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A hp-Hybrid High-Order method for variable diffusion on general meshes

Joubine Aghili!, Daniele A. Di Pietro!, Berardo Ruffini'

Abstract

In this work, we introduce and analyze a hp-Hybrid High-Order method for a variable diffusion problem. The pro-
posed method is valid in arbitrary space dimension and for fairly general polytopal meshes. Variable approximation
degrees are also supported. We formulate sp-convergence estimates for both the energy- and L?>-norms of the error,
which are the first results of this kind for Hybrid High-Order methods. The estimates are fully robust with respect
to the heterogeneity of the diffusion coefficient, and show only a mild dependence on its (local) anisotropy. The ex-
pected exponential convergence behaviour is numerically shown on a variety of meshes for both isotropic and strongly
anisotropic diffusion problems.

Keywords: Hybrid High-Order methods, discontinuous skeletal methods, polytopal methods, 4p-error analysis,
variable diffusion

1. Introduction

In the last few years, discretization technologies have appeared that support arbitrary approximation orders on
general polytopal meshes. In this work, we focus on a particular instance of such technologies, the so-called Hybrid
High-Order (HHO) methods originally introduced in [} 2]. So far, the literature on HHO methods has focused on the
h-version of the method with uniform polynomial degree. Our goal is to provide a first example of variable-degree
hp-HHO method and carry out a full ~p-convergence analysis valid for fairly general meshes and arbitrary space
dimension. Let Q@ < RY, d > 1, denote a bounded connected polytopal domain. We consider the variable diffusion
model problem

—V-(kVu) = f in Q,

1
u=~0 on 09, )

where k is a uniformly positive, symmetric, tensor-valued field on Q, while f € L*(Q) denotes a volumetric source.
For the sake of simplicity, we assume that k is piecewise constant on a partition Pq of € into polytopes. The weak
formulation of problem (T) reads: Find u € U := H}(€) such that

(kVu,Vv) = (f,v) Yve U, (2)

where we have used the notation (-, -) for the usual inner products of both L2(Q) and L>(Q)?. Here, the scalar-valued
field u represents a potential, and the vector-valued field kVu the corresponding flux.

For a given polytopal mesh 75, = {T} of Q, the hp-HHO discretization of problem (2) is based on two sets of
degrees of freedom (DOFs): (i) Skeletal DOFs, consisting in (d—1)-variate polynomials of total degree pr > 0 on
each mesh face F, and (ii) elemental DOFs, consisting in d-variate polynomials of degree pr on each mesh element
T, where py denotes the lowest degree of skeletal DOFs on the boundary of 7. Skeletal DOFs are globally coupled
and can be alternatively interpreted as traces of the potential on the mesh faces or as Lagrange multipliers enforcing
the continuity of the normal flux at the discrete level; cf. [3} 4] for further insight. Elemental DOFs, on the other hand,
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are bubble-like auxiliary DOFs that can be locally eliminated by static condensation, as detailed in [4, Section 2.4] for
the case where pr = p for all mesh faces F.

Two key ingredients are devised locally from skeletal and elemental DOFs attached to each mesh element 7": (i) A
reconstruction of the potential of degree (pr+1) (i.e., one degree higher than elemental DOFs in T') obtained solving
a small Neumann problem and (ii) a stabilisation term penalizing face-based residuals and polynomially consistent
up to degree (pr+1). The local contributions obtained from these two ingredients are then assembled following a
standard, finite element-like procedure. The resulting discretization has several appealing features, the most prominent
of which are summarized hereafter: (i) It is valid for fairly general polytopal meshes; (ii) the construction is dimension-
independent, which can significantly ease the practical implementation; (iii) it enables the local adaptation of the
approximation order, a highly desirable feature when combined with a regularity estimator (whose development will
be addressed in a separate work); (iv) it exhibits only a moderate dependence on the diffusion coefficient «; (v) it has a
moderate computational cost thanks to the possibility of eliminating elemental DOFs locally via static condensation;
(vi) parallel implementations can be simplified by the fact that processes communicate via skeletal unknowns only.

The seminal works on the p- and ip-conforming finite element method on standard meshes date back the early 80s;
cf. [5L16,[7]. Starting from the late 90s, nonconforming methods on standard meshes supporting arbitrary-order have
received a fair amount of attention; a (by far) nonexhaustive list of contributions focusing on scalar diffusive problems
similar to the one considered here includes [8} 9} [10, |11} [12]]. The possibility of refining both in / and in p on general
meshes is, on the other hand, a much more recent research topic. We cite, in particular, 2p-composite [13} [14] and
polyhedral [15] discontinuous Galerkin methods, and the two-dimensional virtual element method proposed in [16].

