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a b s t r a c t

Deriving the complete distribution of the end-to-end delay in a wireless multi-hop net-

work is of paramount interest when delay-sensitive flows have to be conveyed over such

networks. First works have proposed models to derive the total delay distribution of net-

works assuming the well-known IEEE802.11 DCF medium access (MAC) protocol. Current

derivations can be decomposed into two main steps: (i) the calculation of the total delay

probability generating function (PGF) and (ii) its numerical inversion. We show in this

paper that there is a need for a thorough performance evaluation of these models since

both steps introduce errors, naming modeling and inversion errors. We argue that both

types of errors have to be analyzed separately to characterize the accuracy of the analytical

derivations of the literature. Therefore, this paper defines two performance evaluation

metrics that measure the magnitude of both types of errors. Both metrics are illustrated

to select and optimize the most accurate model to calculate the single-hop end-to-end

delay distribution of nodes using the IEEE802.11 DCF MAC protocol. The most accurate

model is extended to calculate the end-to-end delay distribution for a 2-hop wireless

communication.

1. Introduction

Wireless networks based on the IEEE 802.11 technology

[1] are now deployed widely for non-critical applications.

The flexibility of wireless connectivity is gaining momen-

tum in the context of real-time networks (wireless indus-

trial fieldbuses, wireless embedded networks, etc.) [2,3].

The main pitfall of wireless communications is of course

the increased unreliability the medium suffers from due

to interference and pathloss compared to shielded wires.

Moreover, mainstream IEEE 802.11 technology is based

on CSMA/CA (Carrier Sense Multiple Access with Collision

Avoidance), which is non-deterministic but highly flexible.

Carrying soft real-time data over wireless has been

shown to be a feasible option in practice [3]. However, to

be able to roll out such a technology, it is necessary to cal-

culate the worst-case end-to-end delay the network offers

to the real-time applications using it. If a CSMA/CA type of

medium access control (MAC) protocol is considered, a

probabilistic definition of the worst-case delay has to be

taken into account, which relies on the full knowledge of
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the delay distribution [4]. The probabilistic worst-case

delay can be defined as the delay dwc for which the proba-

bility Pðd P dwcÞ to find a delay larger than dwc is arbitrarily

small (e.g. smaller than d ¼ 10ÿ9 for instance).

The building block of this approach is the precise and

accurate knowledge of the delay distribution. This delay

distribution, defined more precisely by its probability mass

function (PMF), can either be computed by simulations or

using analytical models. This paper focuses on the analyt-

ical derivation since simulation-based ones do not scale

and are too computationally intensive. Only a few works

[5–8] discuss the analytical derivation of the full delay dis-

tribution of CSMA/CA networks. Most references on the

performance evaluation of IEEE 802.11 [5,6,8–10] mainly

focus on the mean delay calculation since it is sufficient

for the design of non-critical wireless networks.

The main works that discuss the delay distribution der-

ivation propose different analytical models for the MAC

and queuing delay. All these works calculate first the prob-

ability generating function (PGF) of the MAC and queuing

delays. From these, they deduce the PGF of the total trans-

mission delay which has to be inverted to obtain the total

delay distribution. For instance, in [6,8], the MAC delay PGF

is derived from the well-known Markov model of Bianchi

[11]. An important step to get the delay distribution is to

invert the PGF to obtain the corresponding probability

mass function. This step can introduce errors. Similarly,

different inversion methods have been proposed in these

works.

Our aim in this paper is to propose a clear and precise

performance evaluation method to (i) assess the quality

of the analytical model leading to the total delay PGF and

(ii) select the most accurate numerical inversion method.

Therefore, we define two performance measures whose

aims are to characterize the error originating from the ana-

lytical model on the one side and from the PGF inversion

method on the other side. Computing the distribution is

complex, and previous works have assessed the perfor-

mance of their model only by comparing analytical distri-

butions to their simulated counterpart. However, they

have neglected the numerical inversion error. We argue

in this paper that to trust the models, it is necessary to dis-

criminate the impact of both errors on the final distribu-

tion. Unique to this work is to provide metrics to

differentiate both types of error, which are then used to

select the most accurate models and inversion errors of

the literature.

Our performance evaluation method is illustrated on

the specific case of an IEEE 802.11 DCF medium access

where two different types of queues are assumed, naming

M/M/1 and M/G/1. Our main conclusions show that a

pretty accurate model for the MAC delay is available while

improvements are needed for the queuing delay distribu-

tion derivation.

The paper opens up on examining the feasibility of

extending the single-hop theoretical delay distribution

derivation to dual-hop communications assuming simple

M/M/1 queues at the source and the relay nodes. We first

show that the main assumptions of the single-hop case

do not hold anymore, triggering an increased error for

the total delay distribution. However, interestingly, the

analytical model extension for the dual-hop case provides

a good approximation of the distribution tail, which is

the part required to calculate a probabilistic worst case

delay.

This paper is organized as follows. In Section 2, the

overall analytical derivation of the total delay distribution

is presented. Detailed calculations for the individual MAC,

queuing and total delays for IEEE 802.11 DCF protocol and

specific queues are given in Section 3. In Section 4, we

introduce the method proposed to assess the performance

of a delay distribution model. This method is leveraged in

Section 5 to select the most accurate analytical model that

derives the total delay distribution of an IEEE 802.11 wire-

less network using DCF. We extend the total delay deriva-

tion to a 2-hop communication scenario in Section 6.

