, T -1 (x) = T 1 (x) = x, T k+1 (x) = 2xT k (x) -T k-1 (x), (2.2) 
U 0 (x) = 1, U -1 (x) = 0, U k+1 (x) = 2xU k (x) -U k-1 (x). (2.3) 
As a direct application one can verify that

T k (0) =    0 for k odd (-1) k 2 for k even , T k (1) = 1, U k (1) = k + 1, U k (-1) = (-1) k (k + 1) for k ∈ N. (2.4)
The Chebyshev polynomials have the extrema

max x∈[-1,1] |T k (x)| = 1 and max x∈[-1,1] |U k (x)| = k + 1,
attained at x = ±1 (see, e.g., [2, §22.14.4, 22.14.6]).

The Chebyshev polynomials are orthogonal for the following inner product on the space of integrable functions over [-1, 1]:

f, g = 1 -1 f (x)g(x) π √ 1 -x 2 dx, (2.5) 
and their orthogonality relationships read:

T k , T m = 0 if k = m, T 0 , T 0 = 1, T k , T k = 1 2 if k ≥ 1. (2.6)
For any r ∈ N the Chebyshev polynomials T k (k ≤ r) form a basis of the space of univariate polynomials with degree at most r. One may write the Chebyshev polynomials in the standard monomial basis using the relations:

T k (x) = k i=0 t (k) i x i = k 2 k 2 m=0 (-1) m (k -m -1)! m!(k -2m)! (2x) k-2m , k > 0 U k-1 (x) = k-1 i=0 u (k) i x i = k-1 2 m=0 (-1) m (k -m -1)! m!(k -1 -2m)! (2x) k-1-2m , k > 1.
See, e.g. [START_REF]Handbook of Mathematical Functions with formulas, graphs, and mathematical tables[END_REF]Chap. 22]. From this, one may derive a bound on the largest coefficient in absolute value appearing in the above expansions of T k (x) and U k-1 (x). A proof for the following result will be given in the Appendix.

Lemma 2.1 For any fixed integer k > 1, one has:

max 0≤i≤k-1 |u (k) i | ≤ max 0≤i≤k |t (k) i | = 2 k-1-2ψ(k) k(k -ψ(k) -1)! ψ(k)!(k -2ψ(k))! (2.7)
where

ψ(k) = 0 for k ≤ 4 and ψ(k) = 1 8 4k -5 - √ 8k 2 -7 for k ≥ 4.
Moreover, the right hand side of (2.7) increases monotonically with increasing k.

In the multivariate case we use the following notation. We let dµ(x) denote the Lebesgue measure on [-1, 1] n with the function

n i=1 π 1 -x 2 i -1
as density function:

dµ(x) = n i=1 π 1 -x 2 i -1 dx (2.8)
and we consider the following inner product for two integrable functions f, g on the box [-1, 1] n :

f, g = [-1,1] n f (x)g(x)dµ(x)
(which coincides with (2.5) in the univariate case n = 1). For α ∈ N n , we define the multivariate Chebyshev polynomial

T α (x) = n i=1 T αi (x i ) for x ∈ R n .
The multivariate Chebyshev polynomials satisfy the following orthogonality relationships:

T α , T β = 1 2 |Supp(α)| δ α,β (2.9) 
and, for any r ∈ N, the set of Chebyshev polynomials {T α (x) : |α| ≤ r} is a basis of the space of n-variate polynomials of degree at most r.

Jackson kernels

A classical problem in approximation theory is to find a best (uniform) approximation of a given continuous function f : [-1, 1] → R by a polynomial of given maximum degree r. Following [START_REF] Weisse | The kernel polynomial method[END_REF], a possible approach is to take the convolution f (r) KPM of f with a kernel function of the form

K r (x, y) = 1 π √ 1 -x 2 π 1 -y 2 g r 0 T 0 (x)T 0 (y) + 2 r k=1 g r k T k (x)T k (y) ,
where r ∈ N and the coefficients g r k are selected so that the following properties hold:

(1) The kernel is positive: K r (x, y) > 0 for all x, y ∈ [-1, 1].

(2) The kernel is normalized: g r 0 = 1.

(3) The second coefficients g r 1 tend to 1 as r → ∞.

The function f (r)

KPM is then defined by

f (r) KPM (x) = 1 -1 π 1 -y 2 K r (x, y)f (y)dy. (2.10)
As the first coefficient is g r 0 = 1, the kernel is normalized:

1 -1 K r (x, y)dy = T 0 (x)/π √ 1 -x 2
, and we have:

1 -1 f (r) KPM (x)dx = 1 -1 f (x)dx.
The positivity of the kernel K r implies that the integral operator f → f In what follows we select the following parameters g r k for k = 1, . . . , r, which define the so-called Jackson kernel, again denoted by K r (x, y):

g r k = 1 r+2 ((r + 2 -k) cos(kθ r ) + sin(kθr) sin θr cos θ r ) = 1 r+2 ((r + 2 -k)T k (cos θ r ) + U k-1 (cos θ r ) cos θ r ), (2.11) 
where we set θ r := π r + 2 .