The main results of this paper, summarized in Section are hp-energy- and L’-estimates of the error between
the approximate and the exact solution. These are the first results of this kind for HHO methods, and among the
first for discontinuous skeletal methods in general (a prominent example of discontinuous skeletal methods are the
Hybridizable Discontinuous Galerkin methods of [[17]; cf. [4] for a precise study of their relation with HHO methods).
The cornerstone of the analysis is the extension of the classical Babuska-Suri hp-approximation results to regular
mesh sequences in the sense of [I8] Chapter 1] and arbitrary space dimension d > 1; cf. Lemmal[l} Similar results
had been derived in [L6] for d = 2 and, under different assumptions on the mesh, in [I3] for d € {2,3}. A key
point is here to show that the regularity assumptions on the mesh imply uniform bounds for the Lipschitz constant
of mesh elements. The resulting energy-norm estimate confirms the characteristic s-superconvergence behaviour of
HHO methods, whereas we have a more standard scaling as (pr + 1) 7?7 with respect to the polynomial degree pr
of elemental DOFs. This scaling is analogous to the best available results for discontinuous Galerkin (dG) methods
on rectangular meshes based on polynomials of degree pr, cf. [11] (on more general meshes, the scaling for the
symmetric interior penalty dG method is p,. (pr =1 2), half a power less than for the 2p-HHO method studied here).
Classically, when elliptic regularity holds, the -convergence order can be increased by 1 for the L?>-norm. In our
error estimates, the dependence on the diffusion coefficient is carefully tracked, showing full robustness with respect
to its heterogeneity and only a moderate dependence with a power of 1/2 on its local anisotropy when the error in the
energy-norm is considered. Numerical experiments confirm the expected exponentially convergent behaviour for both
isotropic and strongly anisotropic diffusion coefficients on a variety of two-dimensional meshes.

The rest of the paper is organized as follows. In Section 2] we introduce the main notations and prove the basic
results required in the analysis including, in particular, Lemma|[I](whose proof is detailed in[Appendix A)). In Section[3]
we formulate the 7p-HHO method, state our main results, and provide some numerical examples. The proofs of the
main results, preceeded by the required preparatory material, are collected in Section [4]

2. Setting

In this section we introduce the main notations and prove the basic results required in the analysis.

2.1. Mesh and notation

Let H < R denote a countable set of meshsizes having 0 as its unique accumulation point. We consider mesh
sequences (77,)nerr Where, for all h € H, T, = {T} is a finite collection of nonempty disjoint open polytopal elements

such that Q = UTeT,, Tandh = maxreg;, hr (hr stands for the diameter of T'). A hyperplanar closed connected subset
F of Q is called a face if it has positive (d—1)-dimensional measure and (i) either there exist Ty, T> € 77, such that



F = 0Ty n 0T, (and F is an interface) or (ii) there exists T € 7, such that F = 0T n 0Q (and F is a boundary face).
The set of interfaces is denoted by 7, the set of boundary faces by T?, and we let 7, := ﬂ V) Thb. Forall T € 7y,
the set 7 := {F € ¥, | F < 0T} collects the faces lying on the boundary of T and, for all F € 7, we denote by nrp
the normal vector to F pointing out of 7'.

The following assumptions on the mesh will be kept throughout the exposition.

Assumption 1 (Admissible mesh sequence). We assume that (T},)neq is admissible in the sense of [I8l Chapter 1],
i.e., for all h € H, T;, admits a matching simplicial submesh T, and there exists a real number ¢ > 0 (the mesh
regularity parameter) independent of h such that the following conditions hold: (i) For all h € H and all simplex
S € %, of diameter hs and inradius rg, ohs < rg; (ii) forallh € H, all T € Tp, and all S € X}, such that S c T,
ohr < hg; (iii) every mesh element T € T, is star-shaped with respect to every point of a ball of radius ohy.

Assumption 2 (Compliant mesh sequence). We assume that the mesh sequence is compliant with the partition Pg on
which the diffusion tensor k is piecewise constant, so that jumps only occur at interfaces and, for all T € T,

k7 = Ky € PO(T)¥*<.

In what follows, for all T € T, kr and k, denote the largest and smallest eigenvalue of kr, respectively, and
A, = Kr /K the local anisotropy ratio.

2.2. Basic results

Let X be a subset of RY, N > 1, (X will be a mesh element T € 77, or face F € F, in what follows) Ay the affine
space spanned by X, dy its dimension, and assume that X has a non-empty interior in Ay. For an index ¢, HY(X)
denotes the Hilbert space of functions which are in L?(X) together with their weak derivatives of order < ¢, equipped
with the usual inner product (-, ), x and associated norm |||, x. When g = 0, we recover the Lebesgue space L*(X),
and the subscript 0 is omitted from both the inner product and the norm. The subscript X is also omitted when X = Q.
For a given integer [ > 0, we denote by IP/(X) the space of dx-variate polynomials on Ay of degree < 1. For further
use, we also introduce the L?-projector , : L' (X) — P/(X) such that, for all w € L'(X),

(mew —w,v)x =0 vy e P/(X). 3)

We recall hereafter a few known results on admissible mesh sequences and refer to [18, Chapter 1] and [19] for a
more comprehensive collection. By [[18, Lemma 1.41], there exists an integer Ny = (d + 1) (possibly depending on d
and o) such that the maximum number of faces of one mesh element is bounded,

max _ card(Fr) < No. 4)
heH,TET,

The following multiplicative trace inequality, valid for all & € H, all T € 7, and all v € H'(T), is proved in [18]
Lemma 1.49]:
VI3 < € (Wl Vvl + Az Iviiz) . ®)

where C only depends on d and p. We also note the following local Poincaré’s inequality valid for all 7 € 7, and all
ve H'(T) such that (v, 1)7 = 0:
Wz < Cehr|[Vv]r, ()

where Cp = n~! when T is convex, while it can be estimated in terms of o for nonconvex elements (cf., e.g., [20]).
The following functional analysis results lie at the heart of the hp-analysis carried out in Section 4]

