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Abstract
Stencil kernels arise in many scientific codes as the result from dis-
cretizing natural, continuous phenomenons. Many research works
have designed stencil frameworks to help programmer optimize
stencil kernels for performance, and to target CPUs or accelerators.
However, existing stencil kernels, either library-based or language-
based necessitate to write distinct source codes for accelerated ker-
nels and for the core application, or to resort to specific keywords,
pragmas or language extensions.

SYCL is a C++ based approach designed by the Khronos
Group to program the core application as well as the application
kernels with a single unified, C++ compliant source code. A SYCL
application can then be linked with a CPU-only runtime library
or processed by a SYCL-enabled compiler to automatically build
an OpenCL accelerated application. Our contribution is a sten-
cil domain specific embedded language (DSEL) which leverage
SYCL together with expression template techniques to implement
statically optimized stencil applications able to run on platforms
equipped with OpenCL devices, while preserving the single source
benefits from SYCL.

Keywords Stencil, DSEL, meta-programming, GPU, paralleliza-
tion, HPC.

1. Introduction
Stencil kernels involve concurrently updating every array element
with a function of itself and its close neighbourhood cells, using
a regular pattern whose width, layout and dimensions character-
ize a given stencil. Such kernels arise in many scientific codes re-
sulting from the discretization of natural phenomenons with local,
short range interactions. While simple in principle, stencil kernels
are notoriously hard to code, and even more to optimize, as the
arithmetics on array indices and boundary managements are tricky
and error prone. Thus many efforts have been put within the high
performance computing community on designing stencil program-
ming frameworks and languages, to hide part of this complexity.

Yet, HPC platforms now evolve towards heterogeneity, using
nodes equipped with accelerators, resulting in increased complex-
ity and reduced portability. Stencil programming frameworks have
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to adapt to heterogeneity but face the dual language issue. A het-
erogeneous stencil framework has to generate general purpose
C/C++/Fortran code for the main application side and CPU ker-
nel instances, and some accelerator code such as OpenCL for the
accelerated stencil kernel instances. The SYCL [14] language has
been designed by the Khronos Group consortiumto address the
dual language issue in heterogeneous computing. It leverages reg-
ular C++ constructs to enable a SYCL compiler to extract accel-
erator kernels automatically from a unique valid C++ application
source code, without the need for pragmas or keywords.

The contribution of this paper is a C++ Domain Specific Em-
bedded Language (DSEL) based on SYCL to handle stencil com-
putations. It builds on SYCL capabilities and expression template
techniques to dramatically reduce the complexity of stencil ker-
nel programming for heterogeneous platforms down to a few lines
of code. Our DSEL has been tested with both the triSYCL [13]
CPU-only SYCL library (since SYCL is pure C++, CPU-only ver-
sions can indeed be implemented as mere C++ libraries!), and
with a preliminary version of Codeplay’s ComputeCPP SYCL
implementation for OpenCL platforms. A preliminary version of
the DSEL is available on the triSYCL repository [13] inside the
tests/jacobi folder, this version only works for triSYCL.

This paper is organized as follows. Section 2 depicts the context
and discusses related works on stencil computing frameworks. Sec-
tion 3 introduces our heterogeneous stencil DSEL on top of SYCL.
Section 4 details the implementation and parallelization techniques
we used. Section 5 concludes this paper and discusses future work.

2. Context: Computing Stencils on
Heterogeneous Platforms

Stencils are widely used in scientific computing especially for im-
age processing, and for physics simulation. Beyond scientific com-
puting, stencils are also used in other performance demanding do-
mains such as special effects in video games [21]. Thus, stencil
kernels are key optimization targets for many performance depen-
dent applications. However, the art of stencil writing requires skills
in both computer science and in the considered application domain,
which may be hard to find in the same programmer, or even in the
same scientific team.

