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Abstract. The HMQV protocol is under consideration for IEEE P1363

standardization. We provide a complementary analysis of the HMQV
protocol. Namely, we point a Key Compromise Impersonation (KCI)
attack showing that the two and three pass HMQV protocols cannot
achieve their security goals. Next, we revisit the FHMQV building blocks,
design and security arguments; we clarify the security and efficiency sep-
aration between HMQV and FHMQV, showing the advantages of FH-
MQV over HMQV.

Keywords: Authenticated Key Exchange, FHMQV, HMQV, KCI At-
tack, Security Model.

1 Introduction

Designing authenticated key agreement protocols is a notoriously subtle task.
Bellare and Rogaway proposed a new approach for the analysis of key agreement
protocols [3], which was later refined in many security models, including, and
among others the CK [6], eCK [20] and seCK [29] models.

The HMQV protocol [16], inspired by the famous MQV [21] protocol, was
shown secure in a variant of the CK model, termed here CKHMQV. HMQV was
designed to resist a variety of attacks and was shown to provably achieve its
security attributes. Among others, Krawczyk was able to show that HMQV re-
mains secure even if public keys are not tested to be of correct order (G–tests).
As the computational cost of these tests may be significant, avoiding them may
induce a significant efficiency improvement. With this efficiency improvement,
HMQV was proposed for standardization in P1363 [18]. The HMQV P1363 sub-
mission states that the tests to ensure ephemeral keys to be of correct order
“are required only in settings where ephemeral exponents are more vulnerable
to attack than long–term secrets. In all other cases, i.e., where ephemeral and
long–term secrets are equally protected, HMQV can safely skip these tests, thus
providing superior performance especially when the cofactor is large” [18, p. 2].

In [23,24], some attacks against HMQV are proposed to recover the vic-
tim’s static private key; the attacks can be launched in the case the static and
ephemeral keys are not tested to be of correct order. Even if the attack against
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the one–pass HMQV is realistic, the attacks proposed against the two and three
pass variants seem less realistic, as the attacker needs to learn some ephemeral
private keys from the target victim. The work [25] delves further in the effects of
omitting public key validation in HMQV, and some new attacks are presented in
the cases static public keys only or ephemeral public keys only are tested to be
of correct order; however the attacks are proposed in groups which are not used
in practice. In [7], Chalkias, et al. explore KCI against the One Pass (H)MQV
protocols and show that these protocols are vulnerable to KCI attacks. In [27,28]
Sarr et al. explore the consequences of secret exponent leakage in a HMQV ses-
sion. They show that (partial) leakage on ephemeral secret exponents lead to
impersonation and man–in–the–middle attacks. Basing on theses findings they
propose the FHMQV protocol they show to confine the effects of such leakages.

In this paper, we investigate the effects of omitting ephemeral key validation
in the HMQV protocol. We show that the (two and three pass) HMQV pro-
tocol(s) are vulnerable to KCI, unless further restrictions are considered in the
underlying group. Namely, in the case the group keys are supposed to belong is
a subgroup of a DSA group GF (q), with (q −1) divisible by a sufficiently “large”
integer, without G–tests, HMQV is vulnerable to a KCI; our attack invalidates
the HMQV resistance to KCI, stated in [16, Theorem 18 and Lemma 21]. A
main feature of the KCI attack we present is that it requires the entity to be
impersonated to omit ephemeral key validation only once.

Besides, we re–examine the FHMQV building blocks, showing that contrary
to what is suggested in [22] changing the interaction order has no effect on the
building blocks security. We clarify also the separation between FHMQV and
HMQV, showing the security and efficiency improvements in FHMQV.

This paper is organized as follows. In §2, we revisit the HMQV protocol,
pointing a KCI attack. In §3 we revisit the FXCR scheme, showing that its
security is not dependent to interaction order. The FDCR scheme is revised
in §4. In §5 we clarify the separation between FHMQV and HMQV.

The following notations are used in this paper H is λ bit hash function,
where λ is the security parameter; H̄ is a l = λ/2 bits hash function. G is a
multiplicatively written group, G∗ is the set of non–identity elements in G. If n
is an integer, |n| denotes its bit–length; we refer to the length of a list L by |L|.
The symbol ∈R stands for “chosen uniformly at random in”. For two bit strings
m1 and m2, m1||m2 denotes the concatenation of m1 and m2. If x1, x2, · · · , xk are
objects belonging to different structures (group, bit–string, etc.) (x1, x2, · · · , xk)
denotes a representation such that each element can be univocally parsed.

2 Key Compromise Impersonation against HMQV

A protocol is said to be vulnerable to KCI impersonation, if an attacker who
learns the long term secret of a party, say Â, is able to impersonate another party,
say B̂, to Â. When a protocol is vulnerable to such attacks, a static key leakage
may lead to harms that go far beyond the sole ability to impersonate the static
key’s owner. For instance, in the case Â is a bank client and B̂ a bank server,
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the attacker may impersonate the server to the client to collect more sensitive
information (such as a credit card number or a security code, for instance). As
another example, B̂ may be a trusted software update server, in this case, the
attacker may impersonate the server to Â to make him/her install a malicious
software (spyware, worm, virus, etc.), and gain much more sensitive information,
such as passwords, credit card numbers, etc. KCI resilience is then an important
security attribute, particularly for protocols intended to be standardized, such
as HMQV.

In this section, we present a KCI against the three–pass HMQV protocol.
About prime–order tests, we show that without these tests HMQV is vulnerable
to KCI, unless further restrictions are specified about the underlying group. This
shows also that the HMQV KCI resilience stated in [16, Theorem 18 on p. 40
and Lemma 21 on p. 41] does not hold.