Lemma 1 (Approximation). There is a real number C > 0 (possibly depending on d and o) such that, for all h € H,
all T € Ty, all integer 1 > 1, all s > 0, and all v € H*Y'(T), there exists a polynomial I1,.v € P'(T) satisfying, for all
0<g<s+1,

min(l,s)—q+1
v = vl < CTm—Ivlsr )
Proof. See AppendiA) -



Lemma 2 (Discrete trace inequality). There is a real number C > 0 (possibly depending on d and o) such that, for all
heH, all T € Ty, all integer | > 1, and all v € P'(T), it holds

l
ller < €= vl ®)
hT

Proof. When all meshes in the sequence (77)ec are simplicial and conforming, the proof of (8] can be found in [21
Theorem 4.76] for d = 2; for d > 2 the proof is analogous. The extension to admissible mesh sequences in the sense
of Assumption|[I]can be done following the reasoning in [I8, Lemma 1.46]. O

3. Discretization

In this section, we formulate the 7p-HHO method, state our main results, and provide some numerical examples.

3.1. The hp-HHO method

We present in this section an extension of the classical HHO method of [1] accounting for variable polynomial
degrees. Let a vector P, = (pr)rer, € Nt of skeletal polynomial degrees be given. For all T € 77, we denote by

P, = (pr)Fes, the restriction of p,to ¥r, and we introduce the following local space of DOFs:

Q% =Pr(T) x | X P(F) |, pr = min pg. 9)
FeFy Ferr

. . P . .
We use the notation v, = (vr, (vr)res, ) for a generic element of U;". We define the local potential reconstruction

operator r’T’T+1 : Q?T — PPr+1(T) such that, for all v, € Q?,

(KTVVI;TJFIZT, VW)T = —(VT, V'(KTVW))T + Z (VF,KTVW'YLTF)F Yw e ]PPT-H (T), (10)
FeFr
and
(v, —ve, 1)r = 0. a1

Note that computing r’T’THgT according to (TO) requires to invert the kr-weighted stiffness matrix of P¥*1(T), which
can be efficiently accomplished by a Cholesky solver.

We define on Q% X g? the local bilinear form ar such that

K D,
ar(uy.vy) == (ke VP un VA Yy bsr (v, se(upayy) = Y S (S Sy e, (12)

FeFr hT

where, for all F € ¥, we have let kr := krnrp-nyp and the face-based residual operator 6?} : Q% — PP (F) is such
that, for all v, € g%,
P
Sphevy =1 (vF — r?THyT + ﬂ’T’Tr?THyT — vT). (13)

The first contribution in ay is in charge of consistency, whereas the second ensures stability by a least-square penalty
of the face-based residuals (5§TF. This subtle form for 6?} ensures that the residual vanishes when its argument is the
interpolate of a function in PP7*!(T'), and is required for high-order i-convergence (a detailed motivation is provided
in [1, Remark 6]).

The global space of DOFs and its subspace with strongly enforced boundary conditions are defined, respectively,
as

Uh = (>< ]P>1>»,‘(T)> x (>< pm-(p)) . Ub = {Kh eUM |vp=0 VFe ff,f}. (14)

TeTh FeFy



Note that interface DOFs in U fh are single-valued. We use the notation v, = ((vr)rer,. (V) res;) for a generic DOF
vector in Qf” and, for all T € 7}, we denote by v,. € g? its restriction to 7. For further use, we also introduce the
global interpolator !f” CHY(Q) — Qf” such that, for all v e H'(Q),

P
L = (' V)rer,, (@ v)res,)s 5)
and denote by [?T its restriction to T € 77,

The hp-HHO discretization of problem (2)) consists in seeking u, € Qf”o such that

an(u»v,) = (v, Yy, € Uh 0’ (16)
where the global bilinear form a;, on Qf” X gfh and the linear form 1, on Qf“ are assembled element-wise setting

an(uy-v,) = Z ar (ug, vy), I(y,) = Z (fovr)r.

TeTn TeTn

Remark 3 (Static condensation). Using a standard static condensation procedure, it is possible to eliminate element-
based DOFs locally and solve (16) by inverting a system in the skeletal unknowns only. For the sake of conciseness, we
do not repeat the details here and refer instead to [4, Section 2.4]. Accounting for the strong enforcement of boundary
conditions, the size of the system after static condensation is

Nior = 3 (pF”_l). a7)

FeF} PF

Remark 4 (Finite element interpretation). A finite element interpretation of the scheme is possible following the
extension proposed in [4] Remark 3] of the ideas originally developed in [22)] in the context of nonconforming Virtual
Element Methods. For all F € T‘ we denote by [-]r the usual jump operator (the sign is irrelevant), which we extend
to boundary faces F € F, b setting [¢]r 1= ¢. Let

b,
LLh

0" {U;, el’? (Q) | opr € il%"forall TeTy, andﬂ‘;F([UT]F) =O0forall F € Th} ,
where, for all T € T}, we have introduced the local space
67 := {or € H'(T) | V-(krVor) € PP (T) and krVor p-nr € PP (F) for all F € F7} .