To reduce or even remove this impeding dual skill prerequi-
site, many research efforts have been put into designing stencil
computing frameworks that separate the generic “computer science
side” stencil execution and optimization work, from the “applica-
tion specific” mathematical stencil expression, that is to implement
the so called separation of concerns. Two fundamental approaches
have been followed for doing so: compilers and libraries. A spe-
cific compiler can generate highly optimized code, but it forces the
user to write the stencil code in a Domain Specific Language (DSL)
which may not be practical for large applications. At the opposite, a



library allows to write code with the same usual language as the rest
of the application, still having several implementations dedicated
to the desired targets. We refer to it as a Domain Specific Embed-
ded Language (DSEL) since it provides a set of dedicated methods
within and in compliance with the general purpose language used
by the application, and as such can be compiled with any compiler
available for this general language. C++ is frequently used as a
general purpose language for embedding DSELs due to its ability
at being specialized through templating.

Dedicated stencil libraries and compilers include the following
ones, among many others. Pochoir [22] uses a stencil declaration
language embedded in C++ and provides its own stencil kernel
compiler to generate optimized versions, and to provide a level
of error checking. Blitz++ [24] is a standalone library. By de-
sign, its optimizing capabilities are therefore less aggressive than
Pochoir’s compiler, but it instead offers some predefined stencil
patterns (such as the laplacian operator) and a wide panel of func-
tions to process arrays. PATUS [3] is a framework for stencil ker-
nel generation and autotuning, which targets both CPUs and accel-
erators such as nVidia CUDA GPUs, in contrast to Pochoir and
Blitz++. It implements a DSL for letting the programmer express
the stencil expression and layout.

Some general purpose libraries can instead be used to imple-
ment stencils such as Kokkos [8]. Kokkos helps with processing
arrays in parallel but does not optimize user algorithms. The map-
reduce paradigm provides a mean to apply a stencil mapped as pos-
sible in SkePU [5], Bones [19, 20] or Java Lime [7], but they can-
not be as efficient as dedicated stencil libraries.

Applying a stencil on an array and storing the results on another
array is an operation with significant potential for SIMD/vector
processing and more generally for accelerator and GPU process-
ing. Exploiting the benefit of such hardware for stencil process-
ing is challenging, especially with respect to portability. Some pa-
rameters such as workgroup size and local shared memory size
depend on the hardware characteristics. An image filtering sten-
cil C++ embedded language has been developed on the HIPA-
CC [16] (Heterogeneous Image Processing Acceleration) source-
to-source framework to generate optimized OpenCL/CUDA ker-
nels. The Liszt [6] stencil compiler and tool-chain also support
CPU/GPU code generation as well as distributed MPI-based code
generation. The OP2 project [17] is dedicated to unstructured mesh
computations and can produce OpenMP/AVX vectorized code for
CPUs, and CUDA or OpenCL for GPUs. The compiler presented
by Holewinski et al. [12] generates efficient stencil kernel, but it
only targets GPUs. Yet, CPUs may indeed also be used aside or as
fall-back for accelerators. Some stencil processing techniques can
be leveraged for both CPU and accelerators, such as hierarchical
overlapped tiling [27] or 3.5D blocking [18].

Finally, some frameworks can be specialized to some specific
stencil application fields. For instance, quantum chromodynamics
(QCD) simulations involve stencils in 4 dimensions, with variable
coefficients depending on the direction. Heybrock et al. [11] present
a method to efficiently compute QCD kernels on many-cores pro-
cessors, but the computer science skills required from the program-
mer to adapt it to other stencil application fields limit its usability
by a wider range of non specialists. The Qiral DSL is dedicated to
generating an efficient QCD code [2], unfortunately for CPU only.

In contrast to the related works above, our contribution is in-
stead to build a generic stencil processing framework on top of the
recently ratified SYCL standard [14] introduced in the next Section,
which leverages the unique properties of SYCL to reconcile the li-
brary approach and the compiled approach, to target both CPU and
accelerator, to require a single source code, written in the C++
general purpose language.