Let q be a prime, p a prime dividing (q − 1), and G an element of GF (q) of
order p. Let Â and B̂ be two parties with respective static key pairs (a, A = Ga),
(b, B = Gb) with a, b ∈ {1, · · · , p − 1}. An execution of the three–pass HMQV
between Â and B̂ is as in Protocol 1; if any verification fails the execution aborts.

Protocol 1 Three Pass HMQV Key Exchange

I) The initiator Â does the following:
a) Choose x ∈R {1, · · · , p − 1} and compute X = Gx.
b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X), B̂ does the following:
a) Verify that X ∈ GF (q) \ {0, 1}.
b) Choose y ∈R {1, · · · , p − 1} and compute Y = Gy.
c) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
d) Compute sB = y + eb mod p, σB = (XAd)sB , K = H(σB , 1) and

Km = H(σB , 0).
e) Send

(

B̂, Â, Y, MACKm (“1”)
)

to Â.

III) At receipt of
(

B̂, Â, Y, MACKm (“1”)
)

, Â does the following:
a) Verify that Y ∈ GF (q) \ {0, 1}.
b) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
c) Compute sA = x + da mod p, σA = (Y Be)sA , K = H(σB , 1) and

Km = H(σB , 0).
d) Validate MACKm (“1”).
e) Send

(

Â, B̂, X, Y, MACKm (“0”)
)

to B̂.

IV) At receipt of
(

Â, B̂, X, Y, MACKm (“0”)
)

, B̂ validates MACKm (“0”).
V) The shared session key is K.

The HMQV protocol is shown secure in a variant of the CK model, the CKHMQV

model [16] (see [8] for a comparison between the CK, CKHMQV, and eCK mo-
dels).

Suppose that q and p are primes such that p | (q − 1). Let G′ be a primi-

tive element in GF (q); the element G = G′(q−1)/p has order p, and generates
a group G of order p. For concreteness, suppose in addition that (|q|, |p|) ∈
{(1024, 160), (2048, 224), (3072, 256)}. The complexity of the Number Field Sieve
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for prime field discrete logarithm3 [13,30,31] is

Lq[1/3, 3

√

64/9 + o(1)] ≈ exp
((

3

√

64/9 + o(1)
)

(ln (q))1/3 (ln ln (q))2/3
)

.

Hence, omitting the term o(1) we have, Lq[1/3, 3

√

64/9] > 287 when |q| = 1024

and Lq[1/3, 3

√

64/9] > 2117when |q| = 2048 and Lq[1/3, 3

√

64/9] > 2139 when

|q| = 3072. So, we have Lq[1/3, 3

√

64/9] > p1/2; the complexity of the DLP on G
reduces then to that of the generic attacks.

Let λ = |p|, t = λ/3 and suppose in addition, that 2t|(q−1). Primes satisfying
these conditions can be efficiently found using the following process4: (i) choose
a prime p such that |p| = λ, and (ii) set α = 2t · p; then (iii) try to find an integer
s with bit–length (|q| − |α|), such that q = s · α + 1 is prime. By the theorem of
Dirichlet on primes in arithmetic progression [11], we know that an infinity of
primes in the form s ·α+1 exist; moreover the interval

[

2|q|, 1.048 · 2|q|
]

contains

at least one prime from the progression [10]. Hence the interval
[

2|q|, 2|q|+1
]

contains at least 14 of such primes (which is very pessimistic).
An example of such primes for (|q|, |p|) = (3072, 256) is

q3072 = 291 · 37 · 57 · 118 · 173 · 376 · 672 · 1314 · 2574 · 5214 · 10315 · 2053·
40997 · 82094 · 164115 · 327714 · 655374 · 131101 · 2621475 · 5243097·
10485835 · 20971695 · 41943192 · 8388617 · 167772594 · 335544676·
671088792 · 1342177575 · 2684354593 · 5368709238 · 10737418275·
21474836596 · 42949673115 · 85899346094 · 171798692097 · p256 + 1, with

p256 = 578960446186580977117854925043439539266349923328202820197287\
92003956564820063.

Following the KCI scenario considered in [16, pp. 40–42], suppose that Â and
B̂ are two honest parties, and A an attacker which knows Â’s static key a, and
aims to impersonate B̂ to Â. Suppose that B̂ chooses his/her ephemeral keys
in G∗ as prescribed.

The attacker can proceed as follows: (i) using an invalid ephemeral public
key, he/she learns the ephemeral secret exponent sB at B̂ in a three pass HMQV5

session, as described, in Attack 2, and (ii) using sB, the attacker impersonates
indefinitely B̂ to Â.

Attack 2 Online stage of an Ephemeral Secret Exponent Recovering

1) Compute X = G′(q−1)/2t

.
2) Send (Â, B̂, X) to B̂ to initiate a three–pass HMQV session.
3) Intercept B̂’s response to Â, (B̂, Â, Y, tagB̂ = MACKm

(“1”)) and halt.