This choice of the parameters g r k is the one minimizing the quantity [-1,1] 2 K r (x, y)(x -y) 2 dxdy, which ensures that the corresponding Jackson kernel is maximally peaked at x = y (see [20, 

§II.C.3]).

One may show that the Jackson kernel K r (x, y) is indeed positive on [-1, 1] 2 ; see [20, §II.C.2]. Moreover g r 0 = 1 and, for k = 1, we have g r 1 = cos(θ r ) = cos(π/(r + 2)) → 1 if r → ∞ as required. This is in fact true for all k, as will follow from Lemma 2.2 below. Note that one has

|g r k | ≤ 1 for all k, since |T k (cos θ r )| ≤ 1 and |U k-1 (cos θ r )| ≤ k.
For later use, we now give an estimate on the Jackson coefficients g r k , showing that 1 -g r k is in the order O(1/r 2 ).

Lemma 2.2 Let d ≥ 1 and r ≥ d be given integers, and set θ r = π r+2 . There exists a constant C d (depending only on d) such that the following inequalities hold:

|1 -g r k | ≤ C d (1 -cos θ r ) ≤ C d π 2 2(r + 2) 2 for all 0 ≤ k ≤ d.
For the constant C d we may take:

C d = d 2 (1 + 2c d ), where c d = 2 d-1-2ψ(d) d(d -ψ(d) -1)! ψ(d)!(d -2ψ(d))! and ψ(d) =    0 for d ≤ 4 1 8 4d -5 - √ 8d 2 -7 for d ≥ 4.
(2.12)

Proof. Define the polynomial

P k (x) = 1 - r + 2 -k r + 2 T k (x) - 1 r + 2 xU k-1 (x),
with degree k. Then, in view of relation (2.11), we have: 1 -g r k = P k (cos θ r ). Recall from relation (2.4) that T k (1) = 1 and U k-1 (1) = k for any k ∈ N. This implies that P k (1) = 0 and thus we can factor P k (x) as

P k (x) = (1 -x)Q k (x) for some polynomial Q k (x) with degree k -1. If we write P k (x) = k i=0 p i x i , then it follows that Q k (x) = k-1 i=0 q i x i ,
where the scalars q i are given by

q i = i j=0 p j for i = 0, 1, . . . , k -1.
(2.13)

It now suffices to observe that for any 0 ≤ i ≤ k and k ≤ d, the p i 's are bounded by a constant depending only on d, which will imply that the same holds for the scalars q i . For this, set

T k (x) = k i=0 t (k) i x i and U k-1 (x) = k-1 i=0 u (k) i x i .
Then the coefficients p i of P k (x) can be expressed as 

p 0 = 1 - r + 2 -k r + 2 t (k) 0 , p i = r + 2 -k r + 2 t (k) i - u (k) i-1 r + 2 (1 ≤ i ≤ k).
-g r k = (1 -cos θ r )Q k (cos θ r ), where Q k (cos θ r ) = k-1 i=0 q i (cos θ r ) i , so that |Q k (cos θ r )| ≤ k-1 i=0 |q i | ≤ d 2 (1 + 2c d ). This implies |1 -g r k | ≤ (1 -cos θ r )C d , after setting C d = d 2 (1 + 2c d ).
Finally, combining with the fact that 1 -cos x ≤ x 2 2 for all x ∈ [0, π], we obtain the desired inequality from the lemma statement. 2

Jackson kernel approximation of the Dirac delta function

If one approximates the Dirac delta function δ x * at a given point x * ∈ [-1, 1] by taking its convolution with the Jackson kernel K r (x, y), then the result is the function:

δ (r) KPM (x -x * ) = 1 π √ 1 -x 2 1 + 2 r k=1 g r k T k (x)T k (x * ) .
See [20, eq. ( 72)]. As mentioned in [20, eq. ( 75)-( 76)], the function δ

(r)
KPM is in fact a good approximation to the Gaussian density: (Recall that the Dirac delta measure may be defined as a limit of the Gaussian measure when σ ↓ 0.) This approximation is illustrated in Figure 2 for several values of r.