It can be proved that, for all T € T}, I* il* T is an lsomorphlsm Thus, the triplet (T, ﬂ% *T) defines a
finite element in the sense of Clarlet [23 ] Addltlonally, problem can be reformulated as the nonconforming finite
element method: Find u;, € ilh”o such that

ap(up, 04) = Ip(0y) Vo, € i%,

p P P . . . P
where a;,(w, v,) = ay(L,"wp, L, 0p), 14(0n) = 1,(1;,"0,), and it can be proved that w, is the unique element of L'

P . . .
such that w, = I,"w, with u, unique solution to (16).

3.2. Main results

We next state our main results. The proofs are postponed to Section @] For all T € 7, we denote by |-[ar
and |-|s7 the seminorms defined on Q%" by the bilinear forms ar and sr, respectively, and by |||, the seminorm
defined by the bilinear form a;, on Qf“. We also introduce the penalty seminorm |-|s; such that, for all v, € Qf“,

. P -
|gh|ih = Drer, |ET|§,T' Note that |-[la,» is a norm on the subspace U, with strongly enforced boundary conditions



(the arguments are essentially analogous to that of [2| Proposition 5]). We will also need the global reconstruction
operator rfﬁ : Qf“ — L*(9Q) such that, for all v, € Qf”,
v =17 vy VT €T

Finally, for the sake of conciseness, throughout the rest of the paper we note a < b the inequality a < Cb with real
number C > 0 independent of A, P, and k.
Our first estimate concerns the error measured in energy-like norms.

Theorem 5 (Energy error estimate). Let u € U and u,, € U4’ denote the unique solutions of problems 2)) and (16},
respectively, and set

i, = Iu. (18)
Assuming that uip € HP"72(T) for all T € T, it holds
h 2(pr+1) V2
luy = Uyllan < (TEZT] krAg, T o+ 1) lea ||pr+2 T) . (19)

Consequently, we have, denoting by V, the broken gradient on T, (whose restriction to every element T € T}, coincides
with the usual gradient),

2(1’T+1)

|6V (u -, ”h)HZ + |Mh|§h = Z K, “(pr + 1) i “PT”T 20
TeTh

Proof. See Section[d.3] O

In @]) and (12151) we observe the characteristic improved h-convergence of HHO methods (cf. [1]]), whereas, in
terms of p-convergence, we have a more standard scaling as (pr + 1)77* (i.e., half a power more than discontinuous
Galerkin methods based on polynomials of degree pr, cf., e.g., [10]). In (20), we observe that the left-hand side has
the same convergence rate (both in / and in p) as the interpolation error

HKI/ZV;,(M —r, uh)H2 + |uh h

as can be verified combining and (27) below. Note that, in this case, the p-convergence is limited by the second
term, which measures the discontinuity of the potential reconstruction at interfaces. An inspection of formulas (I9)
and (20) also shows that the method is fully robust with respect to the heterogeneity of the diffusion coefficient, while
only a moderate dependence (with a power of 1/2) is observed with respect to its local anisotropy ratio.
For the sake of completeness, we also provide an estimate of the L2-error between the piecewise polynomial fields
uy, and 1, such that
Up|T = UT and l/lh|T = MT = H?Tu YT € T,.

To this end, we need elliptic regularity in the following form: For all g € L?(Q), the unique element z € U such that

(kVz,Vv) = (g,v) Yve U, (1)
satisfies the a priori estimate
e < 7 el k= minkg. (22)

The following result is proved in Section[4.4]

Theorem 6 (L>-error estimate). Under the assumptions of Theorem |5 and further assuming elliptic regularity 22)
and that f € HP" 57 (T) for all T € T}, with Ay = 1 if pr = 0 while Ap = 0 otherwise,

h2(PT+2)

h2(pr+1) 2 2
gnuhahsfl/zﬂkh@m”(p e ) +(Z G+ arperen /T > -

TeT), TeT,

with A := maxrer, Ax,r, K := MaXre7;, KT.



(a) Triangular (b) Cartesian (c) Refined

(d) Staggered (e) Hexagonal (f) Voronoi

Figure 1: Meshes considered in the p-convergence test of Section The triangular, Cartesian, refined, and staggered
meshes originate from the FVCAS benchmark [25]; the hexagonal mesh was originally introduced in [26]]; the Voronoi
mesh was obtained using the PolyMesher algorithm of [27]].