In a three–pass HMQV session, the key used at the responder for MACing is
Km = H(σ, 0) with σ =

(

XAd
)sB

wherein sB = y+eb mod p, with d = H̄(X, B̂)

3 This is to date the best sieving algorithm for discrete logarithm over a prime field.
4 It takes few seconds on a i7–4790K to find such primes.
5 To launch this phase in the two–pass HMQV, the attacker has simply to wait, for

instance, that B̂ uses the key to authenticate some value he/she knows.
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and e = H̄(Y, Â). As

σ =
(

XAd
)sB

= XsB (Y Be)
da

,

the attacker computes σ0 = (Y Be)
da

and σ1i
= Xi and K ′

i = H(σ1i
σ0, 0), for

i = 1, 2, 3, · · · , 2t until MACK′

i
(“1”) = tagB̂ . By this exhaustive search, the at-

tacker finds the t least significant bits of sB . Then, using the relation

σ0 = (Y Be)
da

= (Ad)sB ,

the attacker recovers the remaining bits of sB (recall that t = λ/3) using

O
(

2(λ−t)/2
)

= O
(

2t
)

operations [12, §B]. And then, the whole offline stage

requires O
(

2t
)

operations. The rough computational cost of the attack for dif-
ferent values of λ, in the case t = λ/3, are given hereunder.

Value of λ Rough computational cost

160 254

224 275

256 286

As a concrete example, for λ = 224 (recall that λ = |p|) we have t = 75, then
recovering sB requires roughly 275 operations, which is far from the 2112 oper-
ations required for the discrete logarithm problem, and not out of reach of our
computational capabilities [14,19].

From a knowledge of sB and the ephemeral public key Y generated by B̂,
the attacker can indefinitely impersonate B̂ to Â, in both the two and three
pass HMQV variants [27]. We stress that the attacker cannot recover B̂’s static
private key from sB ; this shows that for any primes p and q such that p divides
(q −1), 2t divides (q −1) and max{2(|p|−t)/2, 2t} operations are not out of reach,
omitting ephemeral key validation only once is sufficient for an effective KCI
attack. As the attacker never learns an ephemeral private key, this invalidates
the claim that public key validation is required in the HMQV protocol “only in
settings where ephemeral exponents are more vulnerable to attack than long–
term secrets” [18]. Also, the “minimal requirement for a secure key–exchange ...
that the attacker, not knowing the private key of a party B̂, should not be able
to impersonate B̂” [16, p. 18] is not achieved.

About the factorization of q − 1. We presented our attack in the case a
sufficiently large power of 2 divides (q − 1), however the attack can be launched
as long as (q − 1) divisible by a “sufficiently large” integer. We stress that in
real word settings, to avoid “sieving” attacks [26], q is chosen to be much larger
than p; for instance the NIST recommends [1] the following pairs for (|q|, |p|) :
(1024,160), (2048,224), and (3072,256). Hence for real word domain parameters,
it is likely that q has a factor of bit–length ≈ |p|/3. If M is a divisor of q −1 with
bit–length λ/3 (recall that λ = |p|), the element X = G′(q−1)/M has order M ,
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and can be used as outgoing ephemeral key in the online stage (Attack 2). By
exhaustive search, β1 = sB mod M can be found using M operations. Then, as
sB = y + eb mod p = β2M + β1 mod p, with |β2| 6 2λ/3, from the relation

σ0 = (Y Be)
da

= (Ad)sB = (Ad)β2M+β1 , one obtains σ0A−dβ1 = (AdM )β2 ; the
remaining part β2 can then be recovered using O(2λ/3) operations [12]. The
attack can then be launched for any divisor M of q − 1 of bit–length t such that
O(max{2(λ−t)/2, 2t}) operations are not out of reach.

2.1 On the HMQV Security Reduction

The KCI attack is totally well grounded in the CKHMQV model; a natural ques-
tion is then how can it co–exist with the HMQV security reduction.

The attack is rooted in the interpretation of the XCR security reduction in
the analysis of the DCR scheme. In fact, a DCR signature is an XCR signature
by B̂ (resp. Â) with the challenge XAd (resp. Y Be). As the DCR reduction
uses the XCR reduction [16, pp. 20–25], wherein challenges are supposed to
belong to G∗, it becomes a requirement that both XAd and Y Be belong to G∗.
Hence, when KCI is considered, namely, when a is known to the attacker, the
security reduction leads to CDH(X, B). Unfortunately, when X 6∈ G∗, there is
no guarantee that computing CDH(X, B) is hard. As the core of the HMQV
protocol is the DCR scheme, it then becomes also a requirement that ephemeral
keys be tested for membership in G∗. This point was missed in the analysis of
the HMQV protocol and explains the co–existence of the attack and the security
reduction in [16].

We stress that contrary to the DCR and XCR schemes, the FDCR signa-
ture of Â and B̂ on messages m1, m2 and challenges X and Y is not a FXCR
signature of Â (resp. B̂) on the message m2 (resp. m1) and challenge Y Be

(resp. XAd) [28]. Also, the attack does not apply to protocols that mandate
ephemeral key validation, such as MQV [21] and FHMQV [28].

Nonetheless, in the case of MQV, when ephemeral keys are not validated,
the attack can be launched. In this case, as the ephemeral secret exponents
sA = x + (X̃ mod 2l)a and sB = y + (Ỹ mod 2l)b, where X̃ is the integer
representation of X, are not tied to the peer’s identity, the attacker can not
only impersonate B̂ to Â, but to any party. Moreover, there is no need for the
attacker to learn an honest party’s static key, the attacker can use his/her own
static key together with an invalid ephemeral key.

In the case of FHMQV, which is resilient to ephemeral secret exponent leak-
age, we do not know how the attack can be launched. However, if ephemeral
keys are not validated and ephemeral private key leakage is considered at the
victim B̂, the attacker can disclose the victim’s static private key, in both MQV,
HMQV and FHMQV.