δ (r) KPM (x -x * ) ≈ 1 √ 2πσ 2 exp - (x -x * ) 2 2σ 2 with σ 2 ≈ π r + 1 2 1 -x * 2 + 3x * 2 -2 r + 1 . ( 2 
By construction, the function δ (r) KPM (x -x * ) is nonnegative over [-1, 1] and we have the normalization:

1 -1 δ (r) KPM (x -x * )dx = 1 -1 δ x * (x)dx = 1.
Hence, it is a probability density function on [-1, 1] for the Lebesgue measure. It is convenient to consider the following univariate polynomial:

h r (x) = 1 + 2 r k=1 g r k T k (x)T k (x * ), (2.15) so that δ (r) KPM (x -x * ) = 1 π √ 1-x 2 h r (x).
The following facts follow directly, which we will use below for the convergence analysis of the new bounds f (r) . Lemma 2.3 For any r ∈ N the polynomial h r from (2.15) is nonnegative over [-1, 1] and

1 -1 h r (x) dx π √ 1-x 2 = 1.
In other words, h r is a probability density function for the measure π

√ 1 -x 2 -1 dx on [-1, 1].

Convergence analysis

In this section we analyze the convergence rate of the new bounds f (r) and we show the result from Theorem 1.5. We will first consider the univariate case in Section 3.1 (see Theorem 3.3) and then the general multivariate case in Section 3.2 (see Theorem 3.6). As we will see, the polynomial h r arising from the Jackson kernel approximation of the Dirac delta function, introduced above in relation (2.15), will play a key role in the convergence analysis.

The univariate case

We consider a univariate polynomial f and let x * be a global minimizer of f in [-1, 1]. As observed in Lemma 2.3 the polynomial h r from (2.15) is a density function for the measure dx π √ 1-x 2 . The key observation now is that the polynomial h r admits a Schmüdgen-type representation, of the form σ(x)+σ 1 (x)(1-x 2 ) with σ 0 , σ 1 sums-of-squares polynomials, since it is non-negative over [-1, 1]. This fact will allow us to use the polynomial h r to get feasible solutions for the program defining the bound f (r) . It follows from the following classical result (see e.g. [11, Thm 3.23 (i)]), that characterizes univariate polynomials that are nonnegative on [-1, 1]. (Note that this is a strengthening of Schmüdgen's theorem (Theorem 1.3) in the univariate case.) Theorem 3.1 (Fekete, Markov-Lukàcz) Let p(x) be a univariate polynomial of degree m. Then p(x) is nonnegative on the interval [-1, 1] if and only if it has the following representation:

p(x) = σ 0 (x) + (1 -x 2 )σ 1 (x)
for some sum-of-squares polynomials σ 0 of degree 2 m/2 and σ 1 of degree 2 m/2 -2.

We start with the following technical lemma. Lemma 3.2 Let f be a polynomial of degree d written in the Chebyshev basis as f = d k=0 f k T k , let x * be a global minimizer of f in [-1, 1] and let h r be the polynomial from (2.15). For any integer r ≥ d we have:

1 -1 f (x)h r (x) dx π √ 1 -x 2 -f (x * ) ≤ C f (r + 2) 2 , where C f = ( d k=1 |f k |) C d π 2 2 and C d is the constant from Lemma 2.2. Proof. As f = d k=0 f k T k and h r = 1 + 2 r k=1 g r k T k (x * )
T k , we use the orthogonality relationships (2.6) to obtain:

1 -1 f (x)h r (x) dx π √ 1 -x 2 = d k=0 f k T i (x * )g r k . (3.1) Combining with f (x * ) = d k=0 f k T k (x * ) gives: 1 -1 f (x)h r (x) dx π √ 1 -x 2 -f (x * ) = d k=1 f k T k (x * )(g r k -1). (3.2)
Now we use the upper bound on g r k -1 from Lemma 2.2 and the bound |T k (x * )| ≤ 1 to conclude the proof. 2

We can now conclude the convergence analysis of the bounds f (r) in the univariate case. 

f (r) -f min ≤ C f (r + 1) 2 ,
where

C f = ( d k=1 |f k |) C d π 2 2
and C d is the constant from Lemma 2.2.

Proof. Using the degree bounds in Theorem 3.1 for the sum-of-squares polynomials entering the decomposition of the polynomial h r , we can conclude that for r even, h r is feasible for the program defining the parameter f (r) and for r odd, h r is feasible for the program defining the parameter f (r+1) . Setting

C f = ( d k=1 |f k |) C d π 2 2
and using Lemma 3.2, this implies:

f (r) -f min ≤ C f (r+2) 2 for r even, and f (r) -f min ≤ C f (r+1) 2 for odd r.
The result of the theorem now follows. 2

The multivariate case

We consider now a multivariate polynomial f and we let

x * = (x * 1 , . . . , x * n ) ∈ [-1, 1] n denote a global minimizer of f on [-1, 1] n , i.e. f (x * ) = f min .
In order to obtain a feasible solution to the program defining the parameter f (r) we will consider products of the univariate polynomials h r from (2.15). Namely, given integers r 1 , . . . , r n ∈ N we define the n-tuple r = (r 1 , . . . , r n ) and the n-variate polynomial:

H r (x 1 , . . . , x n ) = n i=1 h ri (x i ). (3.3)
We group in the next lemma some properties of the polynomial H r .