3. Contribution: a SYCL-Based Stencil DSEL for
Heterogeneous Platforms

Our contribution is to develop a stencil DSEL that can produce
optimized parallel code for all target types that can be managed
by SYCL. SYCL provides a common hardware interface and han-
dles memory management. Our library specializes the code with
respect to the stencil parameters (dimensions, order, pattern). This
approach enables to achieve stencil kernel parallelization without
the need for developing a compiler. More importantly, our approach
frees the programmer from writing complicated parallel code. In-
deed, he/she only needs to describe the application dependent sten-
cil parameters and the data to be processed.

3.1 SYCL in a Nutshell
SYCL [14] is a C++ interface standardized by the Khronos Group,
currently at revision 1.2. It aims to simplify parallel code writing in
modern computers by overlaying the OpenCL parallelism standard.
By bridging the gap between C++ and OpenCL, it enables a single
application source code to target regular CPU and OpenCL enabled
devices such as accelerators and GPUs. Moreover, OpenCL in
itself is not easy to use for an end-user programmer, since he/she
must handle many initialization and setup steps such as device
discovery, kernel loading and compilation, memory management
and transfers between the host and the accelerator board, and so
on. A typical OpenCL application indeed starts with dozens of such
preparatory calls. SYCL hides most of these steps away, and let the
user focus on writing application code instead. Yet, the programmer
still retains access to most OpenCL methods and can therefore
reuse existing OpenCL code.

Two parallelization models are supported in SYCL. The global
model is a flat “parallel for” loop. The hierarchical model defines
workgroups and workitems concepts as in OpenCL, to abstract
teams of cooperating hardware threads, and individual threads in
such teams respectively. The use of modern C++ functionalities
enable to write kernels with lambda functions, and also, for exam-
ple, to have implicit barriers between two workitem method calls.
These capabilities makes SYCL easy to integrate in other libraries.
The common OpenCL memory spaces are addressable in SYCL:
host, global, local, private and image. Data must be stored in SYCL
buffers and can then be referenced in kernels through SYCL acces-
sors. Accessors are used to associate a piece of data with one of the
aforementioned memory space.

Currently two SYCL implementations exist. triSYCL [13] is a
standard C++ library designed by R. Keryell which targets CPU
exclusively. It is described as a “test-bed to experiment with the
provisional specification” of SYCL. ComputeCPP from company
Codeplay is a commercial SYCL implementation which targets
both CPUs and OpenCL devices. In this work, we experimented
with running our own stencil library using both of these SYCL im-
plementations. As a cautionary note, since — at the time of this
writing — triSYCL has an experimental status, and since the Com-
puteCPP version we used is a preliminary, early access version
graciously provided by Codeplay, we will not expose quantitative
performance results in this paper.

3.2 Stencil DSEL Description
A stencil is an elements’ grid pattern which can be applied on ev-
ery element in order to update its value. The stencil is mapped over
the grid and consists of a reduction on the element neighbourhood
values. An example of a generic 4-points stencil in two dimensions
(involving the two nearest neighbours in each dimension and ex-
cluding the central point) is shown in equation 1. A, B and C arrays
store the source elements, the destination elements and the coeffi-
cients, respectively. Whereas the neighbour elements are by defini-



tion close to the target element in the logical grid, they may not be
close in memory, thus the DSEL first requires an access function to
map logical neighbour indices onto array indices in memory. This
is why A and B need the function g to map the element logical grid
coordinates i, j onto the actual array indices.

The set of coefficients, provided by the array C, is needed to
modulate the respective contribution of the neighbour elements on
the reduction result. The function f plays the same index mapping
role for C as the function g for A and B, with two extra parameters
however, to give the relative position of the coefficient in the stencil
pattern.

We then define two operators to link the reduction expression
components together. The coefficient modulation operator ⊗ ap-
plies a coefficient weight on the neighbour element contributions.
The reduction operator ⊕ then accumulates the modulated contri-
butions from each considered neighbour element.

g(i, j, B) =f(i, j,−1, 0, C)⊗ g(i− 1, j + 0, A)⊕
f(i, j, 1, 0, C)⊗ g(i+ 1, j + 0, A)⊕
f(i, j, 0,−1, C)⊗ g(i+ 0, j − 1, A)⊕
f(i, j, 0, 1, C)⊗ g(i+ 0, j + 1, A)

(1)

Thus in order to describe a stencil, the framework needs the
following information:

• Input data, output data, and coefficients arrays;
• Access function for data arrays;
• Coefficient relative coordinates;
• Extended access function for coefficients arrays;
• Operators for linking coefficients and reductions together.

