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Faster-than-Nyquist signalization allows for a better spectral efficiency at the expense of an increased complexity. Regarding multicarrier communications, previous work mainly relied on the study of non-linear systems exploiting coding and/or equalization techniques, with no particular optimization regarding the linear part of the system. In this paper, we analyse the behavior of the optimal linear multicarrier system when used with non-linear receiving structures (iterative decoding and direct feedback equalization), or in a standalone fashion. We also investigate the limits of the assumptions commonly made for the implementation of such non-linear systems. The use of this optimal linear system allows for a closed-form expression of the bit-error probability which can be used to predict the performances and help the design of coded systems. Our work also highlights the great performance/complexity trade-off offered by decision feedback equalization in a faster-than-Nyquist context.

Résumé

Les communications au delà de la cadence de Nyquist permettent une augmentation de l'efficacité spectrale en contrepartie d'une complexité plus élevée. Concernant les communications multiporteuses, les travaux menés jusque là se sont principalement focalisés sur l'étude des systèmes non-linéaires exploitant des techniques de codage et/ou d'égalisation, sans considération ou optimisation particulière de la partie linéaire du système. Dans cet article, nous analysons le comportement du système linéaire multiporteuse optimal lorsqu'il est utilisé seul ou avec des structures de réception non-linéaires (décodage itératif et égalisation à retour de décision). Nous nous intéressons également aux limites des hypothèses communément utilisées lors de l'implémentation de ces systèmes non-linéaires. L'utilisation du système linéaire optimal permet une expression analytique de la probabilité d'erreur qui peut être utilisée pour prédire les performances et aider la conception de systèmes codés. Ce travail met aussi en avant le bon compromis performances/complexité offert par l'égaliseur à retour de décision dans le contexte des communications au-delà de la cadence de Nyquist.

1. L'adhérence d'un espace normé E contient tous les éléments de E plus tous les éléments obtenus par passage à la limite. Par exemple l'adhérence de l'ensemble des rationnels est l'ensemble des réels.

Introduction

La plupart des systèmes de communication actuels permettent la reconstruction parfaite des symboles émis : les familles de synthèse et d'analyse utilisées en émission et en réception constituent des familles biorthogonales (ou bases de Riesz). Dans le cadre d'une transmission à bande limitée, cela nécessite le respect du critère de Nyquist qui impose un débit symbole R inférieur à la bande bilatérale B du signal (R ≤ B) [START_REF] Nyquist | Certain topics in telegraph transmission theory[END_REF]. À l'inverse, en outrepassant ce critère, il devient possible de transmettre à un débit symbole R supérieur tout en préservant la même bande occupée (R > B), ce qui augmente l'efficacité spectrale (définie comme le rapport entre le débit binaire de la transmission D b et la bande bilatérale B du signal). Cette technique de communication au-delà de la cadence de Nyquist, plus souvent désignée par le terme faster-than-Nyquist (FTN), induit cependant de l'interférence entre impulsions de mise en forme (IEI).

Dans un contexte où les ressources radiofréquences se font de plus en plus rares, les communications FTN permettent de réduire l'occupation spectrale à débit équivalent. De plus, contrairement à la manière classique d'augmenter l'efficacité spectrale, consistant à agrandir la taille de l'alphabet de modulation, les systèmes FTN n'augmentent pas la sensibilité au bruit si l'IEI est correctement compensée au niveau du récepteur. D'autre part, la plupart des systèmes de transmission sont voués à opérer dans un contexte multitrajet, éventuellement radiomobile. Sur de tels canaux, les modulations multiporteuses se révèlent particulièrement efficaces puisqu'elles permettent de choisir des impulsions de mise en forme adaptées à la selectivité temps-fréquence du canal, diminuant ainsi la complexité de l'égalisation en réception [START_REF] Kozek | Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels. Selected Areas in Communications[END_REF]. Les techniques de transmission FTN peuvent être étendues à ce type de modulation [START_REF] Rusek | The two dimensional Mazo limit[END_REF]. Dans ce cas, en notant T 0 la durée d'un symbole multiporteuse et F 0 l'écart interporteuse, on peut montrer que les familles d'émission et de réception ne sont plus biorthogonales (elles peuvent cependant former des frames redondantes) si F 0 T 0 < 1, ce qui mène à l'apparition d'IEI en temps et en fréquence.