Finally, Section 7 concludes the paper.

2. Derivation of the total delay distribution

This section starts by introducing the wireless system of

interest and then presents the overall analytical derivation

of the total delay distribution.

2.1. System model

In this paper, a source node is directly transmitting its

packets to a destination node. These two nodes belong to

a set of n stationary nodes sharing a common wireless

medium. Each emitted packet experiences a total transmis-

sion delay dt which is measured from its time of generation

to the time its sender gets an acknowledgment (ACK) from

the destination node or a maximum number of transmis-

sion trials has been reached.

At the time of generation, the emitted packet enters the

transmission queue. Once it has reached the head of its

queue, it will compete for channel access with the other

stations. If the packet has been emitted, the sender waits

for a positive ACK from the destination. Thus, the total

delay is the sum of: (i) a queueing delay, which is the time

for the packet to reach the head of the transmission queue,

and (ii) a medium access delay (MAC delay), which is the

time needed by the medium access protocol to either suc-

cessfully deliver the packet or drop it in case of repeated

failures.

The rest of the paper recalls the analytical derivation of

the distribution of the total delay experienced by packets

for an IEEE 802.11 DCF medium access (with or without

RTS/CTS mechanism). We consider a saturated traffic

where all nodes of the network always have a packet ready

for transmission. Two types of queues are investigated as

well, naming M/M/1 and M/G/1. Ideal channel conditions

are assumed as well (no channel errors, no hidden

terminals).

2.2. Global analytical modeling

MAC and queuing delays can be assumed as indepen-

dent discrete random variables as shown in [8]. Indeed,

the MAC delay experienced by a head of line packet is

completely independent from the time it has spent in the



queue. It is just a function of the number of nodes content-

ing for medium access with him.

In the rest of the paper, the following notation is

adopted: dtðkÞ; dqðkÞ and dmðkÞ represent the probability

mass functions (PMF) of the total transmission, queuing

and MAC delays, respectively. DtðZÞ;DqðZÞ and DmðZÞ are

the probability generating functions (PGF) of total, queuing

and MAC delay, respectively. We recall that the probabil-

ity-generating function of a discrete random variable X is

the Z-transform of its PMF. It is calculated following

DðZÞ ¼
P1

k¼0dðkÞZ
k, with Z 2 C and dðkÞ the PMF of X.

Since MAC and queueing delay random variables are

independent, the PGF of the total delay DtðZÞ is equal to

the product of DmðZÞ with DqðZÞ:

DtðZÞ ¼ DmðZÞDqðZÞ ð1Þ

The mean of the total delay E½Dt � ¼ E½Dm� þ E½Dq� is

obtained by summing the mean MAC and queuing delays

with E½D� ¼ D0ðZÞjZ¼1.

In this work we are interested in extracting the proba-

bility mass function dtðkÞ of the total delay. Therefore, we

will need first to derive DmðZÞ and DqðZÞ, the PGF of MAC

and queuing delays respectively. Previous works have

tackled these problems with different perspectives and

models. Our aim in this paper is to present a performance

evaluation analysis of these derivations to select the ones

which provide the best trade-off between accuracy and

complexity.

Having DtðZÞ ¼
P1

k¼0dtðkÞZ
k; dtðkÞ is obtained by the

Z-transform inversion of the PGF. This last inversion step

is critical and can introduce errors. The error introduced

by the inversion is added to the error an imperfect analyt-

ical model can create. We argue in this paper that to have a

clear view of the performance of a given analytical deriva-

tion of a delay distribution, its validation has to be done in

two steps. First, the model used to derive the individual

PGFs has to be validated before numerical inversion.

Second, the numerical inversion has to be tailored to

reduce the inversion error.

3. PGF derivations of MAC and queueing delays

This section recalls briefly the derivation of the individ-

ual PGFs for the MAC and queueing delays we have

selected from the literature.

3.1. PGF of MAC delay

Two different types of models have been proposed in

the literature to characterize the MAC delay distribution.

The models of Zhai et al. [8] and Vardakas et al. [6] rely

on the well-known Markov chain originating from the

work of Bianchi [11]. Vu and Sakurai have given in [7]

the main lines of a different probabilistic derivation for

the MAC PGF, together with a very limited performance

evaluation. In the rest of this paper, we will focus mainly

on the PGF derivation of [6,8] that builds on the Markov

chain model of [11].

For conciseness purposes, we refer the reader to [1,6,8]

for a detailed description of the Markov chain representing

the IEEE 802.11 DCF MAC protocol. From this Markov

chain, at steady state, the probability s that a node trans-

mits in a randomly selected time slot is extracted. In the

following, the derivation of the MAC PGF given by Varda-

kas et al. [6] is summarized. The saturated state are consid-

ered, where each of n nodes always has a packet to

transmit in its transmission queue.

The interruption of the backoff period is a result of two

different events: the collision of two or more nodes with

probability p and the transmission of only one node other

than the tagged one, with probability

p0 ¼
nÿ 1

1

� �

� s � ð1ÿ sÞnÿ2 ð2Þ

Following [6], the binary exponential backoff algorithm

can be envisioned as a function of two coordinates ðx; yÞ,

where ðx 2 ½0;m�Þ is the backoff stage and ðy 2 ½0;Wx ÿ 1�Þ

is the value of the backoff counter at the backoff stage x.

