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Abstract: This technical report presents a generalization of the existing notion of satisfaction
equilibrium (SE) for games in satisfaction form. The new equilibrium, which is referred to as
the generalized SE (GSE), is particularly adapted for modeling problems such as service-level
provisioning in decentralized selfconfiguring networks. Existence theorems for GSEs are provided
for particular classes of games in satisfaction form and the problem of finding a pure strategy
GSEs with a given number of satisfied players is shown to be NP-hard. Interestingly, for certain
games there exist a dynamic, analogous to the best response of games in normal form, that is
shown to efficiently converge to a pure strategy GSE under the given sufficient conditions. Finally,
Bayesian games in satisfaction form and the corresponding Bayesian GSE are introduced. These
games describe the interactions between players that possess incomplete information in a game in
satisfaction form. These contributions form a more flexible framework for studying self-configuring
networks than the existing SE framework. This paper is concluded by a set of examples in wireless
communications in which classical equilibrium concepts are shown to be not sufficiently adapted
to model service-level provisioning. This reveals the relevance of the new solution concept of GSE.
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Equilibrium de Satisfaction Généralisée: Un Modèle pour
Fournir de Niveau de Service dans les Réseaux

Résumé : Ce rapport technique présente une généralisation de la notion existante d’équilibre
de satisfaction (ES) pour les jeux de satisfaction. Le nouvel équilibre, appelé ES généralisé (ESG),
est particulièrement adapté à la modélisation de problèmes tels que la fourniture de services dans
les réseaux auto-configurables. Des théorèmes d’existence pour les ESG sont présentés pour des
classes particulières de jeux de satisfaction et il est démontré que la recherche d’un ESG en
stratégie pure avec une contrainte de nombre de joueurs satisfait est un problème NP-complexe.
Il est aussi intéressant de remarquer qu’il existe pour certains jeux une dynamique, analogue à la
meilleure réponse dans le cas des jeux sous forme normale, qui converge efficacement vers un ESG
en stratégie pure avec les conditions suffisantes indiquées. Enfin, les jeux de satisfaction Bayesiens
et l’ESG Bayesien correspondant sont présentés. Ces jeux décrivent les interactions entre des
joueurs qui ont une information incomplète dans les jeux de satisfaction. Ces contributions
forment un cadre plus flexible facilitant l’étude des réseaux auto-configurables, relativement à
l’ES existant. Cet article est conclu par un ensemble d’exemples de réseaux sans fils dans lesquels
le concept classique d’équilibre se révèle inadapté à la modélisation de la fourniture de services,
soulignant ainsi la pertinence de ce nouveau concept d’ESG.

Mots-clés : Théorie de jeux, équilibre de satisfaction, jeux sous forme de satisfaction, réseaux
auto-configurables.
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1 Introduction
Game theory has played a fundamental role in the analysis of decentralized self-configuring net-
works (DSCNs), e.g., sensor networks, body area networks, small cells, law-enforcement networks.
See for instance [1, 2, 3] and references therein. A DSCN is an infrastructure-less network in
which transmitters communicate with their respective receivers without the control of a cen-
tral authority, for instance, a base station. Therefore, radio devices must autonomously tune
their own transmit-receive configuration to meet a required quality-of-service (QoS) or quality-
of-experience (QoE), as well as efficiently exploit the available radio resources. The underlying
difficulty of this individual task is that meeting a given QoS/QoE depends also on the transmit-
receive configuration adopted by all other counterparts. This suggests that communications
networks can be modeled by games as first suggested in [4], which justifies the central role of
game theory.

An object of central attention within this context is the equilibrium. The notion of Nash
equilibrium (NE) [5, 6] is probably the most popular solution to games arising from DSCNs. An
NE is reminiscent to notions used in mechanics, for instance, a small perturbation to a system
at a stable (mechanical) equilibrium induces the system to spontaneously go back to the equi-
librium point. Similarly, within a communication network operating at an NE, any transmitter
unilaterally deviating from the equilibrium point degrades its own individual performance and
thus, backs down to the initial equilibrium configuration. The relevance of the notion of equi-
librium is that it sets up the rules under which a DSCN can be considered stable, and thus
exploitable. In any other state, the network cannot be fruitfully exploited as there always exist
radio devices aiming to change their individual transmit-receive configurations. Aside from NE,
there are other notions of equilibria particularly adapted to DSCN. Each solution concept has
advantages and disadvantages, as described in [7].

A major disadvantage that is common to most of equilibrium concepts is that stability de-
pends on whether or not each radio device achieves the highest performance possible. This does
not necessarily meet the original problem in which radio devices must only ensure a QoS or QoE
condition. To overcome this constraint, a new solution concept known as satisfaction equilib-
rium (SE) was suggested in [8] and formally introduced in the realm of wireless communications
in [9, 10]. The SE notion relaxes the condition of individual optimality and defines an equi-
librium in which all radio devices satisfy the QoS or QoE constraints. From this perspective,
radio devices are not anymore modeled by players that maximize their individual benefit but
by players that aim at satisfying some individual constraints. This new approach was adopted
to model the problem of dynamic spectrum access in [11, 12, 13] and small cells in [14]. Other
applications of SE are reported for instance in the case of collaborative filtering in [15]. In [16]
it is discussed that the normal form games discussed in [17, 18], where the player has a dormant
action, have satisfaction form representations, such that their pure strategy NEs coincides with
the SEs. However, this equilibrium notion of SE as introduced in [9] presents several limitations.
As pointed out in [18] and [19], the notion of SE is too restrictive. Simultaneously satisfying the
QoS/QoE constraints of all radio devices might not always be feasible, and thus an SE cannot be
achieved, even if some of the radio devices can be satisfied. Hence, existence of an SE is highly
constrained, which limits its application to wireless communications. These limitations are more
evident in the case of mixed-strategies. In mixed-strategies, an SE corresponds to a probability
distribution that assigns positive probability to actions that satisfy the individual constraints for
any action profile that might be adopted by all the other players.

RR n° 8883
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1.1 Contributions
In this paper, the notion of SE presented in [9] is generalized to embrace the case in which only
a subset of the radio devices can satisfy their QoS/QoE individual constraints. This new notion
of equilibrium is referred to as generalized satisfaction equilibrium (GSE). At a GSE, there are
two groups of players: satisfied and unsatisfied. The former is the set of players that meet their
own QoS/QoE conditions. The latter is the set that are unable to meet their own QoS/QoE,
given the actions adopted by all the other players. The key point is that at a GSE, none of
the actions of a given unsatisfied player allows meeting the individual QoS/QoE constraints and
thus, none of the players unilaterally deviates from equilibrium point. Note that if all players
can be satisfied then the notion of SE and GSE are identical.