Lemma 3.4

The polynomial H r satisfies the following properties:

(i) H r is non-negative on [-1, 1] n . (ii) [-1,1] n H r (x)dµ(x) = 1
, where dµ is the measure from (1.7).

(iii) H r has a Schmüdgen-type representation of the form:

H r (x) = I⊆[n] σ I (x) i∈I (1 -x 2 i ),
where each σ I is a sum-of-squares polynomial of degree at most 2 n i=1 r i /2 -2|I|.

Proof. (i) and (ii) follow directly from the corresponding properties of the univariate polynomials h ri , and (iii) follows using Theorem 3.1 applied to the polynomials h ri .

2

The next lemma is the analog of Lemma 3.2 for the multivariate case.

Lemma 3.5 Let f be a multivariate polynomial of degree d, written in the basis of multivariate Chebyshev polynomials as f = α∈N n :|α|≤d f α T α , and let x * be a global minimizer of f in [-1, 1] n . Consider r = (r 1 , . . . , r n ), where each r i is an integer satisfying r i ≥ d, and the polynomial H r from (3.3). We have:

[-1,1] n f (x)H r (x)dµ(x) -f (x * ) ≤ C f n i=1 1 (r i + 2) 2 ,
where

C f = ( α:|α|≤d |f α |) C d π 2 2
and C d is the constant from Lemma 2.2.

Proof. As f = α:|α|≤d f α T α and H r = n i=1 h (ri) (x i ) = n i=1 (1 + 2 ri ki=1 g ri ki T ki (x i ))
, we can use the orthogonality relationships (2.9) among the multivariate Chebyshev polynomials to derive:

[-1,1] n f (x)H r (x)dµ(x) = α:|α|≤d f α T α (x * ) n i=1 g ri αi .
Combining with f (x * ) = α:|α|≤d f α T α (x * ) this gives:

[-1,1] n f (x)H r (x)dµ(x) -f (x * ) = α:|α|≤d f α T α (x * )( n i=1
g ri αi -1).

Using the identity: We can now show our main result, which implies Theorem 1.5.

Theorem 3.6 Let f = α:|α|≤d f α T α be a n-variate polynomial of degree d. For any integer r ≥ n(d + 2), we have:

f (r) -f min ≤ C f n 3 (r + 1) 2 , where C f = ( α:|α|≤d |f α |) C d π 2 2
and C d is the constant from Lemma 2.2.

Proof. Write r -n = sn + n 0 , where s, n 0 ∈ N and 0 ≤ n 0 < n, and define the n-tuple r = (r 1 , . . . , r n ), setting r i = s + 1 for 1 ≤ i ≤ n 0 and r i = s for n 0 + 1 ≤ i ≤ n, so that r -n = r 1 + . . . + r n . Note that the condition r ≥ n(d + 2) implies s ≥ d and thus r i ≥ d for all i. Moreover, we have: 2 n i=1 r i /2 = 2n 0 (s + 1)/2 + 2(n -n 0 ) s/2 , which is equal to r -n + n 0 for even s and to r -n 0 for odd s and thus always at most r. Hence the polynomial H r from (3.3) has degree at most r. By Lemma 3.4 (ii),(iii), it follows that the polynomial H r is feasible for the program defining the parameter f (r) . By Lemma 3.5 this implies that

f (r) -f min ≤ [-1,1] n f (x)H r (x)dµ(x) -f (x * ) ≤ C f n i=1 1 (r i + 2) 2 . Finally, n i=1 1 (ri+2) 2 = n0 (s+3) 2 + n-n0 (s+2) 2 ≤ n (s+2) 2 = n 3 (r+n-n0) 2 ≤ n 3 (r+1) 2 , since n 0 ≤ n -1. 2 
4 Computing the parameter f (r) as a generalized eigenvalue problem

As the parameter f (r) is defined in terms of sum-of-squares polynomials (cf. Definition 1.4), it can be computed by means of a semidefinite program. As we now observe, as the program (1.8) has only one affine constraint, f (r) can in fact be computed in a cheaper way as a generalized eigenvalue problem.