Ainsi, dans cet article, nous nous intéresserons à l'émetteur-récepteur linéaire multiporteuse optimal au sens de la maximisation du rapport signal sur bruit plus interférence (RSIB), tel que développé dans [START_REF] Siclet | On the study of faster-than-Nyquist multicarrier signaling based on frame theory[END_REF]. Ce système s'appuie sur l'utilisation de frames de Gabor étroites en émission et en réception.

L'article est organisé comme suit. La partie 2 présente les relations d'entrée-sortie de l'émetteur-récepteur en se basant sur la théorie des frames. Ce cadre théorique permet la détermination du RSIB, ainsi que l'expression analytique de la probabilité d'erreur sur canal à bruit additif blanc gaussien (BABG). La partie 3 détaille deux structures de compensation de l'interférence, l'une basée sur un code correcteur d'erreur à matrice de parité creuse (LDPC pour low-density partiy-check code), l'autre exploitant une structure d'égalisation à retour de décision. La partie 4 donne les limites de l'approximation gaussienne de l'interférence par simulation, puis présente les performances des structures de compensation de l'interférence présentées dans la partie 3. Enfin, nos conclusions et perspectives sont données en partie 5.

2 Système linéaire multiporteuse optimal sur canal BABG 

s(t) = (m,n)∈Λ c m,n g m,n (t), t ∈ R (1) 
avec g = {g m,n } (m,n)∈Λ une famille de Gabor, de paramètres F 0 , T 0 > 0 et dont les éléments sont donnés par un filtre générateur

g(t) ∈ L 2 (R) : g m,n (t) = g(t -nT 0 )e j2πmF0t . ( 2 
)
Il en résulte que l'information véhiculée par c est régulièrement répartie dans le plan temps-fréquence (fig. 1) avec une distance minimale F 0 en fréquence et T 0 en temps.

t f T 0 F 0 FIGURE 1 -Représentation d'
un signal transmis dans le plan temps-fréquence. Ici, le filtre générateur g(t) et les paramètres du réseau permettent une séparation dans le domaine fréquentiel, mais pas dans le domaine temporel.

En pratique, Λ = {0, . . . , M -1} × {0, . . . , K -1} est un ensemble fini, si bien que la somme (1) est toujours convergente. Elle peut toutefois comporter un très grand nombre de termes et il est donc utile de s'assurer de sa stabilité. Notons H g = Vect(g) l'adhérence du sous-espace vectoriel engendré par la famille g. 1 La stabilité de (1) est garantie lorsque g constitue une séquence de Bessel, autrement dit s'il existe une borne B g > 0 telle que :

(m,n)∈Λ | g m,n , x | 2 ≤ B g x 2 , ∀x ∈ H g (3)
avec 

A g x 2 ≤ (m,n)∈Λ | g m,n , x | 2 ≤ B g x 2 , ∀x ∈ H g . ( 5 
)
Dans ce cas, la densité ρ de g est nécessairement inférieure ou égale à l'unité : ρ = 1/(F 0 T 0 ) ≤ 1. Dans cet article, nous nous plaçons au contraire dans le cas où ρ > 1 de manière à augmenter l'efficacité spectrale du système (pour un nombre de bits par symbole fixé). Pour un récepteur linéaire, cette interférence peut être considérée comme un bruit s'additionnant à celui introduit par le canal, menant à une augmentation de la probabilité d'erreur. Lorsque ρ > 1, il existe toutefois des familles de Gabor liées qui constituent des frames redondantes de L 2 (R), c'est-à-dire des familles pour lesquelles (5) est valide non pas seulement pour x ∈ H g , mais pour x ∈ L 2 (R) tout entier. Alors, la stabilité de (1) est toujours assurée et H g = L 2 (R) mais g ne peut pas être une base de L 2 (R).