The three input, output and coefficient arrays and the coefficient
relative coordinates are directly application dependent, and must
therefore always be provided by the programmer. Sensible defaults
can be automatically provided for the access functions (C/C++
usual row-major array layout) and for building a default stencil
expression together (using operator× for applying coefficients and
operator + for computing the reduction by default). Such defaults
may be overridden by the programmer if needed, to address more
complex situations.

The following example shows how the stencil pattern of the
equation 1 is created in the DSEL. It requires the only five fol-
lowing lines declaring the four variable coefficients and then as-
sembling them to form a pattern (not related to any value).

coef_var2D<-1,0> c1; //left coefficient
coef_var2D<1,0> c2; //right coefficient
coef_var2D<0,-1> c3; //down coefficient
coef_var2D<0,1> c4; //up coefficient
auto st_pattern = c1+c2+c3+c4;

3.3 DSEL Design
The DSEL exposes C++ classes for the various coefficient flavors
supported by the DSEL. The other classes used by the DSEL to
abstract the stencil pattern (an aggregation of coefficients), the
input and output information, and the whole expression resulting
from applying a stencil on an input buffer and storing the results
on an output buffer do not actually need to be exposed to the
programmer. The auto type keyword and the type inference engine
of modern C++ compilers are sufficient to properly determine the
respective object types automatically.

Coefficients and stencil pattern Supported coefficients currently
come in two flavors: variable coefficients such as presented in the

example equation 1, and constant coefficients that are independent
of the target element coordinates. In the first case, the only template
parameter needed is the relative coordinates in the stencil pattern,
(0, 0) being the current targeted element. The coefficient value will
be defined elsewhere in a specific buffer, thus no type is needed in
the constant coefficient template parameter since it only describes
a pattern and not values. However internally to the DSEL, the coef-
ficient evaluation will need a type, which is set later, when a stencil
is associated to the typed coefficient buffer. In the second case, the
constant coefficient value need to be passed as an argument to the
constructor, whereas the expression type is needed as the last tem-
plate parameter (float by default). No coefficient buffer will be
needed in this case.

coef_var2D<0, 0> c1; //variable
coef_fxd2D<-1, 1 /*, float*/ > c2(0.2f); //constant

Once several coefficients have been declared, they can be aggre-
gated together to define a stencil pattern using the specially over-
loaded + operator. It is also possible to add several stencil patterns
in a row, provided they are all of the same type, that is with the
same number of dimensions and all constant or all variable coeffi-
cients.

/* creation of a 4 coefficient stencil*/
auto st1 = c1+c2;
auto st2 = c3+c4;
auto st = st1+st2;

When a stencil is created with a single coefficient, a spe-
cific method is called on it to do the transformation. This case
arises when building stencils such as copies or scaling transforma-
tions.

coef_fxd2D<0,0> c_id {1.0f}; //is a coefficient
auto st_id = c_id.toStencil(); //is a stencil

Access functions Access functions correspond to the functions f
and g in the equation 1. f and g abstract the data layout used in the
buffers. Function g is for the input and output arrays. Function f is
for variable coefficients, and is not required when using constant
coefficients. It is declined in two versions, for input and output
respectively. The input version may returns the element value di-
rectly, while the output version needs to return a writable, L-value
compatible reference, to write the computation result into. When
using the triSYCL library, these access functions can be passed as
function pointers and recorded in the input and output objects.