Using the inner product from (2.5), the parameter f (r) can be rewritten as

f (r) = min h∈R[x] f, h such that h, T 0 = 1, h(x) = I⊆[n] σ I (x) i∈I (1 -x 2 i ), σ I ∈ Σ[x], deg(σ I ) ≤ r -2|I| ∀I ⊆ [n]. (4.1) 
For convenience we use below the following notation. For a set I ⊆ [n] and an integer r ∈ N we let Λ I r denote the set of sequences β ∈ N n with |β| ≤ r-2|I|

2

.

As is well known one can express the condition that σ I is a sum-of-squares polynomial, i.e., of the form k p k (x) 2 for some p k ∈ R[x], as a semidefinite program. More precisely, using the Chebyshev basis to express the polynomials p k , we obtain that σ I is a sum-of-squares polynomial if and only if there exists a matrix variable M I indexed by Λ I r , which is positive semidefinite and satisfies:

σ I = β,γ∈Λ I r M I β,γ T β T γ . (4.2) 
For each I ⊆ [n], we introduce the following matrices A I and B I , which are also indexed by the set Λ I r and, for β, γ ∈ Λ I r , with entries:

A I β,γ = f, T β T γ i∈I (1 -x 2 i ) , B I β,γ = T 0 , T β T γ i∈I (1 -x 2 i ) . (4.3) 
We will indicate in the Appendix how to compute the matrices A I and B I .

We can now reformulate the parameter f (r) as follows. 

f (r) = min M I :I⊆[n] I⊆[n] Tr (A I M I ) such that M I 0 ∀I ⊆ [n], I⊆[n]
Tr (B

I M I ) = 1. (4.4) 
Proof.

Using relation (4.2) we can express the polynomial variable h in (4.1) in terms of the matrix variables M I and obtain:

h = I⊆[n] β,γ∈Λ I r M I β,γ T β T γ i∈I (1 -x i ) 2 .
First this permits to reformulate the objective function f, h in terms of the matrix variables M I in the following way:

f, h = I β,γ M I β,γ f, T β T γ i∈I (1 -x 2 i ) = I β,γ M I β,γ A I β,γ = I Tr (A I M I ).
Second we can reformulate the constraint T 0 , h = 1 using:

T 0 , h = I β,γ M I β,γ T 0 , T β T γ i∈I (1 -x 2 i ) = I β,γ M I β,γ B I β,γ = I Tr (B I M I ).
From this follows that the program (4.1) is indeed equivalent to the program (4.4). 2

The program (4.4) is a semidefinite program with only one constraint. Hence, as we show next, it is equivalent to a generalized eigenvalue problem. Theorem 4.2 For I ⊆ [n] let A I and B I be the matrices from (4.3) and define the parameter:

λ (I) = max λ | A I -λB I 0 = min λ | A I x = λB I x
for some non-zero vector x .

One then has f

(r) = min I⊆[n] λ (I) .
Proof. The dual semidefinite program of the program (4.4) is given by:

sup λ | A I -λB I 0 ∀I ⊆ [n] . (4.5) 
We first show that the primal problem (4.4) is strictly feasible. To see this it suffices to show that Tr (B I ) > 0, since then one may set M I equal to a suitable multiple of the identity matrix and thus one gets a strictly feasible solution to (4.4). Indeed, the matrix B I is positive semidefinite since, for any scalars g β , β,γ

g β g γ B I βγ = [-1,1] n ( β g β x β ) 2 i∈I (1 -x 2 i )dµ(x) ≥ 0.
Thus Tr (B I ) ≥ 0 and moreover Tr (B I ) > 0 since B I is nonzero.

Moreover, the dual problem (4.5) is also feasible, since λ = f min is a feasible solution. This follows from the fact that the polynomial f -f min is nonnegative over [-1, 1] n , which implies that the matrix A I -f min B I is positive semidefinite. Indeed, using the same argument as above for showing that B I 0, we have

β,γ g β g γ (A I -f min B I ) β,γ = [-1,1] n (f (x) -f min )g(x) 2 dµ(x) ≥ 0.
Since the primal problem is strictly feasible and the dual problem is feasible, there is no duality gap and the dual problem attains its supremum. The result follows.

Numerical examples

We examine the polynomial test functions which were also used in [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF] and [START_REF] De Klerk | Bound-constrained polynomial optimization using only elementary calculations[END_REF], and are described in the appendix to this paper.

The numerical examples given here only serve to illustrate the observed convergence behavior of the sequence f (r) as compared to the theoretical convergence rate. In particular, the computational demands for computing f (r) for large r are such that it cannot compete in practice with the known iterative methods referenced in the introduction.

For the polynomial test functions we list (Table 1) the values of f (r) for even r up to r = 48, obtained by solving the generalized eigenvalue problem in Theorem 4.2 using the eig function of Matlab. Recall that for step r of the hierarchy the polynomial density function h is of Schmüdgen type and has degree r.