Nous supposons un canal parfait avec bruit additif et nous choisissons d'utiliser un récepteur linéaire. Autrement dit, l'estimation des coefficients ĉ = {ĉ p,q } (p,q)∈Λ s'effectue par une opération du type :

ĉp,q = ǧp,q , r , ∀(p, q) ∈ Λ (6) 
avec ǧ = {ǧ m,n } (m,n)∈Λ une famille de filtres de réception, r(t) = s(t) + b(t) le signal reçu et b(t) un bruit blanc gaussien complexe circulaire centré, indépendant des symboles, caractérisé par une densité spectrale de puissance bilatérale

γ b (f ) = 2N 0 pour f ∈ R : E(b(t)) = 0 et E(b * (t)b(t )) = 2N 0 δ(t -t ), avec E(•) l'opérateur d'espérance.
2.2 Analyse de l'interférence et du bruit Réécrivons (6) de manière à faire apparaître explicitement les termes d'interférence et de bruit :

ĉp,q = c p,q ǧp,q , g p,q cp,q:signal utile

+ (m,n)∈Λ\{(p,q)} c m,n ǧp,q , g m,n ip,q:interférence + ǧp,q , b bp,q:bruit . ( 7 
)
Nous avons montré dans [START_REF] Siclet | On the study of faster-than-Nyquist multicarrier signaling based on frame theory[END_REF] que le RSIB est maximisé lorsque ǧ = 1/A g g est une frame étroite, c'est-à-dire que (5) s'applique avec A g = B g . Dans ce cas, on obtient alors que

g 2 = A g /ρ, (8) 
E s = A g 2ρ σ 2 c , ( 9 
)
σ 2 i = E(|i p,q | 2 ) = (ρ -1)σ 2 c , ( 10 
)
σ 2 b = E(|b p,q | 2 ) = ρ A g 2N 0 , ( 11 
)
avec E s l'énergie symbole, σ 2 i la variance de l'interférence et σ 2 b la variance du bruit après filtrage, de sorte que le RSIB s'écrit RSIB = 1

ρ -1 + N0 Es . ( 12 
)
On constate que l'interférence i p,q est une variable aléatoire indépendante du bruit et correspondant à la somme d'un grand nombre de variables aléatoires cm,n indépendantes, centrées, de même type de loi mais de variances σ 2 cm,n différentes :

cm,n = c m,n ǧp,q , g m,n et σ 2 cm,n = σ 2 c | ǧ, g m-p,n-q | 2 . ( 13 
)
Les conditions d'application du théorème central limite ne sont donc pas respectées, et les simulations de la partie 4.1 confirment que l'interférence ne suit pas une loi normale. On remarque cependant qu'il s'agit d'une bonne approximation pour ρ ≤ 8/5. La transmission se passe alors comme si les symboles étaient transmis à travers un canal discret parfait à bruit additif gaussien centré avec un rapport signal sur bruit donné par l'expression du RSIB (12). Le terme de bruit b p,q , est gaussien et centré, mais pas nécessairement blanc.

Probabilité d'erreur

Nous nous restreignons maintenant à des symboles c issus d'une constellation de type quadrature phase-shift keying (QPSK). Dans ce cas, en considérant le bruit et l'interférence gaussiens, la probabilité d'erreur théorique pour une transmission à travers un canal bruité est donnée par la formule

P e = Q √ RSIB = Q 1 (ρ -1) + N0 2E b , ( 14 
) avec Q(•) la fonction de répartition complémentaire d'une loi normale centrée réduite et E b = E s /2 l'énergie par bit [5].
3 Structures de compensation de l'interférence 3.1 Codage correcteur d'erreur LDPC En considérant l'interférence comme un bruit, une stratégie permettant de la compenser est d'utiliser un code correcteur d'erreur (codage canal). Le code utilisé aura alors pour fonction de compenser à la fois le bruit et l'interférence.