The authors of [6] deduce that the PGF of the duration a

packet stays in stage x with backoff counter y is given by:

Bx;yðZÞ ¼
ð1ÿ pÞ � Zr

1ÿ ðp0SðZÞ þ ðpÿ p0ÞCðZÞÞ
ð3Þ

where Zr is the PGF of the propagation time r; SðZÞ ¼ ZTs

and CðZÞ ¼ ZTc are the PGFs of the duration of a successful

transmission period Ts and of a collision period Tc , respec-

tively. They depend on the type of service (basic or RTS/

CTS) and their derivation can be found in [6]. Main DCF

timing values considered in this paper can be found in [12].

The PGF of the duration the packet stays in the backoff

stage x follows:

BxðZÞ ¼

PWxÿ1
y¼0

Bx;yðZÞ
y

Wx
; 0 6 x 6 m0

Bm0 ðZÞ; m0 < x 6 m

(

ð4Þ

From this, the PGF of the MAC delay is derived as:

DmðZÞ ¼ ð1ÿ pÞ � SðZÞ �
X

m

x¼0

ðp � CðZÞÞx
Y

x

i¼0

BiðZÞ

" #

þ ðp � CðZÞÞmþ1 �
Y

m

i¼0

BiðZÞ ð5Þ

It represents the duration for the packet to reach the

end state (i.e. being transmitted successfully or discarded

after maximum m retransmission failures) from the start

state (i.e. beginning to be served). The first term relates

to the delay of a successfully transmission including the

delay spent in the previous x and y backoff stages, while

the second term calculates the delay for dropping the

packet after m trials.

Mean MAC delay E½Dm� is given by the first derivative of

DmðZÞ at Z ¼ 1 : E½Dm� ¼ D0
mðZÞjZ¼1.

3.2. PGF of queueing delay

This section presents the derivation of the queuing

delay PGF, DqðZÞ; Z 2 C for both M/M/1 and M/G/1 queues.

Packets enter the queue according to a Poisson distribution

of rate k. The packet transmission process introduced by

the DCF medium access can be modeled as a general single



server whose service time distribution is known from Eq.

(5).

3.2.1. Assuming an M/M/1 queue

For the M/M/1 queue, the service time is exponentially

distributed with parameter l. Thus, the cumulative

distribution function (CDF) and probability density

function (PDF) of the service delay are FðtÞ ¼ 1ÿ elt and

f ðtÞ ¼ leÿlt , respectively. The service times have an

average value of l equal to the mean MAC delay:

lÿ1 ¼ E½Dm�. The Laplace transform of F is the function

Lf ðsÞ ¼
l

sþl [13]. According to the Pollaczek–Khintchine

(P–K) transform equation, the Laplace transform LDq ðsÞ of

the queueing delay can be expressed as:

LDq ðsÞ ¼
sð1ÿ qÞ

sÿ kþ kLf ðsÞ
ð6Þ

with q ¼ k=l the server utilization. According to the rela-

tionship between Laplace and Z-transform [13] (cf. Appen-

dix in [12]), it is possible to deduce the Z-transform DqðZÞ

from LDq ðsÞ by substituting s ¼ ÿ ln Z into (6):

DqðZÞ ¼
ÿlnðZÞð1ÿ qÞ

ÿlnðZÞ ÿ kþ kLf ðÿlnðZÞÞ
ð7Þ

We can derive the PMF dqðkÞ by inverting DqðZÞ.

3.2.2. Assuming an M/G/1 queue

The M/G/1 queue is a single-server system with Poisson

arrivals and arbitrary service-time distribution.

Similarly, Laplace transform of the queueing delay gives

LDq ðsÞ ¼
sð1ÿqÞ

sÿkð1ÿLf ðsÞÞ
, where Lf ðsÞ is the Laplace transform of

the service time distribution function. The Z-transform of

the queueing delay DqðZÞ is derived as in [5]:

DqðZÞ ¼
ð1ÿ ZÞð1ÿ qÞ

1ÿ Z ÿ kð1ÿ DmðZÞÞ
ð8Þ

Similarly to the M/M/1 case, the PMF dqðkÞ can be

derived by inverting DqðZÞ.

3.3. PGF of total delay

The PGF of the total delay is computed by multiplying

the PGF of queuing and MAC delay as given in (1). We

investigate two different models, a very simple and a more

accurate one. The first one assumes an M/M/1 queue and a

Markovian MAC delay distribution as well. The second one

assumes an M/G/1 queue and a MAC delay that follows the

DmðZÞ PGF of (5). This last model is very heavy to compute

compared to the simpler M/M/1 one.

3.3.1. Assuming an M/M/1 queue

In this total delay derivation, we assume that the ser-

vice times are exponentially distributed with an average

lÿ1 equal to the mean MAC delay deduced from (4). We

do not use the MAC delay distribution of (5), but assume

that the packets are served by the MAC with an exponen-

tial distribution of PDF f ðtÞ ¼ leÿlt of mean MAC delay

lÿ1 ¼ E½Dm�. The corresponding PGF of the exponential

MAC delay is given by:

DmðZÞ ¼
l

lÿ lnðZÞ
ð9Þ

This assumption may of course introduce errors but its

derivation is much simpler. The point of this paper is to

state whether the loss due to this approximation is reason-

able or not compared to a precise (and complex) M/G/1

formulation and complete MAC delay derivation.