3 FXCR Security in the Reversed Interaction Order

In this section, we revisit the FXCR scheme [27], clarifying its advantages over
the XCR scheme. We show also that the recent critics from [22] about the FXCR
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security reduction (which is the main ingredient in FHMQV security arguments)
are erroneous. As already reported in [27], even if the ephemeral keys are tested
for membership in G∗, the HMQV protocol is sensitive to partial leakage of
the ephemeral exponents sA and sB. This observation lead to the design of the
FXCR scheme.

Definition 1 (FXCR Scheme). Let B̂ be an entity with public key B ∈ G∗.
B̂’s signature on a challenge X provided by a verifier Â together with a mes-

sage m is FSigB̂ = (Y, Xy+H̄(Y,X,m)b). The verifier accepts a pair (Y, σ) as a

valid signature if
(

Y BH̄(Y,X,m)
)x

= σ.

From [27], it is shown that no efficient attacker, even if given the secret exponent
sB at each signature generation can forge a valid FXCR signature, unless with
negligible probability. The authors of [22]6 consider a reversed interaction order
between the signer and the verifier and claim that the FXCR security reduction
is flawed, as the simulation becomes invalid in this case. Namely, if the challenge
is provided to the signer after it generates Y , the security reduction does not
hold.

Strictly speaking changing the interaction order defines another signature
scheme; and the security reduction may become inapplicable for the new scheme.
Furthermore, even if the interaction order is changed, all the security attributes
claimed in [27] about the FXCR scheme remain valid; and contrary to what is
suggested in [22], no additional Gap DH assumption is required. We still denote
the variant of the signature scheme obtained by changing the interaction order
by FXCR and consider a signer B̂ and a verifier Â interacting as described in
Figure 3.

Figure 3 FXCR Interactions for Signature Generation

1) At signature request with a message m, B̂ generates Y ∈ G∗ and provides
Â with (m, Y, B).

2) Â chooses x ∈R {1, · · · , p − 1} and provides B̂ with (m, X = Gx, Y, B).
3) B̂ verifies that X ∈ G∗. If the verification succeeds, it provides Â with

(m, X, Y, B, σ, sB) wherein σ = XsB and sB = y + H̄(Y, X, m)b.

4) The verifier accepts B̂’s signature as valid if
(

Y BH̄(Y,X,m)
)x

= σ.

We stress that the verifier is provided also with the secret exponent sB ; this
models total secret exponent leakage in each signature generation.

Definition 2 (FXCR Security). The FXCR scheme is said to be secure, if
no efficient attacker can succeed in the game in Figure 4 with non–negligible
probability.

6 Their abstract starts with “HMQV is one of the most efficient (provably secure) au-
thenticated key–exchange protocols based on public–key cryptography, and is widely
standardized.” To date, we are not aware of any standardization body which has al-
ready adopted the HMQV protocol.
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Figure 4 The FXCR Security Game

1) The attacker A is given a public key B, a challenge X0, together with a
signing oracle as described in Figure 3, and also a hashing oracle.

2) The attacker halts with output (0, 0, 0, 0, 0) to indicate a failure, or a
quintuple (m0, X0, Y0, B, σ0) such that
a) (Y0, σ0) is a valid signature with respect to the public key B and

message–challenge pair (m0, X0), and
b) (Y0, σ0) is a fresh signature, i. e., (Y0, σ0) was never generated by B̂

on signature request on (m0, X0).

Notice that contrary to [16, §4.1], which requires that “the pair (Y0, m0) did
not appear in any of the responses of B̂”, we use the minimal requirement that
(Y0, σ0) was not generated by the signer on the message–challenge pair (m0, X0).

Theorem 1. Under the Computational Diffie–Hellman (CDH) assumption in G
and the Random Oracle (RO) model, the FXCR scheme is secure in the sense
of Definition 2.

Proof. As the attacker is supposed to be polynomial in |p|, let P be a polynomial
and T = P (|p|) an upper bound on the number of digest queries on messages with
format (Y, Z, m) with Y, Z ∈ G∗, the attacker issues after it receives (m, Y, B)
from the signing oracle (step 1 of Figure 3) and before it provides the signing
oracle with its challenge (m, X, Y, B) (step 2 of Figure 3). Also, we suppose
that the number of signature queries the attacker issues is upper bounded by
L = Q(|p|) for some polynomial Q.

To lighten the presentation, we suppose that the attacker behaves as follows.
First, for each signature generation, the attacker issues exactly T = P (|p|) digest
queries on messages with format (Y, Z, m), with Z ∈ G∗, after he/she receives
(m, Y, B) from the signing oracle, and before he/she provides the signing oracle
with the challenge (m, X, Y, B). The attacker may discard digest values with no
interest. Second, among the digest queries the attacker issues, one query is on
(Y, X, m), where X is the challenge to be submitted to the signing oracle. Third,
the attacker never submits to the hashing oracle the same message twice (the
attacker can keep track of his/her previous digest queries).

We stress that the attacker we consider remains polynomial in |p| and from
any efficient attacker A′ one can derive an efficient attacker A which behaves
as described and succeeds with the same probability than A′. The attacker A
behaves exactly as A′ except that for signature generation, after he/she receives
(m, Y, B) from the signing oracle and before he/she provides B̂ with the chal-
lenge X, he/she ensures that T digest queries on messages with format (Y, Z, m),
including one query on (Y, X, m), are issued. A ignores the digest values A′

does not issue; he/she remains polynomial and has the same success probability
than A′.