The existence of GSEs in games in satisfaction form is studied and general existence results are
presented for some classes of games. Interestingly, these existence conditions are less restrictive
than those observed for the case of SE in [9]. Nonetheless, the existence of a GSE is shown to be
not ensured even in the case of mixed-strategies. This contrasts with other game formulations,
such as the normal-form, for which there always exists an NE in mixed-strategies.

The connections between pure strategy GSE and a class of problems known as constrained
satisfaction problems (CSPs) are exploited to show that the problem of searching for a pure
strategy GSE with a given number of satisfied players, in a game in satisfaction form is NP-hard.
A particular subclass of games in satisfaction form is identified for which a simple dynamic,
analogous to the asynchronous best-response in normal-form, is shown to converge to a pure
strategy GSE.

Finally, for the incomplete information case a new class of games in satisfaction form is intro-
duced: Bayesian games. This class of games builds upon the definition of Bayesian games [20, 6]
to model the case of incomplete information in games in satisfaction form. The corresponding
solution concept Bayesian-GSE is also introduced. The relevance of these games in the realm of
wireless communications is highlighted by several examples.

The rest of the paper is organized as follows. Sec. 2 introduces games in satisfaction form
and presents the definition of GSE. Sec. 3 studies the complexity of the problem of finding a pure
strategy GSEs of a finite game in satisfaction form. In particular, it is shown that this problem
is NP-hard. Sec. 3.2 introduces the satisfaction-response dynamics and identifies sufficient con-
ditions under which this dynamic converges to a pure strategy GSE. Sec. 4 introduces Bayesian
games in satisfaction form, the Bayesian-GSE and Bayesian satisfaction-response dynamics. Sec.
5 discusses applications in wireless networks, GSEs for stable admission control, and numerical
results. Finally, Sec. 6 concludes the paper with a discussion of future directions.

Notation

Matrices and vectors are denoted by boldface uppercase and boldface lower case symbols respec-
tively. For square matrice R, the notation R ≺ R′ (resp. R � R′) implies that R′ − R is
positive definite (resp. positive semi-definite). Finite sets are denoted by uppercase calligraphic
letters and ∅ denotes the empty set. Given a set N , the corresponding power set (set of all
possible subsets) is denoted by P (Y). The cardinality of N is |N | = N (uppercase letter). The
indicator function is denoted by 1N (·) and 1N (n) = 1 if n ∈ N and 1N (n) = 0 otherwise.
The operator E (·) denotes expectation. Let Ai be a finite set, with i ∈ N. Let πi ∈ 4 (Ai)
be a probability distribution over the elements of the set Ai. The probability that πi assigns to
a ∈ Ai is denoted by πi (a) . Let the sets A1, . . . ,Am, with m ∈ N, be finite. The set formed
by the Cartesian product of all sets is A , A1 × . . . × AN . The Cartesian product of all sets
except Ai is A−i , Ai × · · · × Ai−1 × Ai+1 × . . .AN . The elements of A and A−i are denoted
respectively by a and a−i.

RR n° 8883
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2 Satisfaction Form and Generalized Satisfaction Equilib-
rium

This section introduces games in satisfaction form and generalizes the notion of equilibrium
presented in [9].

2.1 Games in Satisfaction Form
A game GSF in satisfaction form is defined by the triplet

GSF ,
(
N , {Ai}i∈N , {gi}i∈N

)
, (1)

where N is the finite index set of the players and Ai is the finite set of pure strategies (actions) of
player i ∈ N . Let Πi denote the set of all probability distributions over Ai. The correspondence
gi : Π−i → P (Πi) determines the set of strategies that satisfy the individual constraints of player
i. More specifically, given a profile (πi,π−i) ∈ Π, player i is said to be satisfied if πi ∈ gi (π−i) .

The correspondence gi should not be confused to a constraint on feasible strategies, as in
the case of games with coupled actions [21]. Player i can choose any πi ∈ Πi as a response to
π−i ∈ Π−i, however, only the strategies in gi (π−i) ⊆ Πi satisfy its individual constraints. When
only pure strategies are considered, with a slight abuse of notation, the correspondence in pure
strategies is denoted by gi : A−i → P (Ai) . Then, given a−i ∈ A−i, gi (a−i) ⊆ Ai denotes the
set of pure strategies that satisfies the individual constraints of player i.

2.2 Generalized Satisfaction Equilibrium
Each strategy profile π ∈ Π of the game (1) induces a partition {Ns,Nu} over the setN of players.
Players in the set Ns are said to be satisfied, that is, ∀i ∈ Ns, πi ∈ gi (π−i). Alternatively, players
in the set Nu are said to be unsatisfied, that is, ∀i ∈ Nu, πi ∈ Πirgi (π−i) . The players in Ns are
satisfied and thus, they do not possess any interest in changing their own strategy. Conversely,
players in Nu are unsatisfied and thus, to guarantee an equilibrium, it must hold that none of
their strategies can be used to satisfy their individual constraints. This notion of equilibrium,
namely generalized satisfaction equilibrium, is introduced by the following definition.

Definition 1 Generalized Satisfaction Equilibrium (GSE): π ∈ Π is a GSE of the game in
(1) if there exists a partition {Ns,Nu} of N such that ∀i ∈ Ns, πi ∈ gi (π−i) and ∀j ∈ Nu,
gj (π−j) = ∅.

At a GSE strategy profile π ∈ Π, either a player i satisfies its individual constraints or it is unable
to satisfy its individual constraints since gi (π−i) = ∅. From Def. 1 it follows that a pure strategy
GSE of (1) is a profile a ∈ A, where ∀i ∈ Ns, ai ∈ gi (a−i) and ∀j ∈ Nu, gj (a−j) = ∅. This
equilibrium notion generalizes previously proposed solution concepts to games in satisfaction
form. An SE, as introduced in [9], is a special case of a pure strategy GSE of Def. 1. Specifically,
every GSE in which all players are satisfied in pure strategies is an SE of [9]. An ε-SE, of [9],
is a GSE in which Nu = ∅ and ∀i ∈ N , gi (π−i) = {πi ∈ Πi : E

(
1gi(a−i) (ai)

)
= 1 − ε}, where

the expectation is taken over the mixed strategy profile. Finally when ε = 0, the SE in mixed
strategies as introduced in [9], also follows as a special case of a GSE of Def. 1.