3.3. Numerical examples

We close this section with some numerical examples. The h-convergence properties of the method (T6) have been
numerically investigated in [1, Section 4]. To illustrate its p-convergence properties, we solve on the unit square
domain Q = (0,1)? the homogeneous Dirichlet problem with exact solution u = sin(rx;) sin(rx,) and right-hand
side f chosen accordingly. We consider two values for the diffusion coefficients:

B A (=) telx—x)?  —(1—€)(xi —X1)(x2 — %)
fi =D ©= <—(12— 6)2(x1 —fl)l(xz —lfz) (x1 —fl)zl‘l‘ f(lxz —232)22 )

where I, denotes the identity matrix of dimension 2, x¥ := —(0.1,0.1),and e = 1 - 10~2. The choice k = k; (“regular”
test case) yields a homogeneous isotropic problem, while the choice k = k, (“Le Potier’s” test case [24]) corresponds
to a highly anisotropic problem where the principal axes of the diffusion tensor vary at each point of the domain.
Figuresdepict the energy- and L*-errors as a function of the number of skeletal DOFs Nyt (cf. (T7)) when pr = p
forall F € F, and p € {0,...,9} for the proposed choices for x on the meshes of Figure In all the cases, the
expected exponentially convergent behaviour is observed. Interestingly, the best performance in terms of error vs.
Nyor is obtained for the Cartesian and Voronoi meshes. A comparison of the results for the two values of the diffusion

coefficients allows to appreciate the robustness of the method with respect to anisotropy.

4. Convergence analysis

In this section we prove the results stated in Section[3.2]

4.1. Consistency of the potential reconstruction

Preliminary to the convergence analysis is the study of the approximation properties of the potential reconstruction
r?"’“ defined by (I0) when its argument is the interpolate of a regular function. Let a mesh element T € 7, be
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fixed. For any integer [ > 1, we define the elliptic projector @, . : H'(T) — P!(T) such that, for all v € H'(T),

(wi,Tv —v, 1) = 0 and it holds
(krV(@h v —v), VW) =0 Ywe P/(T). (24)

Proposition 7 (Characterization of (r’T’TH o !%’)). It holds, for all T € T3,

Pl+1 ET _ pr+1
rp ol =@

Proof. For a generic v € H'(T), letting v, = !%v in (T0) we infer, for all w € PP7+1(T),

(K]"V(F?TJrl O!%T)V, VW)T = —(ﬂI;TV,V-(KTVW))T + Z (ﬂ'II;FV, KTVW'nTF)F
FeFr
= —(V,V'(KTVW))T + Z (V, KTVW'nTF)p = (KTVV, VW)T,
FeFr
where we have used the fact that V-(kyVw) € PP7~!(T) < PP"(T) and (kyVw)p-nrp € PP7(F) C PPr(F) (cf. the
definition (@) of pr) to pass to the second line, and an integration by parts to conclude. [

We next study the approximation properties of @' .., from which those of (r’T’TJ’1 o [%T) follow in the light of

Proposition|[7}

k1T’

Lemma 8 (Approximation properties of wf(’T). For all integer | > 1, all mesh element T € T, all 0 < s < [, and all
ve HTY(T), it holds

" l ;{2 " l 517{2 Kl/z " mm(l,s)
lr Vv =@ )z + == [k V(v = @ pv)llor + EIIV @ vl + = Az v =@ pvler < %7 W41z (25)

Proof. By definition (24)) of wf(’T, it holds,

I =@l = min V0= w)lr <RIV~ T, 26)

hence, using (7) with ¢ = 1, it is readily inferred

min(l,s)

1 -1 T
Iy V(v =@, )l < &f Ve

To prove the second bound in (23), use the triangle inequality to infer
1
IV (v = @y V) lor < I V(v = T)Jor + 1 V(TT5y — @y v) o7 = T + T,
For the first term, the multiplicative trace inequality (3)) combined with (7) (with g = 1,2) gives

min(l,s)—1/2

1/>
TSR Tl

For the second term, we have,

T € VT — @)l
T
l , |

< (WHv @y =y + 1690 = @)l
T
min(l,s)—1/2

-1 -1
/Zhl/zuwnav—v)un & o Ve

10



where we have used the discrete trace inequality (8) in the first line, the triangle inequality in the second line, the
estimate (26) in the third, and the approximation result (7)) with ¢ = 1 to conclude. To obtain the third bound in 23),
after recalling that (v — wf(,T v,1)7 = 0, we apply the local Poincaré’s inequality (6 to infer

_lh hmin(l,s)+1
T T
v =@ vlr < o " @)l < 1/,THVHs+1,T7

_T —T

where the conclusion follows from the first bound in (23). Finally, to obtain the last bound, we use the multiplicative
trace inequality (3) to infer

]/2

1
Iv =@l < &0 "y = @l [PV = @ )+ by = @ vl

and use the first and third bound in (23) to estimate the various terms. O

4.2. Consistency of the stabilization term
The consistency properties of the stabilization bilinear form sy defined by (12) are summarized in the following
Lemma.

Lemma 9 (Consistency of the stabilization term). For all T € T, all 0 < g < pr, and all v e H1T(T), it holds

min(pr,q)+1

hy
BT 1/2 1/7
vy Skid, — v . 27
|—T |‘,T Kp «,T (p +1) H ||q+2,T ( )

Proof. LetT € Tj,and v € H7+2(T) and set, for the sake of brev1ty, vr = (rf r Br)v =y T (cf. Proposmon i

For all F € F7, recalling the definitions of the face residual 6} P (cf. (T3))) and of the local interpolator 57 (cf. (]E)),
together with the fact that pr < pr by definition (@), we get

6TTFIT v = (Vv —v) — 7 (Vr —v).
Using the triangle inequality and the L?(F)-stability of 7", we infer,
6715V < [Fr = vl + |75 Gr = )l := T + 2 8)
For the first term, the approximation properties (23) of w” [ (with! = pr + 1 and s = g + 1) readily yield
min(pr.q)+3/2
TS oy Maser 29)

For the second term, on the other hand, the discrete trace inequality (§) followed by the L*(T)-stability of my" and (23)
(with! = pr + 1 and s = g + 1) gives

in(pr.q)+32
(pT + 1) g ! min
T vl S A e 60

(pr+1)

EEIS ,
h!?