The attacker’s interactions with the signing and hashing oracles are summa-
rized in Figure 5; without loss of generality, we omit digest queries of other kinds
the attacker may issue between consecutive steps of Figure 5.
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Figure 5 Modified queries for Signature Generation

1) For the j–the signature query, activate the signing oracle with a message
mj to obtain (mj , Yj , B).

2) Generate a challenge Xj ∈ G∗ and issue T digest queries on messages with
format (Yj , Zj,i, mj)i∈{1,··· ,T } with one of the Zj,i’s being the challenge Xj

to be submitted to the signing oracle.
3) Provide the signing oracle with (mj , Xj , Yj , B).
4) And receive the signature (mj , Xj , Yj , B, σj , sj,B) from the signing oracle.

Let Pr(SuccA) denote the probability that A succeeds in the FXCR security
game, and V = {1, · · · , T}L be the set of L–uples of elements of {1, · · · , T}. We
denote by V the random variable that takes values in V and describes the digest
queries at step 2 of Figure 5 wherein the attacker provides the hashing oracle
with the message (Yj , Xj , mj) (Xj being the challenge to be submitted to the
signing oracle). Namely, for v = (v1, · · · , vL) ∈ V, we denote by Pr(V = v) the
probability that for all j ∈ {1, · · · , L}, the vj–th digest query at step 2 in the
j–th signature generation, Zj,vj

equals the challenge Xj ; i. e. Pr(V = v) denotes
the probability that the attacker provides the signing oracle with challenge Z1,v1

in the first signature query, and Z2,v2
as a challenge in the second signature

query, and so forth. For v ∈ V, we say that v is possible if Pr(V = v) is non–zero
and denote by Poss(V) the subset of V consisting of possible v’s.
The probability of success of the adversary A is

Pr(SuccA) =
∑

v∈Poss(V)

Pr(SuccA ∩ V = v)

=
∑

v∈Poss(V)

Pr(SuccA | V = v) Pr(V = v)

6
∑

v∈Poss(V)

(

max
v∈Poss(V)

Pr(SuccA | V = v)

)

Pr(V = v)

6 max
v∈Poss(V)

Pr(SuccA | V = v). (1)

It then suffices to show that for all v ∈ Poss(V), Pr(SuccA | V = v) is negligible.
Suppose there is v such that Pr(SuccA | V = v) is non–negligible. Using A,
we show the existence of an efficient CDH solver S which succeeds with non–
negligible probability. The solver works as in Figure 6.
The simulator is efficient, moreover it provides a consistent simulation; and un-
der the RO model, this simulated environment is indistinguishable from a real
one. The probability that the attacker provides a valid forgery without issuing
H̄(Y0, X0, m0) is 2−l. Hence, in this simulation, the attacker succeeds with non–
negligible probability. From the General Forking Lemma [2], the probability the
attacker succeeds in the simulation and in the repeat experiment is

Pr(Succ2) > Pr(SuccA | V = v)

(

Pr(SuccA | V = v)

q
− 2−l

)

,
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Figure 6 A CDH solver S from A

Run of A:
1) When S is activated with a message mj , it does as follows:

a) Choose sj,B ∈R {1, · · · , p − 1}, ej ∈R {0, 1}l, set Yj = Gsj,B Be−1

j .
b) Create an empty list Lej ,Yj ,sj,B ,mj

.
c) Provide the attacker with (mj , Yj , B).

2) At digest query on a message which does not have format (Y, Z, m), the
simulator S responds with e ∈R {0, 1}l.

3) At digest query on a message with format (Y, Z, m), S does as follows:
a) If A was provided with (mj , Yj , B) (Step 2 of Figure 3) such that

mj = m and Yj = Y and if |Lej ,Yj ,mj
| = vj − 1, S provides the

attacker with ej , and appends Z to Lej ,Yj ,sj,B ,mj
.

b) Otherwise, S responds with e ∈R {0, 1}l, and if mj = m and Yj = Y ,
it appends Z to Lej ,Yj ,mj

.
4) When A provides S with (mj , Xj , Yj , B), S responds with

(mj , Xj , Yj , B, Gsj,B , sj,B). Notice that this is consistent with the
digest simulation at steps 2 and 3.

5) At A’s halt, S verifies that A’s output is different from (0, 0, 0, 0, 0) and
satisfies the following conditions; if not S aborts.

– Y0 ∈ G∗ and H̄(Y0, X0, m0) was issued from H̄.
– The signature (Y0, σ0) was not returned by B̂ on query (m0, X0).

Repeat: S executes a new run of A, using the same input and coins; and
answering to all digest queries before H̄(Y0, X0, m0) with the same values
as in the previous run. The new query of H̄(Y0, X0, m0) and subsequent
queries to H̄ are answered with new random values.

Output: If A outputs a second signature (m0, X0, Y0, B, σ′
0) satisfying

conditions of step 5, with a hash value H̄(Y0, X0, m0)2 = e′
0 6=

e0 = H̄(Y0, X0, m0)1 then S outputs
(

σ0/σ′
0

)(e0−e′

0)−1

as a guess for

CDH(B, X0).

where q is the number of digest queries the attacker issues, which is non–
negligible, unless Pr(SuccA | V = v) is negligible. Moreover, if the repeat
experiment succeeds, the digest values e0 and e′

0 are different with probabil-

ity 1 − 2−l, and then the computation
(

σ0/σ′
0

)(e0−e′

0
)−1

, leads to CDH(X0, B)

with non–negligible probability, contradicting then the CDH assumption. Hence,
under the RO model and the CDH assumption, for all v ∈ V, Pr(SuccA | V = v)
is negligible; using (1), we conclude that Pr(SuccA) is negligible. ⊓⊔

This shows that the FXCR CDH–based security reduction holds not only
in what the authors of [22] calls a “regular interaction order”, but also if the
interaction order is reversed.
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4 FDCR Security in the Reversed Interaction Order

As for the FXCR scheme, we show here that the security of the FDCR scheme to-
tally holds, in the reversed interaction order, wherein the signer provides his/her
ephemeral public key before receiving a challenge from the verifier.