For the examples listed the computational time is negligible, and therefore not listed; recall that the computation of f (r) for even n requires the solution of 2 n generalised eigenvalue problems indexed by subsets I ⊂ [n], where the order of the matrices equals n+ r/2-|I| n ; cf. Theorem 4.2. We note that the observed rate of convergence seems in line with the O(1/r 2 ) error bound.

As a second numerical experiment, we compare (see Table 2) the upper bound f (r) to the upper bound f (r) K defined in (1.2). Recall that the bound f (r) K corresponds to using sum-of-squares density functions of degree at most r and the Lebesgue measure. As shown in [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF], the computation of f (r) K may be done by solving a single generalized eigenvalue problem with matrices of order n+ r/2-|I| n . Thus the computation of f (r) K is significantly cheaper than that of f (r) . It is interesting to note that, in almost all cases, f (r) > f (r) K . Thus even though the measure dµ(x) and the Schmüdgen-type densities are useful in getting improved error bounds, they mostly do not lead to improved upper bounds for these examples. This also suggests that it might be possible to improve the error result f

f (r) K f (r) f (r) K f (r) f (r) K f (r) f (r) K f (r) 6 
(r) K -f min = O(1/ √ r) in [4], at least for the case K = [-1, 1] n .
Finally, it is shown in [START_REF] De Klerk | Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization[END_REF] that one may obtain feasible points corresponding to bounds like f (r) through sampling from the probability distribution defined by the optimal density function. In particular, one may use the method of conditional distributions (see e.g., [12, Section 8.5.1]). For K = [0, 1] n , the procedure is described in detail in [4, Section 3].

we consider the quotient

|t (k+1) k+1-2m | |t (k) k-2m | = 2 k-2m (k + 1)(k -m)! m! (k -2m)! 2 k-1-2m k(k -m -1)! m! (k + 1 -2m)! = 2 • k + 1 k • k -m k + 1 -2m ,
which is equal to 2 if m = 0, and at least 1 if m > 0 since every factor is at least 1. Thus, for m = ψ(k), we obtain:

|t (k) k-2ψ(k) | ≤ |t (k+1) k+1-2ψ(k) |. (A.2) Consider the map φ : [4, ∞) → R, k → φ(k) = 1 8 4k -5 - √ 8k 2 -7 , so that ψ(k) = φ(k) . The map φ is monotone increasing, since its derivative φ (k) = 1 8 4 -16k 2 √ 8k 2 -7 = √ 8k 2 -7-2k 2 √ 8k 2 -7
is positive for all k ≥ 4. Hence, we have: ψ(k) ≤ ψ(k + 1). Then, in view of (A.1) (and the comment thereafter), we have |t T αi (x i )T βi (x i )T γi (x i )(1 -

x 2 i )dµ(x i ) • i ∈I 1 -1
T αi (x i )T βi (x i )T γi (x i )dµ(x i ).

Thus we can now assume that we are in the univariate case. Suppose we are given integers a, b, c ≥ 0 and the goal is to evaluate the integrals T a (x)T b (x)T c (x)(1 -x 2 )dµ(x).

We use the following identities for the (univariate) Chebyshev polynomials: Moreover, using the fact that 1 -x 2 = (1 -T 2 )/2, we get 

T a T b = 1 

Figure 1 :

 1 Figure 1: Graphs of h * on [-1, 1] 2 (deg(h * ) = 12, 16) for the Motzkin polynomial.

  (r) KPM is a positive linear operator, i.e., a linear operator that maps the set of nonnegative integrable functions on [-1, 1] into itself. Thus the general (Korovkin) convergence theory of positive linear operators applies and one may conclude the uniform convergence result lim r→∞ f -f (r) KP M ∞ = 0 for any > 0, where f -f (r) KP M ∞ = max -1+ ≤x≤1-|f (x)-f (r) KPM (x)|. (One needs to restrict to subintervals of [-1, 1] because of the denominator in the kernel K r .)

For all 0

 0 ≤ k ≤ d the coefficients of the Chebyshev polynomials T k , U k-1 can be bounded by an absolute constant depending only on d. Namely, by Lemma 2.1, |t (k) i |, |u (k) i | ≤ c d for all 0 ≤ i ≤ k and k ≤ d, where c d is as defined in (2.12). As k ≤ d ≤ r, we have r + 2 -k ≤ r + 2 and thus |p i | ≤ 1 + 2c d for all 0 ≤ i ≤ k ≤ d. Moreover, using (2.13), |q i | ≤ d(c d + 1) for all 0 ≤ i ≤ k -1. Putting things together we can now derive: 1

Figure 2 :

 2 Figure 2: The Jackson kernel approximation δ (r) KPM to the Dirac delta at x * = 0 for r = 8, 16, 32, 64. The corresponding scatterplots show the values of the Gaussian density function in (2.14) with x * = 0.