Similarly to (1), the Laplace transform of the total delay

LDt ðsÞ is computed as the produce of the Laplace transforms

of the queuing and MAC delay PDFs.

LDt ðsÞ ¼ Lf ðsÞLDq ðsÞ ¼ Lf ðsÞ
sð1ÿ qÞ

sÿ kþ kLf ðsÞ
ð10Þ

From Lf ðsÞ ¼ l=ðsþ lÞ and (10), LDt ðsÞ is given by

LDt ðsÞ ¼
lð1ÿ qÞ
sþ lÿ k

¼
lÿ k

sþ lÿ k
ð11Þ

The Z-transform of the total transmission delay DtðZÞ

can be expressed as

DtðZÞ ¼ LDt ðÿ ln ZÞ ¼
lÿ k

ÿ ln Z þ lÿ k
ð12Þ

The mean queueing delay E½Dq� for M/M/1 queue is

computed using Little’s law as q=ðlÿ kÞ and the corre-

sponding mean total delay E½Dt � as 1=ðlÿ kÞ.

3.3.2. Assuming an M/G/1 queue

In this case, the service times of the queue are distrib-

uted according to the MAC delay distribution given by

the PGF DtðZÞ in Eq. (5). Following (1), the Z-transform of

the total delay DtðZÞ follows:

DtðZÞ ¼ DmðZÞDqðZÞ ¼
DmðZÞð1ÿ ZÞð1ÿ qÞ
1ÿ Z ÿ kð1ÿ DmðZÞÞ

ð13Þ

The mean queueing delay E½Dq� for M/G/1 is derived by

the Pollaczek–Khinchin mean value formula [14] [Klein-

rock 1975 (Section 5.6)], given through the second

moment of Dm : E½Dq� ¼
kE D2

m½ �
2ð1ÿqÞ. E D2

m

h i

is given by E D2
m

h i

¼

varðDmÞ þ ðE½Dm�Þ
2 and varðDmÞ by varðDmÞ ¼ D00

mðZÞjZ¼1þ

D0
mðZÞjZ¼1 ÿ D0

mðZÞjZ¼1

ÿ �2
.

4. Evaluating the accuracy of a delay distribution model

This section proposes a performance evaluation mea-

sure to characterize the accuracy of a given delay distribu-

tion model. As presented in Section 2, it is very convenient

to express the delay distribution as a PGF. Thus, to obtain

the PMF values pðkÞ, the corresponding PGF DðZÞ has to

be inverted. This numerical inversion introduces errors.

Thus, we argue that directly comparing the final pðkÞ with

the PMF obtained by simulations psðkÞ is not appropriate to

validate the quality of the analytical model. It can not dis-

criminate the error originating from the model itself from

the numerical inversion error. In other words, it is not pos-

sible with such a comparison, as done in [8], to know

whether the errors between the simulated and analytical

PMF come from an inaccurate model or originate from

the inversion of DðZÞ.



We show in this paper that to have a clear view of the

performance of a given analytical derivation of a delay

distribution, its validation has to be done in two steps.

First, the model used to derive the individual PGFs has

to be validated before numerical inversion. Second, the

numerical inversion has to be tailored to reduce the

inversion error.

Indeed, even though the models proposed in previous

works [6–8] are very interesting, they suffer from a limited

or not convincing performance evaluation of the delay dis-

tribution. More specifically, the MAC delay distribution

models of [6,7] show little results in their papers. Vardakas

et al. [6] mostly validate the average MAC delay against

simulations but don’t give results for the total distribution.

Vu and Sakurai [7] present a single figure to validate their

model against simulations and [8]’s results. Zhai et al. [8]

provide PMF results for several cases, but they directly

compare the PMF to the simulated distribution, completely

ignoring the fact that errors can originate from the numer-

ical inversion of the PGF. There is clearly a need for a clean

performance evaluation measure capable of assessing the

quality of a delay distribution model.

In the following, we describe first a performance mea-

sure to assess the analytical model’s accuracy. Then, we

give a performance measure to calculate the error intro-

duced by the PGF numerical inversion.

4.1. Performance measure for the analytical model quality

From now on, we will denote the PMF (resp. PGF) values

obtained by simulation using d
s
ðkÞ (resp. DsðZÞ) and the

ones obtained analytically using d
a
ðkÞ (resp. DaðZÞ).

It is straightforward to calculate the PMF values d
s
ðkÞ

from the statistics of the delay obtained by simulation.

Thus, to avoid the inversion of the analytical PGF for its

performance evaluation, we propose to compare directly

the analytical PGF values DaðZÞ; Z 2 C to the PGF DsðZÞ

derived from the simulated PMF. The value of the PGF

DsðZÞ for any complex Z 2 C is given by the Z-transform

of the dðkÞ : DsðZÞ ¼
P1

k¼0d
s
ðkÞZk. This calculation does not

introduce any errors. Thus for a same set of complex values

C#C, it is possible to calculate the analytical PGF

DaðZÞ; Z 2 C and its simulated counterpart DsðZÞ; Z 2 C.