The set of all GSEs of a game can be categorized by the number of players that are satisfied.
An Ns-GSE denotes a GSE in which Ns ≤ N players are satisfied. An N -GSE satisfies all players
and thus, it is referred to as an SE in this paper. The qualifiers mixed- and pure- may be omitted
when the meaning is clear from the context.

RR n° 8883
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2.3 Existence of Generalized Satisfaction Equilibria
The existence of a GSE in (1) depends on the properties of the correspondences g1, . . . , gN . Let
g : Π→ P (Π) be as follows:

g(π) , g1(π−1)× . . .× gN (π−N ). (2)

Then an SE is a fixed point of g, i.e.,

π ∈ g (π) , (3)

and thus, the tools of fixed-point equations [22] can be used to state existence theorems of SEs.
This is not the case for GSEs. Note that at a GSE profile π ∈ Π, where Ns < N there exists an
i ∈ N for which gi (π−i) = ∅ and thus, a fixed point is not properly defined. This observation
highlights the difficulty of providing a general existence result for a GSE. It also emphasizes the
key difference between GSE and NE. By definition an NE is a fixed point of the special case
when the correspondences of (1) are best response mappings with respect to individual utility
functions and therefore, for finite games there always exists at least one NE [5, 6]. Thus the
satisfaction form in (1) is a more general formation that the normal form [9].

Existence results can be given for very particular classes of correspondences g1, . . . , gN . Con-
sider for instance a game in which player i obtains an expected reward given by the function
ui : Π→ R and it is satisfied only if the expected reward is higher than a given threshold τi (the
expectation is over the mixed strategies). That is, the set of mixed strategies that satisfies the
individual constraints of player i is given by:

gi (π−i) = {πi ∈ Πi : ui (π) ≥ τi} . (4)

Examples of games in satisfaction form following this construction are used in [9] to describe
several dynamic spectrum access problems. In this case, the game in satisfaction form possesses
at least one GSE. This observation is formalized by the following proposition.

Proposition 1 The finite game in satisfaction form in (1) for which ∀i ∈ N , gi (π−i) =
{πi ∈ Πi : ui (π) ≥ τi} , possesses at least one GSE.

The statement of Prop. 1 is only for games with the specified correspondences. Prop. 1 does not
hold if the correspondence is modified for instance to gi (π−i) = {πi ∈ Πi : τ i ≤ ui (π) ≤ τ i},
with τ i and τ i, any two reals.

Proof: The proof of Prop. 1 uses the argument that at least one GSE of the game in
(1), for which gi follows the definition in (4), coincides with at least one NE of the normal-form
game:

GNE ,
(
N , {Ai}i∈N , {ui}i∈N

)
. (5)

From the assumption of finite sets of actions and finite set of players, it follows from [5] that the
game in (5) possess at least one NE. At an NE, none of player can unilaterally choose another
action and improve its individual reward. Thus, at any NE, there always exists a partition
Ns and Nu of the set of players such that ∀i ∈ Ns, ui (π) ≥ τi and ∀j ∈ Nu, uj (π) < τj , and
gj (π−j) = ∅, which is a GSE (Def. 1) of the game in satisfaction form in (1) with correspondence
(4).

The proof of Prop. 1 states that every NE of (5) is a GSE of a game in satisfaction form in
which the correspondences are of the form (4). However, the converse is not always true, i.e. the
set of GSEs of the game in (1) might be larger than the set of NEs of (5). This is because at
a GSE, a player i might still unilaterally deviate and achieve a higher expected utility (but not
above the required threshold if it is in Nu), which contradicts the definition of an NE.

RR n° 8883
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In the following example, a game in satisfaction form that does not possess a GSE in mixed
strategies is presented. Define a two player game in which each player i has two actions

{
a1i , a

2
i

}
,

i ∈ {1, 2} . The probability that the strategy of player i assigns to action aji is πi(a
j
i ), j ∈ {1, 2} .

The correspondence of player 1 is

g1 (π2) =

{{
π1 ∈ Π1 : π1

(
a11
)
< π1

(
a21
)}

if π2

(
a12
)
≥ π2

(
a22
){

π1 ∈ Π1 : π1

(
a11
)
≥ π1

(
a21
)}

othewise
. (6)

and the correspondence of player 2 is

g2 (π1) =

{{
π2 ∈ Π2 : π2

(
a12
)
< π2

(
a22
)}

if π1

(
a11
)
< π1

(
a21
){

π2 ∈ Π2 : π2

(
a12
)
≥ π2

(
a22
)}

othewise
. (7)

Let π ∈ Π be an arbitrary strategy profile. Then, one of the following cases holds π2
(
a12
)
≥

π2
(
a22
)
or π2

(
a12
)
< π2

(
a22
)
. Consider the case π2

(
a12
)
≥ π2

(
a22
)
. Then, player 1 is either in

the case in which π1
(
a11
)
< π1

(
a21
)
or else it is in the case π1

(
a11
)
≥ π1

(
a21
)
. In the former, i.e.,

π1
(
a11
)
< π1

(
a21
)
, player 1 is satisfied. In the latter, i.e., π1

(
a11
)
≥ π1

(
a21
)
, player 1 deviates to

π′1, with π′1
(
a11
)
< π′1

(
a21
)
. Either way when player 2 has π2

(
a12
)
≥ π2

(
a22
)
, player 1 converges

to a strategy in which π1
(
a11
)
< π1

(
a21
)
. However, when player 1 is in this case, player 2 is

unsatisfied and it deviates to a strategy π′2
(
a12
)
< π′2

(
a22
)
. This causes player 1 to be unsatisfied

in its current strategy π1
(
a11
)
< π1

(
a21
)
and it deviates to a strategy π1

(
a11
)
≥ π1

(
a21
)
. Since

the above cases cover the entire mixed-strategy space, this game does not possess a GSE.

3 Complexity of Generalized Satisfaction Equilibria in Pure
Strategies

This section establishes the complexity of the GSE search problem in pure strategies. First step
is to establish the complexity of the SE search problem. The problem is stated as follows: given
the game in satisfaction form in (1), if there is a pure strategy SE find it, otherwise indicate that
it does not exist. The following proposition asserts its complexity.

Proposition 2 Pure strategy SE search problem is NP-hard.