Le code utilisé dans les simulations de la partie 4.3 est un code LDPC. Les décodeurs pour cette famille de codes exploitent des entrées pondérées, spécifiées sous la forme de logarithmes de rapports de vraisemblance (LRV), exprimés par L (a p,q,l |ĉ p,q ) = ln P r {a p,q,l = 0|ĉ p,q } P r {a p,q,l = 1|ĉ p,q } , (15) où a p,q,l est le l-ième bit composant le symbole c p,q . En utilisant l'approximation gaussienne de l'interférence, on peut écrire la densité de probabilité des variables aléatoires ν p,q = b p,q + i p,q sous la forme :

f ν (x) = 1 πσ 2 ν exp -|x| 2 σ 2 ν , ( 16 
)
avec, d'après [START_REF] Douillard | Iterative correction of intersymbol interference : turbo-equalization[END_REF] et (11) :

σ 2 ν = σ 2 b + σ 2 i = (ρ -1)σ 2 c + ρ A g 2N 0 . ( 17 
)
D'autre part, les équations ( 7) et ( 8) nous permettent également d'écrire ν p,q = ĉp,qc p,q /ρ ce qui, sachant que les symboles c m,n sont indépendants et suivent une loi uniforme, mène à exprimer les LRV de la manière suivante :

L (a p,q,l |ĉ p,q ) = ln   c t.q b l (c)=0 exp -|ĉp,q-c/ρ| 2 σ 2 ν c t.q b l (c)=1 exp -|ĉp,q-c/ρ| 2 σ 2 ν   , ( 18 
)
où b l (c) est le l-ième bit constituant le symbole c.

Les LRV utilisés pour les simulations de la partie 4.3 sont calculés via l'équation (18). Cela suppose donc que la densité de probabilité de l'interférence soit bien approximée par une gaussienne ce qui, comme montré par simulation dans la partie 4.1, est vrai pour ρ ≤ 8/5 uniquement.

Égalisation à retour de décision

Dans cette partie, on exploite une structure d'annulation du terme d'interférence à l'aide des symboles précédemment estimés. En effet, comme le montre l'équation [START_REF] Christensen | Frames and bases : An introductory course[END_REF], si ce terme est complètement annulé, alors les performances en terme de taux d'erreur binaire (TEB) seront identiques à celles des systèmes à densité critique ou sous-critique (ρ ≤ 1).

En supposant que le prototype utilisé par l'émetteur est connu du récepteur, on remarque que la seule donnée manquante pour le calcul des i p,q sont les c m,n . L'égalisation à retour de décision présentée ici est une approche itérative par bloc. Elle consiste à utiliser les symboles čm,n obtenus après seuillage à l'itération précédente afin de calculer et d'annuler l'interférence avant seuillage à l'itération courante (voir figure 2). La relation d'entrée-sortie du système s'écrit alors ĉ(k)

p,q = c p,q ǧp,q , g p,q

+ (m,n)∈Λ\{(p,q)} c m,n -č(k-1) m,n ǧp,q , g m,n + ǧp,q , b , (19) 
où ĉ(k) p,q et č(k) p,q sont respectivement les symboles estimés et les symboles obtenus après seuillage à l'itération k. On remarque que si les symboles en sortie du détecteur à seuil à l'itération k -1 sont les mêmes que ceux envoyés č(k-1) p,q = c p,q , alors le terme d'interférence sera complètement compensé à l'itération k. Cependant ce n'est jamais le cas en pratique, et les erreurs sur č(k-1)

p,q limitent les performances de ce type d'égaliseur à fort rapport signal sur bruit (propagation d'erreur). 

(k) p,q , č(k) p,q et č(k-1)
p,q (avec p l'indice de ligne et q l'indice de colonne).