Iz (r = v)lr <

The bound @7) follows using Z9)-(30) in the right-hand side of (28), squaring the resulting inequality, multiplying it
by «¢/h;, summing over F € Fr, and using the bound (@) on card(¥7). O
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4.3. Energy error estimate
Proof of Theorem[5] We start by noting the following abstract error estimate:

lluy, — EhHa,h < sup Eh(Yh)’ (31

,
Y E€U5 00 lan=1

with consistency error
En(v,) == (y,) — an(@,, v,). (32)
To prove (31), it suffices to observe that
|y, — Ehllih = ay(w, — Uy, u, — )
= ah(ﬂh’ﬂh - Eh) - ah(/’/_zh’ﬂh - Eh)
= lh(ﬂh - Qh) - ah(zh’ﬂh - Qh)’
where we have used the definition of the |-||,,-norm in the first line, the linearity of a, in its first argument in the

second line, and the discrete problem (T6) in the third. The conclusion follows dividing both sides by [, — ,|as,
using linearity, and passing to the supremum.

We next bound the consistency error E;(v,) for a generic vector of DOFs v, € fo’o. A preliminary step consists
in finding a more appropriate rewriting for E;(v,). Observing that f = —V-(«Vu) a.e. in Q, integrating by parts
element-by-element, and using the continuity of the normal component of kVu across interfaces together with the
strongly enforced boundary conditions in U , to insert vr into the second term in parentheses, we infer

Li(v,) = Z ((KTVM, Vvr)r + Z (krVu-nrp,vp — vT)F> . (33)

TET FeFr

Setting, for the sake of conciseness (cf. Proposition|[7),

lr = rl’ +1uT = zU‘”TTHu (34)

and using the definition (T0) of r?TH vy with w = 7iy, we have

an(u,,v,) = Z ((KTV\IZT,VVT)T + Z (krVir-nrp,vp — vr)r + ST@T,KT)> . (35)
TeT, FeFr

Subtracting (33)) from (33), and observing that the first terms inside the summations cancel out owing to (24)), we have
Eu(v,) = Z ( Z (krV(iir — u)-nre,ve —vr)r + ST@T,ET)> . (36)
TeT, FeFr

Denote by T;(T) and T,(T) the two summands in parentheses. Using the Cauchy—Schwarz inequality followed by
the approximation properties (23)) of it (with [ = s = pr + 1) and (39) below, we have for the first term

2 1
hl’T+
(T 1/2 ]/2 Ur —u X Wi v —vr|% ~K1/2 T u % . 37
|T1(T)] < hy||kg V(i — u)er Fe§7-'rh lve = vrlx T KT(pTH)pT | pr 427 [l o

For the second term, the Cauchy—Schwarz inequality followed by 27) (with ¢ = pr) readily yields

]/ 1/ I;T +1 l/ l/ h[;-T +1
2 2 2 2
|‘IZ( )< Kp A, (PT T 1) HuHP7+2qT|2T|S‘T S Kr /1,( T (pr + )77 ”"‘”pr+2,T“‘_’THa,T' (38)

Using (37)-(38) to estimate the right-hand side of (36)), applying the Cauchy—Schwarz inequality, and passing to the
supremum yields (T9). To prove (20), it suffices to observe that, inserting %, and using the triangle inequality,

19 = 1wy P + a2 S (V= vy ) [+ (3,2, + e, — |20

and (20) follows using the estimates (23), (27), and (T9) to bound the terms in the right-hand side. O
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Proposition 10 (Estimate of boundary difference seminorm). It holds, for all v, € Q%,

KFr
D e = vrlF S Aerlvrlsr (39)
FeFr

Proof. LetT € Ty, vy € Q%, and set, for the sake of brevity vy := r?”’“ vy. We have, for all F € Fr,
e = vrle = |7 (ve —vr)llr
= ||7T;F (VF — \‘;T + 71'1;\1;7' —vr + \‘;T — ﬂI;T\\;T)HF (40)

< 675y lF + [V — 2077 |,

where we have used the fact that pr < pr (cf. (9)) to infer that vr|p € PPF (F) and thus insert ﬂl;-F in the first line,
added and subtracted (V7 — ;' V) in the second line, used the triangle inequality together with the definition (T3)
of the face-based residual 6§’F and the LZ(F )-stability of nZF in the third. To conclude, we observe that, if py = 0,
the discrete trace inequality (8) followed by Poincaré’s inequality yield |7 — m0vr|r < h¥25; 2
pr =1,

|« VVr||7 while, if

V7 — 27 Vr |l = [Vr — mp¥r — 27 (Vr — 7397)|F

+ 1,0 - - -

S B [T = ! G = )l
T

pr+1hr o - o
< h/ el LE A IS [ 1% A I
T

T

where we have inserted £79.V7 in the first line, used the discrete trace inequality (8) in the second line, the L*(T)-
optimality of 71? together with the approximation properties (7) (with [ = pr and ¢ = s = 0) in the third line, and we
L ’;1 < 2 and using the local Poincaré’s inequality (6) to infer [V — 297 |17 < h¥2 [VVr|r.