The method to establish the time complexity of a problem is the polynomial-time Karp
reduction [23]. In the following development the CSP is reduced to the problem of finding an
SE in pure strategies. The CSP is NP-complete [24] and it is introduced at the beginning of
Appendix A.

Proof: The proof is given in Appendix A
The pure strategy Ns-GSE search problem is: given the game in satisfaction form in (1) and

a natural number Ns, with 1 ≤ Ns ≤ N , if there is an Ns-GSE or higher in pure strategies find
it, otherwise, indicate that it does not exist.

Corollary 1 Pure strategy Ns-GSE problem is NP-hard.

Proof: Given a routine to solve Ns-GSE search problem, the SE search problem can be
solved by setting Ns = N. Therefore Ns-GSE search problem is at least as hard as the SE search
problem.
Finding the complexity of the mixed strategy GSE search problem is left as an open problem.

RR n° 8883
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3.1 Mapping GSE to CSP
The following formulates the problem of finding a GSE in pure strategies as a CSP. The CSP
is introduced at the beginning of Appendix A. The variables of the CSP are the pure strategies
{ai, . . . , aN} . If for a−i ∈ A−i, gi (a−i) 6= ∅, then include a tuple (a′i,a−i), for each a′i ∈ gi (a−i) ,
in the N−ary relation Ri of constraint ci. Else if gi (a−i) = ∅, then player i may choose any
action therefore, there is some flexibility in deciding which tuples to place in the relation Ri. One
possibility is to include a tuple (a′i,a−i) for each a′i ∈ Ai. Another possibility is to include a single
tuple (a′′i ,a−i) where a′′i ∈ Ai is the only action the player wants to take when it cannot achieve
satisfaction. For example, in wireless access power control a′′i could be the zero power action.
Repeat these steps ∀a−i ∈ A−i and ∀i ∈ N . The resulting CSP is ({ai}i∈N , {Ai}i∈N , {ci}i∈N ).
By the above construction of the relations R1, . . . ,RN , at a solution a ∈ A of this CSP player i
has either ai ∈ gi (a−i) or gi (a−i) = ∅. Therefore any solution of the above constructed CSP is a
pure strategy GSE. Thus algorithms for CSPs can be employed to solve for pure strategy GSEs.
Generally distributed CSP algorithms require extensive information sharing between agents [25].
Since a GSE with a maximum number of satisfied players is more desirable, one can also consider
solving the corresponding optimization problem of the CSP where the objective is to maximize
Ns. CSP algorithms has been considered in [26, 27] to find ε-Nash equilibria by discretizing the
mixed strategy space and formulating a CSP problem.

3.2 Satisfaction Response Algorithm
Prop. 2 and Corollary 1 demonstrate that solving for a pure strategy GSE of the game in (1)
is a hard problem in general. However, it is possible to identify games in satisfaction form that
have a special structure and thus, a pure strategy equilibrium can be efficiently found. Suppose
Y is a totally ordered set so that ∀y, y′ ∈ Y either y ≤ y′ or y′ ≤ y. Define finite action spaces
Ai ⊂ Y, ∀i ∈ N , so that Ai is totally ordered as well. For all pairs (a,a′) ∈ A2, the relation
a ≤ a′ holds if ∀i ∈ N , ai ≤ a′i. Alternatively, the relation a < a′ holds if ∀i ∈ N ai ≤ a′i and
for at least one j ∈ N aj < a′j . The smallest and largest elements of Ai are denoted by ai and
ai respectively and define the following vectors,

a,(a1, . . . , aN ) and (8)
a,(ā1, . . . , āN ) . (9)

Consider the following mappings:

φ
i
:A−i → Y and (10)

φi:A−i → Y. (11)

Given the condition a−i ≤ a′−i, the mapping φi is called order-preserving if

φi (a−i) ≤ φi
(
a′−i

)
(12)

and is called order-reversing if
φi (a−i) ≥ φi

(
a′−i

)
. (13)

Then consider the game in satisfaction form in (1) and let the correspondence gi, ∀i ∈ N , be
defined by

gi (a−i) = {ai : φ
i
(a−i) ≤ ai ≤ φ̄i (a−i)

}
(14)

in which both φ
i
and φi be order-preserving.
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For a ∈ A, if ai /∈ gi (a−i) and if gi (a−i) 6= ∅, then there always exists an a′i ∈ gi (a−i) that
player i can use to satisfy its individual constraints. This deviation a′i is called a satisfaction
response and is denoted by SRi (a−i) ∈ gi (a−i). Let N ′u ⊆ N be the subset of unsatisfied
players with nonempty correspondence, i.e., i ∈ N ′u, if ai /∈ gi (a−i) and gi (a−i) 6= ∅. Then
consider the discrete time asynchronous update sequence in which at each instance a subset
N ? ⊆ N ′u, performs satisfaction response. This update process is called asynchronous, as opposed
to synchronous, in which all players in N ′u perform the response and as opposed to sequential, in
which only one of those players at a time performs the response. Algorithm 1 provides the pseudo
code for asynchronous satisfaction response and Prop. 3 states its convergence properties.

Algorithm 1 Asynchronous Satisfaction Response
Initialize a = a
While a is not a GSE:
Select N ? ⊆ N ′u
a :=

(
(SRj (a−j))j∈N? , (ai)i∈NrN?

)
Proposition 3 Consider a game in satisfaction form (1) with ∀i ∈ N , gi given by (14). Then,
starting at a ∈ A the asynchronous satisfaction response algorithm converges to a pure strategy
GSE.

Proof: By definition of the satisfaction response game, when initialized at a ∈ A, if at the
current profile a, the player i ∈ Nu and gi (a−i) 6= ∅, then ai < φ

i
(a−i) . Then when i performs

satisfaction response, ai < SRi (a−i) ≤ φi (a−i) . Since at each satisfaction response the players
in N ? advance at least one action in their ordered action spaces and since the number of players
and the action spaces are finite the algorithm terminates in finite time either when Nu = ∅ or
∀i ∈ Nu gi (a−i) = ∅.
In the above proof there is the implicit assumption that every player that finds itself in Nu with a
nonempty correspondence performs satisfaction response within a finite number of future steps.
If ∀i ∈ N and ∀a−i ∈ A−i, φi, φi are order-reversing, then Algorithm 1 converges initialized
at a ∈ A. Worst case iterations for sequential satisfaction response is O (N max {|Ai| : i ∈ N})
which occurs when all players are initially in Nu and each player advances to Ns with SRi (a−i) =
φ
i
(a−i) only to be found back inNu at the beginning of its next chance to respond. Simultaneous

satisfaction response is bounded by O (max {|Ai| : i ∈ N}) . Convergence time of the more general
asynchronous case can be bounded between the sequential and simultaneous limits, with the
minor condition that every player inNu has to perform a response at least once in a predetermined
time interval lower than N .