Fig. 1(a) illustrates both analytical and simulated complex

sets (Da
mðZÞ and Ds

mðZÞ) in a real and imaginary plot

obtained for the MAC delay. Analytical PGF is derived fol-

lowing Eq. (5). The set of complex values used to calculate

Da
mðZÞ and Ds

mðZÞ is here defined as C ¼ freÿiph=kg where

r ¼ 10ÿ4=k; k varies from 1 to 50 with step 5 and h varies

from ÿk to þk with step 1. This set samples the complex

unit circle with an accuracy of 10ÿ8.

For a perfect analytical model, the points calculated for

DaðZÞ would exactly match the ones obtained by simula-

tion (providing that the simulation is extensive enough).

From Fig. 1(a), it is clear that there is an error between ana-

lytical and simulated values. Therefore we propose to

quantify this error by defining a normalized root mean

squared error (NRMSE) criterion as:

fmodel ¼
1

CardðCÞ

X

Z2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jDsðZÞ ÿ DaðZÞj2

jDsðZÞj2

s

ð14Þ

4.2. Performance measure for PGF inversion quality

By definition, a perfect PGF inversion is characterized

by:

ZfZÿ1fDðZÞ; Z 2 Cgg � fDðZÞ; Z 2 Cg

where DðZÞ is the PGF of a delay distribution,

Z : Z 2 C !
P1

k¼0 d
a
ðkÞZk is the Z-transform function and

Zÿ1
: DðZÞ; Z 2 C ! dðkÞ is the inverse Z-transform

function.

In the following, the PMF obtained after inversion is

denoted fd̂ðkÞ; k 2 Ng. Thus, for a perfect inversion, there

is a perfect match between the original PGF values DðZÞ

and the Z-transform of the PMF d̂ðkÞ ¼ Zÿ1fDðZÞ;

Z 2 Cg;8k 2 N. A non perfect inversion yields a difference

between the two obtained complex sets. This is illustrated

on Fig. 1(b) for the MAC delay PGF calculated for n ¼ 5. The

same complex set C is used to plot the complex PGF values

of Fig. 1(a) and (b).
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Fig. 1. Model and inversion error in the complex space.



To assess the quality of a PGF inversion method, we pro-

pose to simply calculate, for each Z in a complex set C#C,

the NRMSE between the original PGF and the Z-transform

of the delay PMF obtained by inversion, naming

d̂ðkÞ ¼ Zÿ1fDðZÞ; Z 2 Cg;8k 2 N. Formally, our perfor-

mance measure is:

f inv ¼
1

CardðCÞ

X

Z2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jDðZÞ ÿ ZfZÿ1fDðZÞgj2

jDðZÞj2

s

ð15Þ

5. Assessing the performance for IEEE 802.11 DCF

This section exploits first the analytical performance

metric fmodel to assess the quality of the models used to

derive the individual MAC delay PGF and the queuing delay

PGF introduced in Section 3. Second, PGF inversion metric

f inv is used to select and fine tune the numerical inversion

method. Finally, the final total delay PMF is shown based

on the choices made in terms of modeling and numerical

inversion.

5.1. Simulation settings

A thorough simulation of the transmission delay is

needed to compute the analytical performance metric. This

section introduces the main simulation settings. The wire-

less network, composed of n nodes and one sink, is simu-

lated using the discrete event-driven network simulator

WSNet.1 Presented results for the IEEE 802.11 DCF MAC

delay are given with RTS/CTS mechanism. We recall that

the model can be applied with or without RTS/CTS mecha-

nism. We chose to present results where RTS/CTS is enabled

for the following reason. In our network, all nodes can hear

each-other, making the RTS/CTS non-necessary. However, in

many cases, the RTS-CTS mechanism is activated due to the

value of the RTS-Threshold pre-set in the WiFi driver. Thus,

lots of users use this mechanism even though it is not

necessary.

The DSSS-PHY layer is assumed with a data rate of

11 Mbps, using packets of a constant size equal to 1400

bytes. Propagation delay d is set to 1 ls. The queues imple-

mented in the simulator have no limited size. Simulations

have been conducted for 5 days. We have extracted the

results of the first 24 h, experimenting the transmission

of �6 742 000 packets, since the 24-h delay distribution

was identical to the one calculated over longer periods.

For conciseness purposes, we do not show the evolution

of the distributions but just represent the average MAC

delay for different durations in Table 1.

All nodes experience the same Poisson arrival rate k.

Since the MAC model assumes saturated conditions, k

should be chosen such as to satisfy the condition of a non-

empty transmission queue. Therefore, utilization of the

queue q should be more than 95%. And to satisfy the P–K

transform equation condition, q has to be lower than 1

(i.e. k < l). Since we have set lÿ1 ¼ E½Dm�, values for k are

calculated for each network size using k ¼ 0:95 � 1=E½Dm�.

Arrival rates for network sizes of n 2 f5;15;30g are given

in Table 2.

5.2. Assessing the performance of the MAC models

This section illustrates our analytical performance mea-

sure fmodel on the following two models of IEEE 802.11 DCF

MAC:

1. The Markov chain based MAC PGF of [6,8] of Eq. (5).

2. The simple exponential MAC PGF of Eq. (9).

The PGF of the first model is complex to evaluate while

the second one is very light, since it simply necessitates the

derivation of the mean MAC delay.