/* output access function, notice the & */
float& fdl_out(int a,int b,

accessor<float, 2, access::mode::write,
access::target::global_buffer> acc)

{return acc[a][b];}
/* input access function */
float fdl_in(int a,int b,

accessor<float, 2, access::mode::read,
access::target::global_buffer> acc)

{return acc[a][b];}
/* coefficient access function */
float fac_coef(int a,int b, int c, int d,

accessor<float, 1, access::mode::read,
access::target::global_buffer> acc)

{return acc[0];}

While this approach works for the C++-only triSYCL library,
it is not actually compliant with the SYCL 1.2 revision which for-



bids function pointers to be used within SYCL kernels – for good
reasons such that a host function pointer would not have any mean-
ing for a kernel executed on an accelerator device. Consequently,
this illegal use of function pointers in a SYCL kernel is refused by
the ComputeCPP compiler. In order to still enable the program-
mer to specialize the various access functions, we implemented a
second, SYCL 1.2 compliant approach (and inspired indeed by the
SYCL language itself) using the following template based function
specialization scheme. The key aspect of this approach is the empty
class passed as the second template parameter. This class does not
need to be defined; it only needs to be declared and solely serve the
purpose of discriminating multiple function specializations from
each others, just like SYCL’s own kernel naming classes [14]. The
DSEL then accepts the naming class as a SYCL compliant alterna-
tive everywhere it expects a function pointer.

class out_access; //use chosen class name
template<>
inline float& fdl_out<float, out_access>

(...) {...}

Operation assembly and use To define an operation, input infor-
mation must first be put together in a specific object containing the
type of the element, the input buffer and associated access function.
One may also specify the coefficient buffer and its associated access
function when using variable coefficients. The output information
is built from the type, the output buffer and its access function.

output_2D<float, &outBuffer, &fdl_out>
workload_out;

input_var2D<float, &inBuffer, &coefBuffer,
&fdl_in, &fac_coef>

workload_in;

These pieces of information are assembled with the stencil to
form the complete stencil expression. The programmer then only
needs to declare a SYCL device queue and pass it to the DSEL for
the parallel computation to be instantiated.

/* st is a predeclared stencil pattern */
auto op_work = workload_out << st << workload_in;
op_work.doComputation(queue);

The drawback of this convenient syntax is that buffers must be
defined statically. However, the DSEL could also support register-
ing buffers through object constructors instead of template param-
eters, at the cost of disabling some static parameters inference.

3.4 DSEL workflow
While the DSEL enables the programmer to describe stencils
thanks to the dedicated interface presented in the previous section,
parallelization is performed automatically in a transparent manner.
Thus, the DSEL workflow summarizes as follows.

Main programmer steps The programmer declares coefficients,
aggregates them into a stencil pattern, defines function access to
data buffers, assembles all these pieces of information together
(including actual data buffers addresses) and eventually calls the
computation method. The programmer does not have to specify
parallelization-related directives or structures, with the exception
of the device queue. All parallelization steps are handled internally.

Automatic parallelization Multiple stencil parallelization tech-
niques exist such as color (e.g. red-black) element partitioning or
tiling. Our DSEL is based on the tiling approach. For tiled stencil

Figure 1. Stencil tile with a ghost region

parallelism to work, a ghost boundary is necessary all around each
tile. This ghost region supplies a read-only input replicate of the
neighbourhood elements values, for updating the target elements
located within the stencil width distance of the tile edges. An ex-
ample tile and its ghost region are shown in Fig. 1, were the centre
blue cells are the tile elements and the red cells are the ghost copies
of the neighbour tiles elements. Once the internal computation of
each tile is complete, the ghost region of each tile is updated with
the newly computed element values of the neighbour tiles.

The DSEL automatically obtains the ghost zone size from the
stencil width. After that it computes the parallelization parameters
as the size of a workgroup, considering the data type and the num-
ber of coefficients. Using these parameters, it builds a specialized
parallel SYCL kernel, which can then be further optimized by the
SYCL compiler, and then by the back-end OpenCL compiler in ac-
cordance with the targeted device.