Algorithm 1 applies to infinite action spaces that are closed intervals in the real line. However
in that case convergence time may depend on the minimum step size. Power control in continuous
domain to achieve a required rate is an example and is discussed in Section 5.1. Sequential
satisfaction response up to a predefined fixed number of iterations is discussed in [8] as a possible
learning algorithm however, conditions for convergence are not identified.

4 Bayesian Games in Satisfaction Form
In many wireless network problems, global CSI is not common knowledge among transceivers,
therefore can be modeled as Bayesian games of incomplete information which were formalized
by John Harsanyi [20, 6]. In a Bayesian game a player possesses private information, called its
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type. The type set of player i is denoted by X i. All players share common knowledge of the joint
distribution Fx of the random type vector x , (x1, . . . xi, . . . , xN ), where xi is a random variable
over Xi. A pure strategy of i is a mapping si : Xi → Ai that assigns an action to every type in
Xi [28]. The set of pure strategies of i is denoted by Si such that si ∈ Si. Define s , (s1, . . . , sN )
and s−i , (s1, . . . , si−1, si+1, . . . , sN ), where s ∈ S and s−i ∈ S−i. In this section the mixed
strategy set Πi is the set of all probability distributions over Si and a mixed strategy of i is
denoted by πi ∈ Πi [28]. Given type xi, the probability which πi assigns to ai ∈ Ai is denoted
by πi (ai | xi) . The correspondence is gi : Π−i ×Xi → Πi. Then a Bayesian game in satisfaction
form is the tuple:

GBSF ,
(
N , {Ai}i∈N , {Xi}i∈N , {gi}i∈N , Fx

)
. (15)

Having a correspondence for each type in Xi comes useful for instance in modeling a minimum
rate requirement that depends on a queue length or a minimum signal to interference and noise
ratio (SINR) based on the channel gain. For a strategy profile (πi,π−i) ∈ Π, player i is said to
be unsatisfied if πi /∈ gi (π−i, xi) for at least one xi ∈ Xi and conversely i is satisfied if ∀xi ∈ Xi,
πi ∈ gi (π−i, xi) . Then the Bayesian-GSE is defined as follows.

Definition 2 Bayesian Generalized Satisfaction Equilibrium (Bayesian-GSE):The profile π ∈ Π
is a Bayesian-GSE of (15) if there exists a partition {Ns,Nu} of N such that ∀i ∈ Ns, ∀xi ∈ Xi,
πi ∈ gi(π−i, xi) and ∀j ∈ Nu, if for some x′j ∈ Xi πj /∈ gj(π−j , x′j), then gj(π−j , x′j) = ∅.

Def. 2 essentially sates that at a Bayesian-GSE, players in Nu are unable to deviate and achieve
satisfaction for the types in which they are unsatisfied. A Bayesian-GSE with Ns number of
satisfied players is called anNs-Bayesian-GSE and if all players are satisfied it is called a Bayesian-
SE. This equilibrium is Bayesian in the sense that gi(π−i, xi) can be defined as the achievement
of a performance level in expectation over the posterior Fx|xi

. As in complete information case,
with a slight abuse of notation, the pure strategy correspondence is denoted by gi : S−i×Xi → Si,
such that given s−i ∈ S−i, gi (s−i, xi) ⊆ Si.

For π ∈ Π, let Ex|xi
ui (π,x) denotes the ex interim expected utilities of i [28] and τi(xi) ∈ R

a threshold, which can possibly take different values for xi ∈ Xi. The expectation is over the
mixed strategies and the posterior Fx|xi

. A Bayesian game is finite when the sets of players,
actions, and types are all finite. Then, Prop. 4 is the Baysian counter part to Prop. 1.

Proposition 4 A Finite Bayesian game in satisfaction form (15) where ∀i ∈ N and ∀xi ∈ Xi,
gi (π−i, xi) = {πi ∈ Πi : Ex|xi

ui (π,x) ≥ τi (xi)}, has at least one Bayesian-GSE.

Proof: Given the above Bayesian satisfaction form game, construct the Bayesian normal
form game as follows

GBNE ,
(
N , {Ai}i∈N , {Xi}i∈N , {ui}i∈N , Fx

)
, (16)

where ui is the utility of i ∈ N . The proof follows by noting that at a Bayesian-Nash equilibrium
π ∈ Π of (16), ∀i ∈ N the ex interim expected utility Ex|xi

ui (π,x) is a maximum ∀xi ∈ Xi.
Thus if player i for type xi has Ex|xi

ui (π,x) < τi (xi) , then i cannot deviate and improve
Ex|xi

ui (π,x) . Hence for any unsatisfied types xi of i, gi (π−i, xi) = ∅, which by Def. 2 is a
Bayesian-GSE.
It is possible to identify satisfaction-response-Bayesian games for pure strategies. Recall the
totally ordered action spaces from Section 3.2, where ∀i ∈ N , Ai ⊂ Y. Let φi : S−i×Xi → Y and
φi : S−i×Xi → Y. Then φi is called order-preserving if ∀x−i ∈ X−i, s−i (x−i) ≤ s′−i (x−i) , then
∀xi ∈ Xi φi(s−i, xi) ≤ φi(s

′
−i, xi). Then (15) is a satisfaction-response-Bayesian game if ∀i ∈ N

gi (s−i, xi) = {si ∈ Si : φ
i
(s−i, xi) ≤ si(xi) ≤ φ̄i(s−i, xi)}, where φi, φ̄i are order-preserving. Let

us define ∀xi ∈ Xi, si (xi) , ai, and s , (si)i∈N .
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Proposition 5 For a satisfaction-response-Bayesian game, starting from s the asynchronous
satisfaction response algorithm converges to a pure strategy Bayesian-GSE.