Most of the works on DCF modeling have been validated

by comparing the mean MAC delay to the one obtained by

simulations. Table 3 gives the analytical and simulated

mean MAC delays obtained for different network sizes.

By definition, the mean delay of the simple exponential

MAC is set to the mean delay of the Markov MAC model

(referred as E Da
m

� �

). Simulated and analytical mean MAC

delays are really close as shown in Table 3. However, look-

ing at Fig. 1(a), given in p. 12, the analytical and simulated

values of DmðZÞ do not coincide for the Markov MACmodel.

Just comparing the mean MAC delay is not convincing,

which calls for a more precise performance evaluation.

In Table 4, fmodel quantifies the error induced by both

MAC models (before inversion) compared to simulations.

Not surprisingly, the Markov MAC model outperforms the

simple exponential MAC. However, an interesting observa-

tion is that the simple exponential MAC becomes better as

the number of nodes in the network increases.

Table 1

Simulated mean MAC delay with respect to the simulation duration (n ¼ 5).

Simulation duration Mean MAC delay (ms) 95% Confidence interval Number of transmissions

12 h 12.8189 [ÿ35.9969, 61.6147] �3 376 000

24 h 12.8206 [ÿ36.1339, 61.7750] �6 742 000

30 h 12.8202 [ÿ36.1319, 61.7722] �8 425 000

48 h 12.8172 [ÿ36.1009, 61.7355] �13 473 604

Table 2

Queue parameters to reach saturation.

Number of nodes k (packet/ms) l (packet/ms)

n ¼ 5 0.07799 1/12.1808

n ¼ 15 0.02665 1/36.4052

n ¼ 30 0.01359 1/71.3596
1 http://wsnet.gforge.inria.fr/.



5.3. Assessing the performance of the queueing models

This section assesses the queueing delay models (M/M/

1 queue of Eq. (7) and M/G/1 queue of Eq. (8)) using fmodel.

For the M/G/1 queue, fmodel ¼ 0:03387 and for the M/M/

1 queue, fmodel ¼ 0:10515. Not surprisingly, M/G/1 outper-

forms the M/M/1 queue, but at the price of a much more

intensive computation load. To illustrate the error, Fig. 2

plots the analytical and simulated PGF values for M/G/1

(Fig. 2(a)) and M/M/1 (Fig. 2(b)) queues. There is still a

noticeable error between these infinite queuing models

and the simulated values. Thus, there is still room for

improvement in the selection of the queuing model.

5.4. Assessing the performance of PGF inversion methods

In the first part of this section, the proposed PGF inver-

sion performance metric is leveraged to select the most

efficient numerical inversion method. In the second part,

it is used to parameterize the numerical inversion method

selected previously for both MAC and queuing models.

5.4.1. Considered PGF inversion methods

Inverting the probability generating function can be

done by repeatedly differentiating and evaluating it at

Z ¼ 0 : dðkÞ ¼ DðkÞðZÞ
k!

�

�

�

Z¼0
. This type of inversion has been

done by Zhai et al. [8] using numerical differentiation tech-

niques and symbolic mathematical software. However, it is

often difficult to achieve desired accuracy with numerical

differentiation techniques, especially for large kmax (kmax

being the number of PMF values obtained after inversion).

It is also difficult to invoke symbolic mathematical soft-

ware when the generating function is only expressed

implicitly. Fortunately, in our setting, numerical inversion

is a viable alternative that has been chosen by Vardakas

et al. [6] and Vu and Sakurai [7]. The numerical inversion

of a PGF is based on the Lattice–Poisson (LP) algorithm

[15]. Two different derivations of the LP algorithm have

been proposed to numerically invert a delay PGF in [6,7],

respectively.

The LP inversion formula of Vardakas et al. [6] is:

dðkÞ �
1

2kr
k

X

2k

j¼1

ðÿ1ÞjRe½Dðreipj=kÞ� ð16Þ

with Re½DðZÞ� the real part of the complex DðZÞ. dðkÞ is

derived by summing Re½DmðZÞ� over a circle of radius

r ¼ 10ÿc=ð2kÞ for an accuracy of 10ÿc.

The LP inversion formula of Vu and Sakurai [7] is:

dðkÞ �
1

2klr
k
Re

X

klÿ1

j¼ÿkl

Dðreÿipj=ðklÞÞeipj=l

" #

ð17Þ

where, l ¼ 1 and r ¼ 10ÿc=ð2kÞ, which results in an accuracy

of 10ÿc as well. Both formulas are almost equivalent. The

only difference is how the real part is calculated. In Eq.

(16), only the real part of DðZÞ is considered, while in Eq.

(17), the real part of the whole sum is returned.

Table 3

E Da
m

� �

; E Ds
m

� �

;D ¼ E Da
m

� �

ÿ E Ds
m

� ��

�

�

� (ms) and confidence interval (95%).

Number of nodes E Da
m

� �

E Ds
m

� �

D Confidence interval

n ¼ 5 12.1808 12.1123 0.0685 [ÿ29.2188, 53.4434]

n ¼ 15 36.4052 36.4096 0.0044 [ÿ137.3915, 210.2106]

n ¼ 30 71.3596 71.1140 0.2456 [ÿ263.0347, 405.2628]

Table 4

Comparison of MAC distributions.