4. Implementation Details
The DSEL is written in C++14 and is made of some public and
private templated classes. For now only around 800 lines of code
are needed to implement a basic DSEL version. The last C++14
revision is used following the triSYCL library approach. It enables
useful features such as the auto keyword. Keyword auto leverages
the compiler type inference capabilities to relieve the programmer
from writing fastidious template types, of which our DSEL makes
a large use to automatically compute stencil execution parameters.
The present contribution is inspired in this meta-programming ap-
proach by Blitz++, developed by T. Veldhuizen. Veldhuizen espe-
cially introduced the expression template technique [15, 23] used
in our DSEL to store and evaluate the stencil pattern. He also made
some recommendations in his articles [25, 26], as the active library
notion which leads to use the partial specialization technique [4].

4.1 Stencil parallelization through SYCL
The grid where the stencil is applied is partitioned in rectangular
tiles to be processed potentially in parallel. Following the usual
OpenCL terminology, each block is updated by a workgroup and
each workitem in a workgroup updates a single element. Moreover
each input element will be read as many times as there are points
in the stencil pattern during the stencil computation. Therefore a
device local memory area, shared among a workgroup, is used to
temporarily cache the input elements to read. First, each workitem
loads a subset of the global array of elements, corresponding to the
tile elements to be updated and to the tile ghost domain, into the
potentially faster local memory (depending on the actual device).
Second, this local memory is accessed to compute the stencil kernel
on the tile elements. The local memory enables to reuse the tile
input values multiple times efficiently during the tile update, while
the potentially slower global memory has been read only once for
that tile.

To compute an element, the stencil kernel needs the input buffer,
as well as the coefficient array when using variable coefficients.
Since such coefficients may be different in every direction, no reuse
is possible, and the coefficient array is left in global memory. When



using constant coefficients, such coefficients are directly inserted in
the inlined stencil evaluation function.

Currently the input and output buffers must have the same
size and the stencil is applied to the whole data area, writing
the results at the same location in the output buffer. Thus, we
assume for simplicity, for now, that the output buffer has been
allocated with the same ghost domain as the input buffer. Internally
the DSEL computes the workgroup sizes independently from the
global input/output size. If the global size is not a multiple of
the workgroup size, border tiles on the right and at the bottom of
the grid are made smaller and a condition disables workitems that
would get the out of bound elements to compute.

4.2 Static Parameters Computing with Meta-programming
Static parameters being computed at compile time allow highly
specialized host binaries and may dramatically improve the run
time when used in parallel sections. One can argue that for GPUs
the kernel code goes through another device dependent compilation
step at run time, beyond the SYCL compilation step, so the effort
may not be necessary. However some SYCL implementation such
as the CPU-only triSYCL does not involve the use of OpenCL and
therefore can benefit from having the native C++ compiler perform
full specialization and static parameter computing. Moreover meta-
programming in C++ allows to use these static parameters to raise
compilation errors. It helps the developer by detecting structural
stencil errors at compile time (if the user attempts to mix fixed and
variable coefficients for example), and giving a specific, accurate,
and more user-friendly error message.

Static parameters are divided in two categories: those related
to the stencil and those related to the parallelization technique.
The first one contains for now the stencil width in each dimension
direction (and thus the ghost domain width too). The second one is
the workgroup size used in SYCL specific code. A distinct meta-
programming algorithm is used for each category: a constructive
one based on expression templates for inferring the stencil width,
and a recursive one using partial specialization for computing the
workgroup size.

Stencil width inference Each 2D coefficient/stencil has four
static members: the maximum relative position in the stencil for
each direction (two times the two dimensions). Here we will de-
note them by left, right, top and bottom for convenience. For a
coefficient with relative position (i, j) these parameters are sim-
ply equal to i for the first dimension (so for left and right) and
j for the second one (top and bottom). When some coefficients
are “added” in order to form a stencil pattern, a binary tree is built
internally using the expression template technique. This way, each
node of the tree is a stencil subpattern and can statically compute
the local four parameters depending on their children values. It
corresponds to the minimum of the two children’ values for the
negative directions (i. e. left and top), and to the maximum of
these values for the positive directions (right and bottom).