Plugging the above bounds for vy — 7 Vr| ¢ into @0), squaring the resulting inequality, multiplying it by kr /A7, sum-
ming over F € ¥, and recalling the bound (@) on card(¥7), (39) follows. O

have concluded observing that

4.4. L*-error estimate
Proof of Theorem[6] We let z € U solve (1) with g = i, —u and setz, := [g”z and, for all T € 77, (cf. Proposition ,

v ._ .pr+ls _ _pr+l
Iri=rp I, =W % 41

For the sake of brevity, we also let ¢, :=u, —u, € Q%o (recall the definition (T8) of %,), so that ii; — uy = ey for all
T € 7. We start by observing that

H€h||2 = —(V-(KZ),eh) = Z ((KTVZ, Ver)r + 2 (KTVZ'nTF,EF — 67‘)[:> . (42)

TeT, FeFr

where we have used the fact that —V-(kz) = ¢, a.e. in Q followed by element-by-element partial integration together
with the continuity of the normal component of k7 Vz across interfaces and the strongly enforced boundary conditions
in Qf"o to insert er into the last term.

In view of adding and subtracting aj, (e),-2,) to the right-hand side of (#2), we next provide two useful reformula-
tions of this quantity. First, we have

ah(fh’zh) = ah@h”g},) - ah(ﬂh’gh) + (f.2) — (kVu, Vz)

= Z ((KTV\IZT, V\Z/T)T — (KTVM, VZ)T + ST(ET’ZT) + (f’z — ﬂJT)TZ)T)
TET), (43)

= Z ((KTV(\’ZT —u),V(Zr —2))r +sr(ty.2,) + (f =7 fz = ”lT_ATZ)T) ,
TeT,

13



where we have added the quantity (f,z) — (kVu, Vz) = 0 (cf. 2)) in the first line, we have passed to the second line
using the definition (T2) of ar (with u; = &, and v, = Z,) together with the discrete problem (16) to infer

ah(ﬂh’zh) = (f’zh) = Z (f,ﬂ'[T)TZ)T,

TeT)

and we have concluded using the definitions (24) of wﬁTT+l (together with (34) and @T)) and @) of 7" and ) 7.

Second, using the definition (T0) of r?“ (with v, = e,), we obtain

(e, z,) = Z <(KTVZ, Ver)r + Z (krVZir,ep —er)r + ST@T,ET)) 5 (44)

TeT), FeFr

where we have additionally used the fact that Zr = wf,TTHz (cf. (@T)) together with the definition (24) of w? ’TTH to

replace Zr by z in the first term in parentheses.
Thus, adding (@3) and subtracting (4] from ([@2), we obtain after rearranging

lea] = Z (TU(T) + %(T) + T5(T)), (45)
=

with

T(T) : Z (krV(z —Zr)-nrr.er —er)r +sr(Z, €r),
Fefr
(T = (krV(iir — u), V(Er — 2))r + s7(Uy,2;)
T(T) i= (f —nl foz—mh 2 2)r.
Using the Cauchy—Schwarz inequality, the approximation properties (23) of Zr (with / = pr + 1 and s = 1) together
with the consistency properties (27) of sy (with ¢ = 0) for the first factor, and the bound (39) for the second factor, we

get,

12

. ~ 2 K _

I=1(T)] < (hrlf ¥ (2 = 203 + B, ) x(Z ﬁ|eF—eT%+|gT|§,T> <& Aerhrlerlarlelar. (46)
FeFr

For the second term, the Cauchy—Schwarz inequality followed by the approximation properties (23)) of iy (with ¢ =
pr) and Zr (with ¢ = 1), and the consistency properties (27) of sy (with ¢ = pr and g = 0 for the first and second
factor, respectively) yield

- N /2 e N /2
I%2(1)] < (W (ir — )l + lig ) x (IK4VGr =2 + 7

pri2 47)

- T
< Kr/lx,rm||M||pr+2,r||ZH2,T-

Finally, for the third term we have, when py = 0,

%D < f = 72 fllrlz = myzle < bzl flirlzha < BElflrlzlr (48)
while, when pr > 1,
T < f =7 fllrlz = mrzlr
<|f =19 fllrlz — Tzzlr
pr+2 pr+2 (49)
S =5 Wl lzl2r < =5 1f lprr 2l
T T

where we have used the optimality of ﬂ];T in the L*(T)-norm to pass to the second line and the approximation prop-
erties (7) of T to conclude. Using [@#6)—-(@9) to bound the right-hand side of @3], and recalling the energy error
estimate (T9) and elliptic regularity (22), the conclusion follows. O
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Appendix A. Proof of Lemmal[l]

Let K © RN be a L-Lipschitz set (that is, such that its boundary can be locally parametrized by means of
L—Lipschitz functions) with diam(K) = 1, and fix ro > 1 and a d-cube R(ry) containing K In the proof of [6l
Lemma 4.1] it is shown the following: Given a function v € H**!(K), its projection Hl v on P!(K) satisfies