Theorem 3 . 3

 33 Let f = d k=0 f k T k be a polynomial of degree d. For any integer r ≥ d we have:

  k α k and the fact that |g r k α k | ≤ 1, we get: | n i=1 (g ri αi -1)| ≤ n j=1 |g rj αj -1|. Now use |T α (x * )| ≤ 1 and the bound from Lemma 2.2 for each |1 -g rj αj | to conclude the proof. 2

Lemma 4 . 1

 41 Let A I and B I be the matrices defined as in (4.3) for each I ⊆ [n]. Then the parameter f (r) can be reformulated using the following semidefinite program in the matrix variables M I (I ⊆ [n]):

( 1 -x 2 i ) = i∈I 1 - 1

 111 m+1) | if m ≤ ψ(k + 1), and thus|t (k+1) k+1-2ψ(k) | ≤ |t (k+1) k+1-2ψ(k+1) |. (A.3)Combining (A.2) and (A.3), we obtain the desired inequality: |t(k) k-2ψ(k) | ≤ |t (k+1) k+1-2ψ(k+1) |.2B. Useful identities for the Chebychev polynomialsRecall the notation dµ(x) to denote the Lebesgue measure with the function order to compute the matrices A I and B I we need to evaluate the following integrals:T α , T β T γ i∈I

1 - 1 T

 11 a (x)T b (x)T c (x)dµ(x) and 1 -1

2 (Using the orthogonality relation 1 - 1 T 1 - 1 T

 21111 T a+b + T |a-b| ), T a T b T c = 1 4 (T a+b+c + T |a+b-c| + T |a-b|+c + T ||a-b|-c| ), so that T a T b T c T 2 = 1 8 (T a+b+c+2 + T |a+b+c-2| + T |a+b-c|+2 + T ||a+b-c|-2| +T |a-b|+c+2 + T ||a-b|+c-2| + T ||a-b|-c|+2 + T |||a-b|-c|-2|). a dµ(x) = δ 0,a , we obtain that a T b T c dµ(x) = 1 4 (δ 0,a+b+c + δ 0,a+b-c + δ 0,|a-b|+c + δ 0,|a-b|-c ).

1 - 1 T 1 - 1 T 1 - 1 T 1 - 1 T 1 - 1 Tx 2 2 + x 2 1 x 4 2 ) -48x 2 1 x 2 2 + 1 = 4 ( 4 Rosenbrock

 1111111111222144 a T b T c (1 -x 2 )dµ(x) = 1 2 a T b T c (1 -T 2 )dµ(x) = 1 2 a T b T c dµ(x) -1 2 a T b T c T 2 dµ(x),and thus a T b T c (1 -x 2 )dµ(x) = 1 8 (δ 0,a+b+c + δ 0,a+b-c + δ 0,|a-b|+c + δ 0,|a-b|-c ) a+b+c-2 + δ 0,|a+b-c|-2 + δ 0,|a-b|+c-2 + δ 0,||a-b|-c|-2 ).C. Test functionsBooth Function n = 2, f min = f (0.1, 0.3) = 0, f ([-1, 1] 2 ) ≈ [0, 2 500] f (x) = (10x 1 + 20x 2 -7) 2 + (20x 1 + 10x 2 -5) 2 = 250(T 2 (x 1 ) + T 2 (x 2 )) + 800 T 1 (x 1 )T 1 (x 2 ) -340 T 1 (x 1 ) -380 T 1 (x 2 ) + 574 Matyas Function n = 2, f min = f (0, 0) = 0, f ([-1, 1)] 2 ) ≈ [0, 100] f (x) = 26(x 2 1 + x 2 2 ) -48x 1 x 2 = 13(T 2 (x 1 ) + T 2 (x 2 )) -48T 1 (x 1 )T 1 (x 2 ) + 26 Motzkin Polynomial n = 2, f min = f (± 1 2 , ± 1 2 ) = 0, f ([-1, 1)] 2 ) ≈ [0, 80] f (x) = 64(x 4 1 T 4 (x 1 ) + T 4 (x 1 )T 2 (x 2 ) + T 2 (x 1 )T 4 (x 2 ) + T 4 (x 2 )) + 20 T 2 (x 1 )T 2 (x 2 ) + 16 (T 2 (x 1 ) + T 2 (x 2 )) + 13 Three-Hump Camel Function n = 2, f min = f (0, 0) = 0, f ([-1, 1)] 2 ) ≈ [0,2000] (x 1 ) + 58725 64 T 2 (x 1 ) + 25 T 1 (x 1 )T 1 (x 2 ) + 12.5 T 2 (x 2 ) + 14525 24 Styblinski-Tang Function n = 2, 3, f min = -39.17 • n,f ([-1, 1)] 2 ≈ [-70, 200] Function n = 2, 3, f min = 0, f ([-1, 1)] 2 ) ≈ [0, 4 000] 048 • x j+1 -2.048