Number of nodes n ¼ 5 n ¼ 15 n ¼ 30

fmodel for Markov model 0.0547 0.0789 0.0729

fmodel for exponential MAC 0.1736 0.1258 0.1040
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Using f inv , it is possible to figure out which inversion

formula is best. It is the one with the smallest value of

f inv . The values are given in Table 5 for an accuracy of

10ÿ4 and 10ÿ6. It is the LP formula of Vu and Sakurai which

introduces the less error for both accuracies. This fact can

be observed as well on Fig. 3(a) and (b), which presents

the MAC delay PMF after numerical inversion.

It makes sense that Eq. (17) is correct since to inverse

the PGF mathematically, a contour integral has to be com-

puted for the complex values DðZÞZnÿ1. The real dðkÞ values

of this integral are obtained by taking the real part of the

integration result and not by integrating Re½DðZÞ�Znÿ1. As

a consequence, we apply the LP formula of Vu and Sakurai

for all results shown in the rest of the paper.

5.4.2. Tuning the LP algorithm for MAC and queuing models

It can be seen in the results of Table 5 that the accuracy

with which the LP algorithm is computed directly influ-

ences the inversion error. If the accuracy is improved from

10ÿ4 to 10ÿ6, the error measured with f inv reduces from

0.0235 to 0.0195 for Vu and Sakurai’s LP algorithm. These

values have been calculated for the MAC delay PGF. Fig. 4

plots the MAC delay PMF obtained after inversion with

the two accuracies of 10ÿ4 and 10ÿ6, for three different net-

work sizes. The impact of the improved accuracy is clearly

visible on these figures. The impact is the highest for n ¼ 5.

Using f inv and fmodel, the MAC delay distributions shown

on Fig. 4 present the best possible fits we have obtained

with the models investigated. It has been obtained using

the Markov MAC model of Eq. (5) and the Lattice Poisson

algorithm of Vu and Sakurai for an accuracy of 10ÿ6.

A similar analysis has been performed using f inv to

determine the best accuracy for the inversion of the

queuing delay PGF. Results are shown in Table 6 for both

M/M/1 and M/G/1 queues. A good improvement is

obtained by adopting an accuracy of 10ÿ8 for the LP

algorithm.

5.5. Final queuing and total delay distributions

Queueing and total delay distributions for M/M/1 and

M/G/1 are presented in Figs. 5 and 6, respectively. They

are given for n ¼ 5 and 15.

The total delay is clearly dominated by the queueing

delay. This is not surprising since we are working at a very

high utilization (q > 95%) to reach saturated conditions.

For the queuing delay, the NRMSE calculated using the

kmax PMF values is of 0:08519 (n ¼ 5) and 0:10366

(n ¼ 15) for the M/M/1 model and of 0:05057 (n ¼ 5) and

0:01879 (n ¼ 15) for the more precise M/G/1 model. It

can be concluded that the M/G/1 model clearly better

matches the simulated queuing delay, but it can be noticed

that the error with M/M/1 stays limited for n ¼ 5.

For the total delay, the NRMSE calculated using the kmax

PMF values is of 0:08318 (n ¼ 5) and 0:10455 (n ¼ 15) for

the M/M/1 model and of 0:05067 (n ¼ 5) and 0:02061

(n ¼ 15) for the more precise M/G/1 model. However,

looking at the total delay, M/M/1 seems to be a good com-

promise between accuracy and complexity for small net-

works. In Table 4, it is clear using fmodel that the MAC

model of M/M/1 is less efficient than the Markov based

model. We can conclude that the Markov MAC model with

the M/G/1 queue is the most efficient one, but as well the

most computationally demanding.

6. First extension to a 2-hop communication

The purpose of this section is to illustrate our perfor-

mance evaluation method on a simple extension of the

previous computation to handle a 2-hop communication.

Several important works have discussed the delay perfor-

mance of wireless multi-hop networks [16,10,17–19]. All

these works investigate the average end-to-end delay

using various models and assumptions. To the best of our

Table 5

Evaluation of LP algorithms using f inv on the MAC delay PGF for

n ¼ 5.

Accuracy Vu and Sakurai Vardakas et al.

10ÿ4 0.0232 0.1814

10ÿ6 0.0195 0.0688
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Fig. 3. MAC delay PMF for different inversion methods (accuracy 10ÿ6; n ¼ 5).



knowledge, there are no previous works discussing the cal-

culation of the complete end-to-end delay distribution for

a multi-hop wireless network.

In this section, we still assume ideal channel condi-

tions (no channel errors, no hidden terminals). Nodes

work in saturated mode. The considered 2-hop communi-

cation is depicted on Fig. 7. Packets emitted by the source

node S can’t reach directly the destination D. A node R

relays all packets received from S and re-emits them to

the destination on the fly. R only relays packets. Similarly

to the single-hop network, there is a total of n nodes

transmitting packets concurrently, S and R being included

in this set. All nodes but R have the same arrival rate of k.

The arrival rate of R is given by the rate at which it

receives packets successfully from the source, which is

given by kR ¼ 1=E½Dm�, with E½Dm� the mean MAC delay

of the nodes.