Definition 3 (FDCR Scheme). Let Â and B̂ be entities with respective public
keys A and B in G∗. The FDCR signature of Â and B̂ on challenge–message
pairs (X, m1) and (Y, m2) provided respectively by Â and B̂, with X, Y ∈ G∗ is

FDSigÂ,B̂(m1, m2, X, Y ) = (XAd)y+eb = (Y Be)x+da,

where d = H̄(X, Y, m1, m2) and e = H̄(Y, X, m1, m2).

To show the FDCR security in the reversed interaction order, we consider a
verifier interacting with a signer B̂ as described in Figure 7, and the game in
Figure 8.

Figure 7 FDCR interactions for Signature Generation

1) The verifier Â provides B̂ with (m1, A).
2) The signer B̂ responds with (m1, m2, Y, A, B), with Y ∈ G∗.
3) The verifier chooses x ∈ {1, · · · , p − 1} and provides B̂ with

(m1, m2, X = Gx, Y, A, B).
4) The signer verifies that X ∈ G∗, and provides Â with

(m1, m2, X, Y, A, B, σ) wherein σ = (XAd)y+eb with d = H̄(X, Y, m1, m2)
and e = H̄(Y, X, m1, m2).

5) The verifier accepts B̂’s signature as valid if (Y Be)x+da = σ.

Figure 8 The FDCR Security Game

1) The attacker A is given a key pair (A, a) and a message–challenge pair
(X0, m10

); A is also given access to a hashing oracle, and is allowed to
interact with a signing oracle as described in Figure 7.

2) The attacker halts with output (0, 0, 0, 0, 0, 0, 0) to indicate a failure, or a
septuple (m10

, m20
, X0, Y0, A, B, σ0) such that

a) σ0 is a valid FDCR signature on messages m10
, m20

and challenges
X0, Y0 with respect to the public keys A and B.

b) σ0 is a fresh, i. e., it was not generated as a signature on message–
challenge pairs (m′

1, X0), (m′
2, Y0) such that m′

1||m′
2 = m10

||m20
.

Definition 4 (FDCR Security). The FDCR scheme is said to be secure if
no efficient attacker can succeed in the game in Figure 8 with non–negligible
probability.

Theorem 2. Under the RO model and the CDH assumption, the FDCR scheme
is secure in the sense of Definition 4.
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Proof. To lighten the presentation, as in Theorem 1, we suppose that the attacker
issues L = Q(|p|) signature queries and T = P (|p|) digest queries on messages
with format (Z1, Z2, m1, m2), with Z1, Z2 ∈ G, between the steps 2 and 3 of Fi-
gure 7. We suppose also that the attacker issues a digest query on (Y, X, m1, m2),
before providing its challenge X to the signer; and also that he/she does not issue
the same digest query twice. We stress that the attacker remains polynomial,
and may discard the digest values of no interest. We summarize the queries for
a signature generation in Figure 9.

Figure 9 Attacker’s queries for FDCR Signature Generation

1) For the j–the signature query, A activates the signing oracle with (m1j
, A).

2) The signer provides the attacker with (m1j
, m2j

Yj , A, B) with Yj ∈ G∗.
3) A generates Xj ∈ G∗ and issues T digest queries on messages with format

(Yj , Zj,i, m1j
, m2,j)i∈{1,··· ,T } with one query on (Yj , Xj , m1j

, m2,j).
4) The attacker provides the signing oracle with (m1j

, m2j
, Xj , Yj , A, B).

5) And receives (m1j
, m2j

, Xj , Yj , A, B, σj) from the signing oracle.

We still denote {1, · · · , T}L by V, for v = (v1, · · · , vL) ∈ V, we denote by
Pr(V = v) the probability that for all j ∈ {1, · · · , L}, for the j–th signature
generation, the attacker issues a digest query on (Yj , Xj , m1j

, m2,j) at the vj–th
digest query in step 2. The notations Poss(V) from the proof of Theorem 1 is
used again. Conditioning on V , we still obtain

Pr(SuccA) 6 max
v∈Poss(V)

Pr(SuccA | V = v).

Suppose that there is v ∈ Poss(V) such that Pr(SuccA | V = v) is non–negligible.
Using A, we build an efficient FXCR forger S such that Pr(SuccS | V = v) is
non–negligible. The forger S works as described in Figure 10.