Proof: The proof is similar to that of Prop. 3 except each type has to be considered.
Initialized at s, if i ∈ N ′u performs satisfaction response at the current profile s, then ∀xi ∈ Xi
where gi (s−i, xi) 6= ∅, si (xi) ≤ SRi (s−i, xi) ≤ φ̄i (s−i, xi) and for at least one xi (for which
i was unsatisfied) si (xi) < SRi (s−i, xi) ≤ φ̄i (s−i, xi) . Therefore, for each unsatisfied type
the strategies monotonically advances in the ordered action space. Since the number of players,
actions, and types are finite the algorithm terminates when either Nu = ∅ or ∀i ∈ Nu for all
unsatisfied types xi ∈ Xi, gi (s−i, xi) = ∅.

5 Applications of GSEs
This section presents several applications of games in satisfaction form in wireless network prob-
lems for complete and incomplete information cases. The objective is to demonstrate the appli-
cability of GSE to standard problems. Power control and channel allocation are the main focus.
Also efficient-GSEs are discussed for the admission control problem.

5.1 Uplink Power Control Game
Power control under per user rate requirements has been well studied for its feasible region and
Pareto optimal solutions [29]. The possibly infeasible case in which a subset of the transmitters
may not be satisfied has received less attention. In [30] the over constrained SINR targets are
handled by introducing multiple SINR targets such that the infeasible users switch to lower
targets.

The single-input-single-output (SISO) power control game in the interference channel is pre-
sented in [31] as a generalized Nash equilibrium problem. The following development considers
single-input-multiple-output (SIMO) case as a satisfaction-response game. The baseband equiv-
alent signal at the destination of transmitter i is

yi =
√
pihiisi +

∑
j∈Nr{i}

√
pjhjisj + zi, (17)

where yi ∈ Cni is the received symbol vector at the receiver of ith transmitter, ni is the number
of receiver antennas, si ∈ C is the transmitted symbol of i, hji ∈ Cni is the channel between
transmitter j and destination of i, and zi ∼ CN (0, σI) is the circular symmetric complex
additive white Gaussian noise. The payoff of transmitter i is the achievable rate ui

(
pi,p−i

)
=

log(1 +pih
H
iiR

−1
−ihii) bits/sec/Hz, where R−i =

∑
j∈Nr{i} pjhjih

H
ji +σI is the interference plus

noise covariance matrix. The transmit power is pi ∈ Pi, where Pi = [p
i
, pi], pi, pi ∈ R≥0. The

game in satisfaction form played by the transmitters is

GPC ,
(
N , {Pi}i∈N , {gi}i∈N

)
, (18)

in which ∀i ∈ N gi
(
p−i
)

= {pi ∈ Pi : τ i ≤ ui (p) ≤ τ̄i} , where 0 ≤ τ i ≤ τ̄i. The upper bound
τ i is considered for the sake of generality. For instance the transmitter or receiver may have
a maximum operational rate. This model is valid for τ̄i = +∞, which corresponds to rate
unbounded from above.

Define ∀i ∈ N φ
i

(
p−i
)

= inf
pi∈R

{
pi : ui

(
pi,p−i

)
≥ τ i

}
and φ̄i

(
p−i
)

= sup
pi∈R

{
pi : ui

(
pi,p−i

)
≤ τ i

}
.

Then restate the correspondence gi
(
p−i
)
≡ {pi ∈ Pi : φ

i

(
p−i
)
≤ pi ≤ φi

(
p−i
)}
. From the prop-

erties of positive (semi-)definite matrices [32], p−i ≤ p′−i implies R−1−i
(
p−i
)
� R−1−i

(
p′−i
)
which
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in turn implies ui
(
pi,p

′
−i
)
≤ ui

(
pi,p−i

)
and therefore concludes that φ

i

(
p−i
)
≤ φ

i

(
p′−i
)
and

φ̄i
(
p−i
)
≤ φ̄i

(
p′−i
)
. The inequalities hold strictly if p−i < p′−i. Thus by extension of Prop. 3

to action spaces that are closed intervals in the real line Algorithm 1 converges for game (18). If
the upper threshold is removed, by setting τ̄i = +∞, the stronger condition p−i < p′−i implies
gi
(
p′−i
)
⊂ gi

(
p−i
)
holds.

The players must know the noise and interference covariance matrix and can be obtained
from the receiver. The standard power control game is to minimize the transmit power with per-
user rate constraints and it is a generalized NE problem where a solution may not exist if over
constrained, where as (18) always has a GSE. Even assuming the feasibility of the problem, the
update algorithms proposed in [31] require projection into the global feasible set, which requires
extensive information exchange between users at each iteration.

5.2 Efficient-GSEs and Admission Control
At a pure strategy GSE p ∈ P of (18), an unsatisfied player i ∈ Nu obtains ui (p) < τ i, but
may have pi > p

i
. If a player in Nu lowers its power, then it is possible that another in Nu can

deviate to satisfaction and thus disrupt the equilibrium. In some applications it is desirable that
at a GSE ∀i ∈ Nu pi = p

i
. Such profiles are called efficient-GSEs as the Nu poses the least

interference to Ns. Efficient-GSEs do not necessarily exist.
In most scenarios ∀i ∈ N p

i
= 0. Then at an efficient-GSE ∀i ∈ Nu pi = 0, and thus serves as

an admission control scheme where the unsatisfied players remain switched-off. However, unlike
a traditional admission control scheme as in [33], an efficient-GSE is stable, i.e., the players who
do not transmit are aware that they cannot achieve satisfaction even at maximum power. The
mapping outlined in Section 3.1 can be used to solve for efficient GSEs in a finite action space
game of discrete power levels by way of solving a CSP.

5.3 Orthogonal Resource Allocation Game
Consider the problem of allocating a finite set K of orthogonal resources among N interfering
SISO wireless channels. The action set of transmitter i is Ki ⊆ K, while transmit power remains
constant. Transmitter i is said to be satisfied if the SINR at its receiver is above a threshold,

γi (ki) :=
|hki

ii |
2pi∑

j∈Nr{i}|h
ki
ji |2pj+σ

ki
i

≥ τi, ki ∈ Ki, | hkiji |2≥ 0 is the power gain from transmitter j to

receiver of i on ki, and noise power σkii > 0. The game in satisfaction form is:

GCH ,
(
N , {Ki}i∈N , {gi}i∈N

)
, (19)

where ∀k−i ∈ K−i gi (k−i) = {ki ∈ Ki : γi (ki) ≥ τi, } .
By Prop. 1 game (19) has at least one GSE in mixed strategies. Prop. 6 shows that searching

for a pure strategy SE of (19) is NP-hard.

Proposition 6 The pure strategy SE search problem of (19) is NP-hard.