Table 1 :

 1 The upper bounds f (r) for the test functions.

	r	Booth	Matyas Motzkin Three-Hump	Styblinski-Tang n = 2 n = 3	Rosenbrock n = 2 n = 3
	6	145.3633	4.1844	1.1002	24.6561	-27.4061	157.7604	
	8	118.0554	3.9308	0.8764	15.5022	-34.5465 -40.1625	96.8502	318.0367
	10	91.6631	3.8589	0.8306	9.9919	-40.0362 -47.6759	68.4239	245.9925
	12	71.1906	3.8076	0.8098	6.5364	-47.4208 -55.4061	51.7554	187.2490
	14	57.3843	3.0414	0.7309	4.5538	-51.2011 -64.0426	39.0613	142.8774
	16	47.6354	2.4828	0.6949	3.3453	-56.0904 -70.2894	30.3855	111.0703
	18	40.3097	2.0637	0.5706	2.5814	-58.8010 -76.0311	24.0043	88.3594
	20	34.5306	1.7417	0.5221	2.0755	-61.8751 -80.5870	19.5646	71.5983
	22	28.9754	1.4891	0.4825	1.7242	-63.9161 -85.4149	16.2071	59.0816
	24	24.6380	1.2874	0.4081	1.4716	-65.5717 -88.5665	13.6595	49.5002
	26	21.3151	1.1239	0.3830	1.2830	-67.2790	11.6835	
	28	18.7250	0.9896	0.3457	1.1375	-68.2078	10.1194	
	30	16.6595	0.8779	0.3016	1.0216	-69.5141	8.8667	
	32	14.9582	0.7840	0.2866	0.9263	-70.3399	7.8468	
	34	13.5114	0.7044	0.2590	0.8456	-71.0821	7.0070	
	36	12.2479	0.6363	0.2306	0.7752	-71.8284	6.3083	
	38	11.0441	0.5776	0.2215	0.7129	-72.2581	5.7198	
	40	10.0214	0.5266	0.2005	0.6571	-72.8953	5.2215	
	42	9.1504	0.4821	0.1815	0.6070	-73.3011	4.7941	
	44	8.4017	0.4430	0.1754	0.5622	-73.6811	4.4266	
	46	7.7490	0.4084	0.1597	0.5220	-74.0761	4.1070	
	48	7.1710	0.3778	0.1462	0.4860	-74.3070	3.8283	

Table 2 :

 2 Comparison of the upper bounds f (r) and f (r) K for Booth, Matyas, Three-Hump Camel and Motzkin Functions.

	r	Booth Function	Matyas Function	Three-Hump Camel Function	Motzkin Polynomial

  2 • x 2 j ) 2 + (2.048 • x j -1) 2 • 2.048 4 T 4 (x j ) -100 • 2.048 3 T 2 (x j )T 1 (x j+1 ) + (0.5 + 50 • 2.048 2 )2.048 2 T 2 (x j ) +50 • 2.048 2 T 2 (x j+1 ) -4.096 T 1 (x j ) -100 • 2.048 3 T 1 (x j+1 ) + 1 + 2.048 2 (37.5 • 2.048 2 + 50.5)

	n-1	
	=	12.5
	j=1	

we show how the new bounds f (r) can be computed as generalized eigenvalue problems and in Section

we conclude with some numerical examples illustrating the behaviour of the bounds f (r) .

Appendix

A. Proof of Lemma 2.1

We give here a proof of lemma 2.1, which we repeat for convenience.

Lemma 2.1 For any fixed integer k > 1, one has:

where

Moreover, the right hand side of the equation increases monotonically with increasing k.

Proof. We recall the representation of the Chebyshev polynomials in the monomial basis:

So, concretely, the coefficients are given by

It follows directly that t

2 and all k > 1 which implies the inequality on the left hand side of (2.7).

Now we show that the value of max

Observe that this quotient is at most 1 if and only if m 1 ≤ m ≤ m 2 , where we set

Observe furthermore that m 1 ≥ 0 if and only if k ≥ 4, and m 2 ≥ k 2 for all k > 1.

Therefore, in the case k ≥ 4, max 

Finally we show that the rightmost term of (2.7) increases monotonically with k. We show the inequality: |t