6.1. Analytical PGF derivation

The aim of this section is to present a simple analytical

model to retrieve the 2-hop total delay distribution. The 2-

hop total delay is the time between the date the packet

enters the queue of the source S and the date it is received

at the destination. The packets that are lost are not

accounted for in this first model. The derivation we pro-

pose builds on the 1-hop delay analysis detailed earlier.

We calculate the analytical PGF of the 2-hop total delay

distribution and invert it using the Lattice–Poisson algo-

rithm selected in Section 5.4. To calculate the analytical

PGF, we make the following two assumptions:

(1) The total delay (i.e. queuing plus MAC delay) a

packet experiences on the first hop from S to R is

independent from the total delay it experiences

on the second hop from R to D.

(2) Packet arrival process at the relay follows a Poisson

distribution with an arrival rate close to 1=E½Dm�.

Knowing that the PGF of the sum of independent ran-

dom variables is equal to the product of the PGF of each

variable, the analytical PGF of the 2-hop total delay DtðZÞ

can be easily derived as the product of the PGFs of total

delay calculated for each hop,
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Fig. 4. MAC delay PMF for different accuracies using Vu and Sakurai’s LP formula.

Table 6

Impact of the accuracy of LP algorithm for the queuing delay using f inv
metric.

Accuracy M/G/1 M/M/1

10ÿ6 0.01477 0.01482

10ÿ8 0.007582 0.009189



Dt2hop ðZÞ ¼ Dt1st ðZÞDt2nd ðZÞ ð18Þ

with Dt1st ðZÞ and Dt2nd ðZÞ the PGFs of the 1st hop and the

2nd hop total delays, respectively. For each hop, the PGF

is calculated assuming:

� The MAC model is the simple exponential MAC with a

mean equal to the mean MAC delay E½Dm� extracted

from Eq. (5).

� The queuing model is a simple M/M/1 queue. Thus, the

1-hop total delay PGF follows Eq. (12).

The numerical inversion of the 2-hop total delay PGF

uses the LP algorithm of [7] with accuracy 10ÿ8.

The 2-hop total delay distribution derivation has been

calculated for a small network of n ¼ 5. Fig. 8 plots the

error in Z space related to the model in Fig. 8(a) and to

the inversion in Fig. 8(b). It is clear on these plots that

the error mostly originates from the model. The two met-

rics proposed in this paper bring us to the same conclu-

sion: fmodel ¼ 0:21664 and f inv ¼ 0:007917.

Fig. 8(c) presents the 2-hop total delay distribution we

are looking for. The y-axis is plot using a logarithmic scale.
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Most of the errors are concentrated for low 2-hop total

delay values. The proposed distribution underestimates

the occurrence of these low delay values. Interestingly,

the high delay values are pretty well estimated with this

model. This fact is explained in the next section which dis-

cusses the main assumptions done in the 2-hop study.

6.2. Discussion on the main assumptions

It is shown in this sections that the assumptions made

are not realistic. In this section, we will mainly discuss

the second assumption. For the first independence

assumption, in most of the cases, the time spent by a
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Fig. 8. Results for a 2-hop communication of n ¼ 5 nodes.
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packet to travel on the 2nd hop is independent of the time

it has spent traveling on the 1st hop since R does not relay

packets of other nodes. The dependence would exist for the

packets being lost on the first hop. But here the delay of

lost packets is not accounted for in the delay distribution

calculation.

A more precise verification of the second assumption

has been done to understand the results of Fig. 8. To verify

if the arrival date distribution is Poisson at the relay node,

the inter-arrival time distribution of the packets arriving at

R are plot on Fig. 9 for n ¼ 5 and n ¼ 30. They are compared

to gamma, lognormal, exponential and normal distribu-

tions. From Fig. 9, the exponential distribution seems to

provide a reasonably good approximation for the smaller

network (n ¼ 5). The log-normal distribution provides a

good approximation for both cases. This conclusion is in

line with the one of Zhai et al. [8].

For n ¼ 5, the small delay values are the ones that are

less well captured by the exponential distribution com-

pared to the lognormal one. On the opposite, for high delay

values, the exponential distribution is as precise as the log-

normal distribution. Thus, it makes sense that the same

kind of observation exists for the 2-hop total delay distri-

bution of Fig. 8(c), where the 2-hop delay model better

captures higher delays than smaller ones.

7. Conclusion

This paper proposes a performance evaluation method

to characterize the accuracy of a delay distribution deriva-

tion. This method is capable of decoupling the error origi-

nating from the analytical model from the error induced by

the probability generating function inversion. The method

has been illustrated on MAC, queuing and total delay dis-

tribution models for an IEEE DCF medium access protocol

under saturated conditions for a 1-hop and a 2-hop

communication.

Future work will leverage the proposed performance

evaluation method to provide an analytical model to cap-

ture the multi-hop end-to-end delay distribution and

extend the current proposition to non-saturated networks.

This work has highlighted that in the 2-hop scenario, the

arrival process at the relay is not Poisson distributed any-

more. The main challenge will be then to incorporate the

log-normal inter-arrival time at the relay, using a G/G/1

queue. G/G/1 queueing has already been leveraged by

Tickoo and Sikdar [20] to extract the average single hop

end-to-end delay. The main difference is that only the relay

uses a G/G/1 queue in the 2-hop scenario. Extending the

model to more than two hops will be even more

challenging since additional relays may modify the arrival

distributions of the last nodes of the linear network.
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