Analyse empirique de l'interférence

Cette partie est dédiée à l'analyse des propriétés statistiques de l'interférence. Pour ce faire, nous avons mesuré 3, 6 × 10 6 réalisations du terme d'interférence i p,q grâce à la transmission de K = 50000 symboles multiporteuses appartenant à une constellation QPSK sur M = 128 porteuses, en utilisant des prototypes d'émission et de réception formant des frames étroites, et pour différentes valeurs de la densité ρ sur un canal parfait sans bruit. Ces réalisations du terme d'interférence ont ensuite été normalisées afin de faciliter la comparaison de leurs fonctions de répartition et de leurs densités à celles d'une variable aléatoire gaussienne centrée réduite. Nous avons observé un comportement statistique similaire pour la partie réelle ou imaginaire de i p,q , et pour différentes fonctions prototypes formant des frames étroites.

En considérant une transmission de bits IID sur un canal parfait sans bruit (RSIB = 1/(ρ -1)), et en notant F i,ρ (x) la fonction de répartition complémentaire de l'interférence pour une densité ρ, on peut exprimer la probabilité d'erreur par

P e (ρ) = 1 -F i,ρ √ RSIB = 1 -F i,ρ 1 ρ -1 . ( 20 
)
Afin d'évaluer la pertinence de l'approximation gaussienne dans le cadre de l'estimation de la probabilité d'erreur, on compare les fonctions P e (ρ) et Q 

P e (ρ) = 1 -F i,ρ 1/(ρ -1)
FIGURE 3 -Comparaison de la fonction de répartition complémentaire de l'interférence et de son approximation gaussienne en fonction de ρ.

Pour vérifier que cette approximation est également pertinente pour le calcul des LRV dans le cadre de l'utilisation d'algorithmes de réception à entrées pondérés (tel qu'un décodeur LDPC), on compare la densité de probabilité de l'interférence f i,ρ (x) à celle d'une loi normale centrée réduite f N (0,1) (x) pour différentes valeurs de ρ en figure 4. On remarque que l'approche gaussienne permet une bonne approximation de la densité de l'interférence pour ρ ≤ 8/5. Cependant, pour des valeurs de ρ plus élevées, cet écart devient suffisamment grand pour introduire des erreurs significatives dans le calcul des LRV et dégrader les performances.

Performances du système linéaire

Les simulations présentées dans cette partie, ainsi que dans les parties 4.3 et 4.4 mettent en oeuvre la transmission de K = 5000 symboles multiporteuses sur M = 128 porteuses avec une constellation QPSK. Elles sont effectuées pour plusieurs filtres générateurs. Parmi eux, les fonctions maximisant la localisation temps-fréquence (LTF) et minimisant l'énergie hors bande (EHB) [START_REF] Pinchon | Closed-form expressions of optimal short PR FMT prototype filters[END_REF] forment des frames étroites, tel que montré dans [START_REF] Siclet | On the study of faster-than-Nyquist multicarrier signaling based on frame theory[END_REF] via le théorème de Wexler-Raz [7, théorème 9.3.4]. C'est aussi le cas de la fonction porte de durée T 0 (RECT T0 ) et du filtre en racine de cosinus surélevé (RCS) de coefficient d'amortissement α = ρ -1. Lorsque de telles frames sont utilisées en émission et en réception, il suffit de fixer leur norme à 1/ √ ρ pour que la paire soit duale canonique étroite avec A g = 1. La fonction porte de durée ρT 0 , quant à elle, ne permet pas de former une paire de frames duales canoniques. Enfin, l'utilisation de la fonction porte de durée ρT 0 en émission et de durée T 0 en réception permet de former une paire de frames duales canoniques, mais pas étroites.
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FIGURE 4 -Comparaison de la densité de l'interférence et de son approximation gaussienne en fonction de ρ.