The four parameters are needed to compute the ghost size: the
needed thickness of the ghost regions in a direction is simply the
difference between the dimension maxima ( right − left for ex-
ample). The offset for accessing the updatable (non ghost) values in
the input/output buffer is then (max(−left, 0),max(−top, 0)).
Moreover this technique handles off-center and not symmetric sten-
cils. It also would enable to specialize code with respect to the pat-
tern layout, in a future version of the DSEL. Indeed the pattern
building order influences the tree shape. This tree shape controls
the input value processing, which are traversed in the same order.
For example the two trees and related stencil pattern creation code
depicted in Fig. 2 would lead to different performance.

⊕

⊕

⊕

⊕

c1

c2

c3

c4

auto st = c1+c2+c3+c4;

⊕

⊕

c1 c2

⊕

c3 c4

auto st1 = c1+c2;
auto st2 = c3+c4;
auto st = st1+st2;

or

Figure 2. Two ways to create a stencil pattern from coefficients,
and their related internal tree representation.

Workgroup size computation Under the assumption of some ma-
chine dependent environment variables available at compile time,
the workgroup size can be statically computed w.r.t. the target ma-
chine maximum workgroup size in each dimension, and also w.r.t.
the maximum local memory amount shared in a workgroup. This
workgroup size corresponds to the tile size excluding the ghost el-
ements. Notice that for now only one target is enabled in the DSEL
implementation.

To do so the current naive algorithm increments the workgroup
size by one element in each direction until a stop condition is
reached. The stop conditions are the local memory overflow (since
thanks to the stencil width the amount of accessed elements in a
tile is exactly known) and the maximum workgroup size (which
stop the workgroup expansion only in the related dimension). This
way the workgroup can have a rectangular or square shape in two
dimensions. A static_assert checks if the stencil width is larger
than the maximum workgroup size at the algorithm beginning. This
computations are performed statically using meta-programming
with a tail-recursive algorithm.

4.3 Discussion
As mentioned above, we implemented two variants of the stencil
DSEL API. The first variant enables the programmer to specify
access function as function pointers in template parameters, but it
only works for triSYCL. The second variant fully complies with the
SYCL 1.2 specification (and with both triSYCL and ComputeCPP
implementations), and so does not allow these function pointers,
since they cannot be used with OpenCL on which SYCL is based.
Although the second version is the one that would be chosen if
the DSEL implementation continues, we think that the first version
may offer some more benefits for the user: it requires less lines of
code and is more traditional in terms of programming style.

The current DSEL prototype suffers from other restrictions as
the one depicted at the end of section 3.3. Thus the buffers have
to be created statically, and the benefit is to enable future versions
of the DSEL to detect if the input and output buffers reference the
same object. However to impose static buffers may be a too strong
restriction, which may be removed in future versions, together with
the static workgroup size computation using environment variables
available at compile time, which restricts portability.

Finally the implementation details allow us to classify our
DSEL among the two following categories: shallow and deep [9].
Actually the DSEL belongs to both, depending on which aspect we
consider in a stencil. The DSEL is shallow regarding the coefficient
operators (⊗ and ⊕), which are not stored internally but directly
inferred by the compiler (the user can directly override the * and +
operators in the stencil elements’ type class). On the opposite, the



DSEL is deep regarding the stencil pattern, which is stored like a
tree and so defines a kind of syntax.

5. Conclusion and Future Work
The DSEL introduced in this paper allows to express with ease sten-
cil computation, that is automatic parallelized on both CPU and
GPU architectures. The stencil concise abstraction has been made
possible thanks to modern C++ features and especially to meta-
programming techniques. Moreover, the parallelization is based on
the new SYCL interface which offers a unified parallel program-
ming mean for heterogeneous platforms. The benefits of such a
DSEL are to ease the developer work, which then neither has to be
a parallelization specialist, nor needs to use several different lan-
guages/compilers, or be restrained to a single processing unit type.

However, this DSEL is still a proof of concept at this stage,
so many improvements and further experiments are needed on pro-
duction release SYCL compilers/libraries instead of the preliminary
version that have been used for this paper. Among our intended im-
provements, the priority will be put on the DSEL generalization to
any n-dimensional stencil (probably using variadic templates [10])
and on extending the code specialization to both target parameters
and modern tiling techniques (e.g. [1]).
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