HV_H] v”qK ~ lirl q” H_yJ,»]K’ (A'l)
for ¢ < s + 1 as long as there exists an extension operator E : H**! (K ) — H**'(R(2r)) such that
3
IEG) =10 < IVl iay EG) = 0on R2r)\R (—) (A2)

The existence of such an extension (in any dimension d > 1), is granted by [28| Theorem 5] provided K satisfies
some regularity conditions. Namely, by means of a careful inspection of [28, Theorems 5 & 5’], and in particular
formulas (25), (30) and the end of the proof of Theorem 5 (p. 192), we get that the constant C in (A.2) depends on
the Lipschitz constant L and on the (minimal) number of L—Lipschitz coverings of K, that is, the number of open sets
which cover 0K and in each of whom K can be parametrized by means of an L—Lipschitz function. Thus, we get
the hp-estimate (7) provided we show that replacing K with an element T of the mesh, formula (AT) holds with the
appropriate scaling in A7.

(i) Proofof (@) for regular elements. Assume, for the moment being, that the regularity of 7' € 7}, descends from
Assumptlon LetT := L and suppose, without loss of generality, that the barycenter of 7' (and thus of T) is 0. Then,

by homogeneity, we get that, for every f € H'(T), letting f(x ( ) = f(x/),
1l < 22771 sz (A3)

where C is a dimensional constant. Thus, setting r = s + 1, A = hy and f = v — q, where q is a generic polynomial
of degree I, we get by (A1) (applied to v — q and IT}.(v — q) in place of v and IT,.v, respectively),

4—q

v =Tvllgr = 1 =) =T = Do < 355 0 =8l (AD

Using [29] Theorem 3.2] and again (A.3) to return to norms on 7', we conclude that

1—q 541 2 min(l,s) —q+1

.
T ~ T
v = Tv]gr < e Z |V|if S N—l_qHV||s+l,T~
i=min(l,s)

(ii) Proof of regularity under Assumption|l] To conclude the proof, we are left to show that Assumption [I] entails

uniform bounds only in terms of p for the Lipschitz constant of every element T € 77,. To this aim, consider x € 07 .
Then, x € S for some (convex) element of the submesh S € ¥, contained in T. Since S < T, it is clear that a bound
on the Lipschitz regularity of 0S immediately implies a bound on the Lipschitz regularity of 0T. Thus, we focus on
the regularity of S. Since S is convex, we can cover dS by means of 2(d + 1) open sets U;, such that dS n U; admits
a local convex (and thus Lipschitz) parametrization ¢;, i.e., there exists an orthogonal coordinate system such that
0S n Uj is the graph of a Lipschitz function ¢; : I; € R?~! — R. This bound on the number of open sets U; is crucial
to get [28] Theorem 5] to work (clearly, thanks to (@), the bound on the number of Lipschitz coverings of T is bounded
by a constant 2N, = ¢(d, p)). We claim that each ¢; is 1/p—Lipschitz.
Suppose that x € U; =: U and set ¢ := ¢;. Up to a rotation and a rescaling, we can suppose that x = 0 and
#(x) = ¢(0) = 0. Let now r, be the inradius of S and hg be its diameter. By Assumption |1} we know that f—; < ll)
Let B,, be a ball contained in S of radius rs. Up to a further rotation of center x = 0 of the coordinate system, we
can suppose that B, is centered on the x, axis. In place of ¢ : I — R, it is useful to consider its Lipschitz extension
¢ : R~1 - R defined by, denoting by |-| the usual Euclidian norm,

¢(x) == inf {¢(y) + Lip(¢)ly — x| | y e R*™'},
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Figure A.4: Illustration for point (ii) in the proof of Lemma

We know that ¢ is Lipschitz on R?~" and that Lip(¢) = Lip(¢) (see for instance [30, Proposition 2.12]). Moreover, it
is clear that q~5 is convex on RY~!. The fact that B,, < S and it is centered on the x;—axis (without loss of generality,
we can suppose that its center is & = (0,&,) with &; > 0) translates into the fact that B, is contained in the epigraph
of ¢ and its center has distance from 0 € R? at most . Let now p € 05(0), where 0 is the subdifferential of ¢. Then,
for every y € R?~! we have N

¢(y) = py.

By choosing y = Ap, with 1 # 0, we get the inequality
é(ap)

’ > |p|. (A.S)
] |p|

Since the epigraph of ¢ contains B, , which is centered at a height less than hg on the x,—axis, and by the convexity
of ¢, we have that the truncated cone

h
C = {(x’,xn) ER' X R:hg = x, = —S|x'|},
rs
is contained in the epigraph of ¢ (see Figure (A.4)). Then we get from (A.5)

~ hs
lp|> < é(p) < —1p|
rs

and so, by Assumption|[I]
hs

=<
rs

X

lp| <

® =

Let now y € R?~!. Then
x)| < plly —x| <p™'ly —xl.

6(y) — d(x)| < [p-(v -
= p~ !, and so that 8S is p~ ! —Lipschitz.

(
Since x is arbitrary, this shows that Lip(¢) = Lip(¢)
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