La figure 5 montre que les valeurs de RSIB sont parfaitement prédites par l'expression (12), lorsque la fonction prototype utilisée génère une paire de frames étroites et duales canoniques. On remarque que les performances sont dégradées lorsque cette condition n'est pas respectée, ce qui est conforme aux résultats montrés dans [START_REF] Siclet | On the study of faster-than-Nyquist multicarrier signaling based on frame theory[END_REF]. On observe également que dans ce dernier cas, il est préférable d'utiliser les mêmes familles en émission et en réception, même si ce ne sont pas des frames duales, plutôt que d'utiliser des frames duales mais non étroites.

La figure 6 confirme la pertinence de l'expression de la probabilité d'erreur binaire (14) et de l'approximation gaussienne du terme d'interférence, y compris pour ρ > 8/5 car, dans ce cas, le TEB est suffisamment grand pour que l'inexactitude de l'approximation gaussienne ait un effet négligeable sur l'erreur relative. Néanmoins, à fort E b /N 0 (≥ 14 dB) et pour ρ proche de 1 (ρ = 16/15), les limites de cette approximation apparaissent (fig. 7). Dans le cadre d'un système non-codé, le taux d'erreur binaire (TEB) se dégrade rapidement en même temps que la densité augmente (fig. 6). Une borne minimale du taux d'erreur binaire apparaît lorsque la puissance du bruit devient négligeable devant celle de l'interférence (fig. 7). Ces résultats confirment la nécessité d'utiliser des détecteurs non-linéaires permettant de lutter plus efficacement contre l'IEI. 

RSIB (dB)

Théorique (frames étroites)

g = ǧ : LTF g = ǧ : EHB g = ǧ : RCS α = ρ -1 g = ǧ : RECT T 0 g = ǧ : RECT ρT 0 g : RECT ρT 0 , ǧ : RECT T 0 FIGURE 5 -Évolution du RSIB en fonction de E s /N 0 , avec ρ = 16/15.

Performances en présence de codage LDPC

Les courbes de TEB des systèmes codés utilisant des structures itératives, tels que les turbo-codes ou les LDPC, sont caractérisés par un seuil de convergence [START_REF] Berrou | Codes et turbocodes (sous la direction de Claude Berrou)[END_REF] correspondant à la valeur de E b /N 0 à partir de laquelle le système codé est plus performant que le système non-codé. Pour un canal à BABG, il est également possible de caractériser le système codé à l'aide d'une courbe présentant le TEB en sortie du décodeur en fonction du TEB en entrée du décodeur (respectivement désignés par TEB out et TEB in ). Sur une telle courbe, le seuil de convergence est donné pour une valeur particulière du TEB d'entrée. Par conséquent, et grâce à l'expression de la probabilité d'erreur (14), on peut déterminer la plus grande densité ρ permettant au système codé de converger pour une valeur de E b /N 0 donnée. Par exemple, la figure 8 montre qu'un système utilisant le code LDPC de rendement 1/2 défini dans le standard DVB-S2 [START_REF]ETSI : EN 302 307 Digital Video Broadcasting (DVB) ; Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive services, News Gathering and other broadband satellite applications (DVB-S2)[END_REF] a son seuil de convergence pour un TEB d'entrée d'environ 0.15. Sur la figure 9, on peut voir que lorsqu'un tel code est utilisé en conjonction d'un système multiporteuses FTN utilisant des frames étroites, le seuil de convergence se trouve pour E b /N 0 = 2 dB, ce qui correspond bien au rapport signal à bruit permettant d'obtenir un TEB d'entrée de 0.15. . Dans la même veine, une autre approche consisterait à complexifier l'égaliseur afin qu'il puisse exploiter des entrées/sorties souples, puis l'intégrer dans une structure de turbo-égalisation. 

Conclusion

Au cours de cet article, nous avons présenté le système multiporteuse linéaire optimal pour les communications audelà de la cadence de Nyquist. Ce système permet d'augmenter la densité de signalisation en temps et/ou en fréquence et, pas conséquent, l'efficacité spectrale. En contrepartie, on assiste à l'apparition d'interférence entre impulsions de mise en forme.