Under the random oracle model, the simulation in Figure 10 is perfect, ex-
cept with negligible probability; a deviation occurs when the same message–
challenge pair (m2j

, Yj) is chosen twice in two signature queries on the same
pair (m1j

, Xj). As the simulator chooses its challenges uniformly at random in
G∗, this occurs with probability L/(p − 1) which is negligible. Also, the proba-
bility the attacker provides a valid forgery without issuing H̄(X0, Y0, m10

, m20
)

and H̄(Y0, X0, m10
, m20

) is smaller than 2−l, which is negligible. Hence, if A
succeeds with non–negligible probability in a real environment, it succeeds also
with non–negligible probability under this simulation. Furthermore S succeeds
with probability

Pr(SuccS | V = v) > Pr(SuccA | V = v) −
L

(p − 1)
− 2−l,

which is non–negligible if Pr(SuccA | V = v) is non–negligible. As already shown
in Theorem 1, this is impossible under the RO model and the CDH assumption.
Hence, for all v ∈ Poss(V), Pr(SuccA | V = v) is negligible, and then Pr(SuccA)
is negligible. ⊓⊔
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Figure 10 A FXCR Forger S from A

Run of A:
1) When S is activated with (m1j

, A), it does the following:

a) Choose sj,B ∈R {1, · · · , p − 1}, ej ∈R {0, 1}l, m2j
∈ {0, 1}F (|p|) for

some positive polynomial F , set Yj = Gsj,B Be−1

j .
b) Create an empty list Lej ,Yj ,sj,B ,m1j

,m2j
.

c) Provides the attacker with (m1j
, m2j

, Yj , B).
2) At A’s digest query on a message which does not have format

(Y, Z, m1, m2), the simulator S responds with e ∈R {0, 1}l.
3) At digest query on messages with format (Y, Z, m1, m2), S does as follows:

a) If it provided the attacker with (m1j
, m2j

, Yj , A, B) such that
m1j

||m2j
= m1||m2, Y = Yj and if |Lej ,Yj ,sj,B ,m1j

,m2j
| = vj − 1,

it provides the attacker with ej and appends Z to Lej ,Yj ,sj,B ,m1j
,m2j

.

b) Otherwise, it responds with e ∈R {0, 1}l, and if m1j
||m2j

= m1||m2

and Yj = Y then it appends Z to Lej ,Yj ,sj,B ,m1j
,m2j

.

4) When A provides (m1j
, m2j

, Xj , Yj , A, B), if no value is already assigned

to d = Ĥ(Xj , Yj , m1j
, m1j

) S chooses d ∈R {0, 1}l, and responds with

(m1j
, m2j

, Xj , Yj , A, B, (XjAd)sj,B ).
5) At A’s halt with a non–null output (m10

, m20
, X0, Y0, A, B, σ0) S verifies

that the following conditions are satisfied; if not it aborts.
– Y0 ∈ G∗ and d0 = H̄(Y0, X0, m10

, m20
) and e0 = H̄(X0, Y0, m10

, m20
)

were issued from the hashing oracle.
– S never issued a signature (m′

1, m′
2, X0, Y0, A, B, σ0) such that

m′
1||m′

2 = m10
||m20

.
Output: If all the conditions at step 5 are satisfied, S outputs

σ0(Y0Be0)−d0a = (Y0Be0)x0 as a FXCR forgery on m10
||m20

.

This shows that all the FDCR security attributes remain intact in the inter-
action order considered in [22].

5 Separation between FHMQV and HMQV

Security Separation

The sensitivity of the HMQV protocol to partial leakages on intermediate ex-
ponents sA and sB [27], exploited again with KCI attack in §2, motivated the
FHMQV design which is resilient to such leakages. FHMQV was shown secure in
a mixture of two security definitions (termed ck and eck in [27]), which was latter
refined into the seCK model [29]. In the CKFHMQV model (ck model in [27]),
it is assumed that at all parties the ephemeral keys are as protected as the
static ones. This assumption matches some common implementations; such as
(EC)DSA signature generation (where a leakage of an ephemeral private key
leads to a disclosure of the signer’s static private key). However, it does not
seem reasonable to assume implementations performed in the same way at all
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parties, and then consider the same leakages at all parties. We point out that
the CK, CKHMQV, eCK and CKFHMQV models define the information that can
be leaked in the same way for all parties. While in real word settings, implemen-
tations may be different, depending on environments specificities (presence of a
desktop computer (DC) only, of a power limited smart–card and a DC, etc.).
This observation is one of the motivations of seCK model and corresponds to
real–world vulnerabilities [15,32,33,34,35].

Broadly, in the seCK model, it is assumed for DH protocols that at each
party, implementation is performed using one of the two following approaches7.

xa

sA

sA

σ

K

xa

sA

σ

K

K

Trusted area

Untrusted
area

Approach 1Approach 2

Fig. 1. (F)HMQV Implementation Approaches in the seCK Model

Approach 1. It is assumed that the ephemeral keys are generated in an un-
trusted area, and the session keys are used also in this area. All the other
intermediate results are computed in the trusted area. At a party using this
approach, the attacker is allowed the following queries:

– EphemeralKeyReveal(session) to learn a session’s ephemeral private key;
– SessionKeyReveal(session) to learn a session key;
– CorruptSC(party) to model an attacker which bypasses the tamper pro-

tection mechanisms and learns the party’s static key;
– EstablishParty(party, key) to register a static key on behalf of the party;

a party against which this query is not issued is said to be honest.
Approach 2. In this approach, it is supposed that both the static and ephemeral

keys are computed and used in the trusted area, and all other computations
are performed in the untrusted area. So, the attacker is provided with

– SessionKeyReveal(session) and EstablishParty(party, key) queries, and
– a reveal query to learn any intermediate result that is computed or used

in the untrusted area.
Matching sessions. A session at a party P̂i is identified with a quintuple

(P̂i, P̂j , out, in, role) wherein P̂j is the peer, out is the list of the messages sent

to the peer, in is the list of the messages received, and role is P̂i’s role, initiator

I or responder R. Two sessions (P̂i, P̂j , out, in, role) and (P̂ ′
i , P̂ ′

j , out’, in’, role’)

7 These implementation approaches are not the only possible, however they seem to
be common enough in real word to be considered in the model.
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are said to be matching if P̂i = P̂ ′
j , P̂j = P̂ ′

i , out = in’, in = out’, and
role 6= role’.