Proof: The proof is given in Appendix B.
Corollary 1 observes that if an efficient algorithm exists to solve the Ns-GSE search problem then
that algorithm can efficiently solve the SE search problem of the same game. Therefore finding
an Ns-GSE of (19) is NP-hard as well.
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5.4 Bayesian Game for Power Control
Consider the SIMO multiple access interference channel of Section 5.1. In the Bayesian setup,
the private information of player i is its direct channel to its destination hii ∈ Xi, which can
be obtained through feedback. Define the vector of all channels (direct and interference) h =
(hij)i,j∈N . A pure strategy of i depends on its channel to its receiver si(hii). The utility of
transmitter i is ui (s,h) = log2(1 + si(hii)h

H
iiR

−1
−ihii). The resulting Bayesian power control

game is

GBPC ,
(
N , {Pi}i∈N , {Xi}i∈N , {gi}i∈N , Fh

)
, (20)

where gi(s−i,hii) =
{
si ∈ Si : τ i ≤ Eh−i

ui (s,h) ≤ τ i
}
and the thresholds are as in (18). Inde-

pendence of types among players are assumed. The correspondence can be restated as gi (s−i,hii) =
{si ∈ Si : si (hii) ∈ Pi, φi (s−i,hii) ≤ si (hii) ≤ φi (s−i,hii)

}
, where φ

i
(s−i,hii) = inf

pi∈R

{
pi : Eh−i

ui (s,h) ≥ τ i
}
,

and φi (s−i,hii) = sup
pi∈R

{
pi : Eh−i

ui (s,h) ≤ τ i
}
. From the properties of positive (semi-)definite

matrices ∀h ∈ X , s−i(h−i) ≤ s′−i(h−i) implies φ
i
(s−i,hii) ≤ φ

i
(s′−i,hii) and φi(s−i,hii) ≤

φi(s
′
−i,hii). Thus, GBPC is a satisfaction-response game and by Prop. 3, Algorithm 1 converges

for game (20).

5.5 Numerical Results
Consider GPC in (18) for continuous power domain. The network consists of three small-cell
base stations (SBSs), each serving two SUEs in a closed access manner. The SUEs are equipped
with a single antenna whereas the SBSs have 4 antennas each. The SBSs and the SUEs are
i.i.d. uniformly distributed over a circular area of unit radius. The elements of the channel
vector hji i, j ∈ N are independent circular symmetric complex Gaussian with zero mean and
variance equal to the pathloss with exponent α = 3. The power domain is Pi = [0, 10] W.
The scaled noise power spectral density is 10−6W/Hz, and the channel bandwidth is 1MHz.
Then simultaneous satisfaction response by Algorithm 1 is initialized at p = 0. The step size of
SRi (a−i) = 0.2×(pimax−pimin)×U+pimin, where pimax, pimin are the maximum and minimum
feasible power respectively and U is the standard uniform random variable. It is assumed that
the channels remain constant during the convergence. Fig. 1 depicts the rates at convergence to
pure strategy GSEs for the six players. In Fig. 1a, all players achieve satisfaction at the GSE and
in Fig. 1b, one player fails to achieve satisfaction at the GSE. The number of satisfied players
depends on the channel realizations and thresholds.

For a given threshold the number of satisfied players depends on the channel realizations.
Fig. 2 compares GSE and Nash solutions for the number of satisfied UEs. The corresponding
NE problem is GPC−NE , (N , {Pi}i∈N , {ui}i∈N ), where payoff ui is the achievable rate. From
the monotonicity of ui in pi, a player i transmits at its maximum power at a NE. As expected
the GSE is able to satisfy more players than the Nash solution.

Next consider the Bayesian power control game GBPC (20) of Section 5.4 with ∀i ∈ N
gi(s−i,hii) =

{
si ∈ Si : Eh−i

ui (s,h) ≥ τ i
}
. The pure strategy si gives an action for each re-

alization of the type in Xi. Therefore for numerical tractability, single antennas UEs and SBSs
and a discrete channel model is considered. Let the channel power gains ∀i, j ∈ N | hij |2 be
equiprobably distributed in two levels {0.25, 0.75} . The power domain is Pi = [0, 10] W. The
other network parameters are as in GPC. Fig. 3 depicts the convergence of rate and power levels
for a single player by the simultaneous satisfaction response using Algorithm 1. Algorithm 1 is
initialized at p = 0 and SRi (s−i, xi) is set to the minimum feasible power.
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Figure 1: Convergence of Algorithm 1 for GPC.
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Figure 3: Convergence of simultaneous satisfaction response algorithm for GBPC for a single
player in a symmetric network.

Finally efficient-GSEs are evaluated. The discrete power control problem with L + 1 power
levels, {0, pL , . . . ,

(L−1)p
L , p}, is investigated for efficient-GSEs where the unsatisfied players must

assign zero power. Here L is a positive integer. The rest of the parameters are as GPC discussed
earlier. The efficient-GSE problem is modeled as a CSP as discussed in Section 5.2 and then
solved using a brute force CSP solver. For a given set of transmit power levels and τ i, τ i ∀i ∈ N ,
the existence of an efficient-GSE is a property of the channel realizations. From the simulation
results in Table 1 it is observed that as τ i grows efficient-GSEs exists with very high probabil-
ity. However, as L grows the complexity of the CSP grows exponentially and hence becomes
computationally intractable.

6 Conclusion
This paper presents the novel generalized satisfaction equilibrium (GSE) for games in satisfaction
form. When players attempt to satisfy a required service level, rather than maximize their utility,
at a GSE the unsatisfied players are unable to unilaterally deviate to achieve satisfaction. GSE
bridges constraint satisfaction problems and games in satisfaction form as the two problems can
be transformed to each other. Finding a pure strategy GSE is shown to be NP-hard. The paper
presents the relation of GSE to NE and of satisfaction form to normal form. It also presents
results of existence of GSEs for special classes of games and offers counter examples to the general
case. The class of satisfaction-response games are shown to be efficiently solvable. The incomplete
information case is considered under Bayesian-GSEs. To demonstrate the applicability of GSE,
standard wireless problems are solved and compared in performance against Nash equilibria.
An important GSE is when the unsatisfied players pose the least resistance to the satisfied
players. This is called an efficient equilibrium. It is our understanding that efficient-GSEs
possess immense potential for self-organization in heterogeneous networks. There is much to be
explored in efficient equilibria in terms of existence and distributed algorithms.
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pi (W) (τ i, τ i) bits/s/Hz Pr{efficient-GSE} Avg. satis. users
1 (1, 5) 0.9460 2.4353
1 (1, 20) 0.9951 3.8418
1 (1, 50) 0.9994 3.9022
10 (1, 5) 0.9252 2.1291
10 (1, 20) 0.9747 4.4762
10 (1, 50) 0.9990 4.5086

(a) L = 1, for two actions of transmit and do not transmit.

pi (W) (τ i, τ i) bits/s/Hz Pr{efficient-GSE} Avg. satis. users
1 (1, 5) 0.9682 2.7629
1 (1, 20) 0.9980 3.8861
1 (1, 50) 0.9997 3.9415
10 (1, 5) 0.9374 2.7401
10 (1, 20) 0.9897 4.5544
10 (1, 50) 0.9999 4.5933

(b) L = 2, for three actions {0, 0.5pi, pi} .