Nous montrons qu'une approximation gaussienne du terme d'interférence est adéquat dans l'optique d'estimer le taux d'erreur binaire, ce qui nous mène à une expression analytique de la probabilité d'erreur. Nous présentons deux techniques de compensation de l'interférence, la première faisant intervenir un code correcteur d'erreur itératif (code LDPC), et la seconde un annuleur d'interférence à retour de décision. L'annuleur d'interférence se montre particulièrement efficace pour de faibles densités (ρ ≤ 8/7), mais souffre du phénomène de propagation d'erreurs inhérent à ce type d'égaliseur. Nous montrons par simulation que l'approximation gaussienne du terme d'interférence est également adaptée au calcul des logarithmes de rapport de vraisemblance nécessaires au décodeur LDPC pour des valeurs de ρ inférieures ou égales à 8/5. Dans ce contexte, nous donnons une méthode permettant de prédire les performances de ce système optimal lorsqu'il est associé à un code correcteur d'erreur sans nécessiter de simulations, facilitant ainsi la démarche de conception.

De futurs travaux pourraient concerner la compensation du terme d'interférence par des structures de turboégalisation [START_REF] Douillard | Iterative correction of intersymbol interference : turbo-equalization[END_REF], l'étude de la densité de probabilité du terme d'interférence ou encore le passage sur canal sélectif en temps et en fréquences. 
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 2 FIGURE 2 -Synoptique du récepteur exploitant l'égaliseur à retour de décision. ĉ(k) , č(k) et č(k-1) sont les trois matrices contenant respectivement les éléments ĉ(k) p,q , č(k) p,q et č(k-1)
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 11 pour plusieurs valeurs de ρ sur la figure3. On remarque que, bien qu'elle ne suive pas une loi gaussienne, une telle approximation permet cependant une bonne estimation du TEB pour ρ > 16/15. D'autre part, les simulations montrent que cette approximation constitue une borne supérieure de la probabilité d'erreur (quelle que soit la valeur de ρ).

4. 4

 4 Performances en présence d'égalisation à retour de décision L'égaliseur à retour de décision, malgré sa très faible complexité, permet de compenser suffisamment bien l'interférence pour obtenir des performances très proches du système orthogonal à faible RSB, comme l'illustre la figure10. Nous avons observé que ses performances ne dépendent pas des prototypes d'émission et de réception lorsque ces derniers forment une frame étroite. À fort RSB, on voit apparaître le phénomène de propagation d'erreur qui se caractérise par un TEB constant alors que le bruit diminue.Utilisée tellle quelle, la figure 11 montre que cet égaliseur ne permet pas d'utiliser de grandes valeurs de densité. Cependant, il serait aisé d'augmenter ses performances en ajoutant un code correcteur d'erreur afin d'augmenter la fiabilité des symboles estimés à l'itération précédente č(k-1)p,q
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 6789 FIGURE 6 -Évolution TEB en fonction de ρ, avec E b /N 0 = 20 dB.

FIGURE 10 -

 10 FIGURE 10 -TEB en fonction de E b /N 0 pour un système utilisant un égaliseur à retour de décision, une densité ρ = 8/7 et un prototype LTF.

  2.1 Relation d'entrée-sortieNotons c = {c m,n } (m,n)∈Λ ∈ 2 (Λ) une séquence de coefficients centrés, indépendants et identiquement distribués (IID), de variance σ 2

c , avec Λ ⊂ Z 2 . Le signal multiporteuse en bande de base s'exprime alors sous la forme :

  •, • et • le produit scalaire et la norme usuels sur L 2 (R), définis ∀x, y ∈ L 2 (R) par : représente le conjugué de x. Pour reconstruire la séquence c à partir de s(t), il est en outre nécessaire (et suffisant) que g constitue une famille libre. g est alors une base de Riesz de H g , c'est-à-dire une famille libre pour laquelle il existe deux bornes 0 < A g ≤ B g telles que

	où x					
	x, y =	+∞	x * (t)y(t) dt,	x =	x, x .	(4)
		-∞				

*