Session freshness. A session at an honest party following the implementation
approach 1 is said to be locally exposed if it were issued a SessionKeyReveal

query, or if it were issued an EphemeralKeyReveal query and its owner were
issued a CorruptSC query. At an honest party following the second approach,
a session is said to be locally exposed, if it were issued a SessionKeyReveal

query or an intermediate result query. A session is said to be exposed if it
is locally exposed or if its matching session (if any) is locally exposed. A
non–exposed session is said to be seCK–fresh.

seCK Security. A protocol is said to be secure if (i) when two honest parties
complete matching session, then they both derive the same session key; and
(ii) an efficient attacker in total control of communication links cannot dis-
tinguish a fresh session key from a random value chosen uniformly from the
distribution of session keys with probability significantly greater than 1/2.

As already reported in [29], seCK security implies eCK security8; seCK secu-
rity is also strictly stronger than CKFHMQV security . The seCK model and
the CKHMQV security models are formally incomparable, as the seCK model
considers only role–asymmetric protocols while the CKHMQV model considers
only role–symmetric protocols [8]9. Nevertheless, as shown in [29], there are at-
tacks which are captured in the seCK model but not captured in the eCK and
CKHMQV models. While any real word attack that is captured in the CKHMQV

and eCK models is also captured in the seCK model.

We stress that even when G–tests are performed, HMQV is insecure in the
seCK model, for two reasons. First, HMQV is known to be vulnerable to a KCI
impersonation attack when leakages on the shared secret σ are considered [16,
pp. 17–18]. Second, in the case of a (“sufficient” partial) leakage on ephemeral
secret exponents sA or sB in a session, an attacker can indefinitely impersonate
the session owner; the HMQV protocol cannot then, meet a security definition
which allows total leakages on both the shared secret σ and the ephemeral secret
exponents sA and sB .

Theorem 3. Under the RO model and the Gap Diffie–Hellman Assumption
in G, the FHMQV protocol is seCK–secure.

Although we already analyzed the main ingredients of the proof of Theorem 3
(the FXCR and FDCR schemes), for lack of space, we do not provide the proof
here. We defer the security reduction to the extended version of this paper.

8 There is no dynamic key registration query in the eCK model [20]; the adversary
is only allowed to select dishonest parties before starting its game. Dynamic key
registration permits the adversary to select the parties it sets as dishonest after

having seen their behaviour; this is an advantage for the adversary, and does not
affect the comparability between the seCK and the eCK models.

9 Given the work [8], the Claim 1 from [22] about the formal incomparability between
CKFHMQV and the CKHMQV models is trivial.
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Protocol 11 The FHMQV Key Exchange

I) The initiator Â does the following:
a) Choose x ∈R {1, · · · p − 1} and compute X = Gx.
b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X), B̂ does the following:
a) Verify that X ∈ G∗.
b) Choose y ∈R {1, · · · p − 1} and compute Y = Gy.
c) Send (B̂, Â, Y ) to Â.
d) Compute d = H̄(X, Y, Â, B̂), e = H̄(Y, X, Â, B̂) and sB = y + eb mod p.
e) Compute σB = (XAd)sB and K = H(σB , Â, B̂, X, Y ).

III) At receipt of (B̂, Â, Y ), Â does the following:
a) Verify that Y ∈ G∗.
b) Compute d = H̄(X, Y, Â, B̂), e = H̄(Y, X, Â, B̂) and sA = x + da mod p.
c) Compute σA = (Y Be)sA and K = H(σA, Â, B̂, X, Y ).

IV) The shared session key is K.

Efficiency Separation

Without a proper validation of ephemeral keys, the HMQV protocol cannot
achieve its security goals. When ephemeral keys are validated in HMQV, the
FHMQV protocol is as efficient as HMQV in the implementation approach 1.
Moreover, for FHMQV, in approach 2, if ephemeral keys are computed in idle–
time, only one digest computation, one modular integer addition and one modu-
lar integer multiplication has to be performed in the trusted area in non–idle-
time; no exponentiation is performed in the trusted area (usually a smart–card
or a hardware security module) in non–idle time. As neither HMQV, nor MQV
can confine the effects of a secret exponent (sA or sB) leakage to the leaked
session, none of these protocols can achieve such a performance.

6 Concluding remarks

We revisited the FXCR and the FDCR signature schemes which are the building
blocks of the FHMQV protocol, clarifying their strengths, independence to inter-
action order, and security advantages compared to the XCR and DCR schemes.
We clarified also both the security and efficiency separation between HMQV and
FHMQV, showing that even if ephemeral keys are validated in HMQV, the FH-
MQV protocol is strictly stronger than HMQV both in security and efficiency.
In settings wherein a trusted device is used to store static and ephemeral keys,
a FHMQV implementation can achieve performances which cannot be achieved
by MQV or HMQV.

We pointed out a Key Compromise Impersonation attack against HMQV.
Namely we showed that omitting ephemeral key validation only once is sufficient
for a Key Compromise Impersonation. Besides, we revisited the motivations of
the seCK model, showing that it is formally stronger than the eCK model, and
from a real word perspective, stronger than the CKHMQV model.
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In a future work we will be interested in generalizing the compiler from [9]
to security models allowing dynamic key registration and intermediate results
leakage in the multiple CAs setting [4,5].
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