Table 1: Probability of existence of efficient-GSE

Appendices
A The CSP and the Proof of Prop. 2
The CSP is briefly introduced here and a comprehensive description can be found in [24, 34]
and references therein. In a finite domain D, a q−ary relation is a set of length q tuples of the
form (d1, . . . dq) , where the elements are from D. An instance of CSP is defined by (V,D, C) ,
where V = {v1, . . . , vV } is the set of variables, D is the finite domain of the variables, and
C = {c1, . . . , cC} is a collection of constraints. Constraint ci is a pair (vqi ,Ri), where the list
vqi = (vi1, . . . , viqi), 1 ≤ qi ≤ V, vi1, . . . , viqi ∈ V and Ri is a qi-ary relation on D. An assignment
a = (vj , dj)j∈V , is a single value dj ∈ D given to each variable vj ∈ V. Assignment a is said to
solve the CSP if ∀ci ∈ C, the vqi component of a is a tuple in the relation Ri.

In complexity analysis the representation of the problems are important as they are compared
with respect to the input size. Here it is considered that ∀i ∈ N , gi is provided in tabular form
with two columns a−i and gi (a−i) . That is for each a−i ∈ A−i for which gi (a−i) is nonempty
there is an entry/row in the table. For a−i with no entry in the table gi (a−i) is empty.

Proof: The CSP is given by (V,D, C) . If C < V, then introduce V −C number of dummy
unary constraints cj , C < j ≤ V of the form (vj ,Rj) whereRj has a unary tuple for each element
of D. These constraints are dummy as they are satisfied by any assignment to vj . If V < C, then
introduce C − V dummy variables. Let this derived, either adding constraints or variables, CSP
be (V̄,D, C̄). Observe that an assignment is a solution to (V̄,D, C̄) iff it solves (V,D, C) . Define
a game in satisfaction form with max {V,C} players and set Ai = D. Assign vi ∈ V̄ and ci ∈ C̄
to player i. The strategy of player i is to assign a value ai (vi) ∈ Ai, to vi and it is satisfied if ci
is satisfied.

If the list vqi of ci contains the vi, then construct table gi as follows. Each tuple in Ri
can be considered as values assigned to the variables in vqi by the respective players who own
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each variable i.e., (ai1(vi1), . . . ai(vi), . . . , aiqi(viqi)) ∈ Ri, where ai (vi) is assigned by player i
itself. The idea is to add values of variables of other players on the left column of gi and put the
corresponding ai (vi) on the right column but keeping in mind that more than one tuple in Ri can
have the same value assignment to other variables but with different values to vi. Take a tuple
from Ri, if the values of variables except vi is not already in the left column of the table add it in
a new row and corresponding ai (vi) on the right column of that row. If on the other hand that
exact value combination of other variables is already in the left column then append to the right
column (to the existing values) the new ai (vi) . If list vqi does not contain vi, then construct
gi with one row for each tuple in Ri on the left column and the entire set D on each row on
the right column, i.e., the satisfaction of i does not depend on its action but only on the actions
of others. These mappings are polynomial time in size of (V̄,D, C̄). Construction of game (1) is
now complete. If an assignment a is an SE then that assignment is found in gi∀i ∈ N , which by
construction implies that the assignment is in Ri ∀i ∈ N , hence solves (V̄,D, C̄). Conversely if
a solves (V̄,D, C̄) then it is in Ri ∀i ∈ N , then by construction that assignment is in gi∀i ∈ N ,
hence an SE. It was already established that a solution to (V̄,D, C̄) solves (V,D, C) . Therefore
the SE search problem is NP-hard.

B Proof of Prop. 6
Proof: The NP-hardness is proven by a polynomial time reduction from the set partition

problem to (19). Set partition is a known NP-complete problem [35]. It is defined by an input
set P = {p1, . . . pP } of positive integers and the problem is to decide if there is a partition of
P into two subsets P1 and P2 such that the sum of elements of the two sets are equal. Let us
denote by τ the value of sum of each partition so that the total sum of elements of P is 2τ . Let
N = P + 2 be the number of players and K =

{
k1, k2

}
, 2 resources. Let σki = σ, ∀1 ≤ i ≤ P + 2

and ∀k ∈ K. The transmit powers of the first P players are the numbers pi ∈ P, 1 ≤ i ≤ P. For
those P players 1 ≤ i ≤ P, ∀k ∈ K let | hkij |2= 1, where 1 ≤ j ≤ P + 2. The last two players
i ∈ {P + 1, P + 2} have power pP+1 = pP+2 = 1 and they do not interfere the first P players,
i.e., ∀1 ≤ j ≤ P and ∀k ∈ K | hkij |2= 0, but they interfere each other ∀ij ∈ {P + 1, P + 2}
| hkij |2= 1.

In summary, the first P players have identical unit gain channels to all receivers, the last
two players have zero gain channels to the receivers of the first P players while having unit gain
channels to the receivers of those two. Let ∀i ∈ N τi = pi

τ+σ . Let Ki = K ∀1 ≤ i ≤ P and
KP+1 = k1 and KP+2 = k2. Then for players P + 1 and P + 2 to be satisfied, the sum of received
interference powers on each channel due to the first P players has to be less than or equal to
τ, but since

∑
1≤i≤P pi = 2τ, they necessarily have to be equal to τ. Observe that from the

construction if P + 1 and P + 2 are satisfied then all 1 ≤ i ≤ P are satisfied as well. Thus a pure
strategy channel allocation is an SE of the constructed game iff it is a valid set partition of P.
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