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We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls.
Although, it is of course possible today with modern computers and powerful algorithms to perform
direct numerical simulations that fully account for multiparticle 3D interactions in the presence of
walls, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to
understand 3D results. Thanks to the direct visualization of the whole 2D flow (the shear plane), we
are able to give a clear interpretation of the full hydrodynamics of semi-dilute confined suspensions.
For instance, we examine the role of particle-wall and particle-particle interactions to determine the
effective viscosity of confined sheared suspensions. We provide numerical estimates of the intrinsic
viscosity [η] as well as of the contribution of hydrodynamic interactions β to the effective viscosity for
a wide range of confinements. As a benchmark for our simulations, we compare the numerical results
obtained for [η] and β for very weak confinements with analytical values [η]∞ and β∞ obtained for
an infinite fluid. If the value [η]∞ = 2 is well known in the literature, much less is published on β
value. Here, we analytically calculate with a very high precision β∞ = 3.6. Finally, we re-examine
the 3D case in the light of our 2D results.
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I. INTRODUCTION

Understanding the macroscopic transport and flow behavior of particles or fibers suspended in a fluid medium is
important to several industries that handle slurries, ceramics, colloids, or polymers for example. Usually negligible
or small Reynolds numbers (Re) are considered since this situation is more relevant regarding the high viscosity of
suspensions. An external flow makes move micron-scale objects that are strongly coupled to each other by hydro-
dynamic interactions (HI) [1–3]. 2D simulations represent an efficient and convenient tool for understanding some
phenomena arising in hydrodynamics of suspensions. For example, 2D simulations have been currently used to study
flow past 2D single bodies of arbitrary cross-sectional shape [4] or around rotating circular cylinder in a shear flow
at low Reynolds number [5]. 2D simulations have also been used to study multiparticle systems such as diffusing
proteins in biological membranes [6], suspensions of red blood cells [7], vesicles [8] or capsules [9, 10]. 2D simulations
are much less time and memory consuming than 3D ones. In 2D, very simple visualizations of the entire flow are easy
and render a clear insight of 3D problems that are sometimes quite difficult to understand. Several publications have
been dedicated to 2D suspensions and their rheology from dilute to large volume fractions [11, 12]. In this paper, we
are interested in the rheology of confined suspensions.

Low Re number flows of suspensions of neutrally buoyant particles sheared or confined between two walls [13–21]
or transported through channels [7, 22–25] of width comparable to the particle dimension are very important because
of their occurrence in many experimental, biological, and technological systems including blood flow in capillaries or
in confined flows [7], but also flows in porous media [26] or in microfluidic devices [27].

It was shown [19] that the contribution of 3D hydrodynamics interactions in the semi-dilute regime to the effective
viscosity becomes negative for very confined hard and non-Brownian spheres. This effect was further confirmed by
another theoretical approach [21] and by experiments [20]. This effect survives for finite Re numbers (Re ≈ 5) [28].
In this work, we observe the same phenomenon for the 2D case (with Re = 0) and we can give a simple interpretation
of the variation of the effective viscosity with confinement by examining the dissipation density and the fluid flow
around particles. Our 2D simulations can clarify points that were still unclear such as the contribution of the HI
to the effective viscosity in high confinement cases. We focus our study on particle-wall HI in the dilute case and
particle-particle HI in presence of walls for semi-dilute 2D suspensions.

The volume fraction φ is usually defined as the total volume of N spherical particles of radius a divided by the
whole volume V of the suspension: φ3D = N 4

3πa
3/V . Here in 2D, we define a surface fraction φ2D = Nπa2/S where

S represents the total surface of the suspension. For convenience, in the rest of the paper, we drop the 2D subscript
and we refer to the volume fraction even in 2D. When we refer to the 3D case, no ambiguity remains. Whatever the
dimension, the effective viscosity of the whole suspension depends non-linearly on φ and can be expressed as a virial
expansion [3] in the semi-dilute case where pair interactions start to operate between particles:

ηeff = η0

[
1 + [η]φ+ βφ2 +O(φ3)

]
, (1)

where [η] is the intrinsic viscosity, representing the contribution of each particle to ηeff . The coefficient β is the
contribution of HI between pairs of particles to ηeff . Previous studies [11, 12] on rheology of 2D suspensions have
generally focused on the behavior of ηeff on a large domain of volume fraction and fit ηeff (φ) with the empirical law
of Krieger and Dougherty [29]. In this paper, we would like to understand the effect of HI between pairs of confined
particles on the effective viscosity, we thus restrain ourselves to semi-dilute regimes where the virial expansion of ηeff
[eq.(1)] is valid to order φ2.

For an infinite 3D fluid, the values of [η]∞ and β∞ are very well known. Since Einstein’s seminal calculations
which determined [η]∞ = 2.5 [30, 31], the contribution of HI to ηeff for non-Brownian suspensions of uniformely
distributed hard spheres has been calculated by Batchelor and Green [32] who found β∞ = 5.2 ± 0.3, then further
accurate calculations gave a value of β∞ very close to 5.0 [33, 34]. In 2D, if the intrinsic viscosity [η]∞ = 2 is a well
known value [35, 36], the 2D β∞ value is less reported in the literature where β∞ = 4.0 was calculated for the shear
modulus of a 2D incompressible solid suspension of uniformely distributed disks [37]. Here, we show that the value
is in fact closer to β∞ = 3.6 with a very accurate analytical calculation (see Appendices A,B and C).

In order to properly investigate the rheology, the suspension is submitted to a shear rate between two moving walls
where no-slip boundary conditions are used. The effective viscosity is calculated by integrating the dissipation in the
liquid phase. Details of the numerical 2D method based on finite elements are given below. In view of benchmarking
our simulations, we compare [η] and β obtained for vanishing confinements to analytical results [η∞] and β∞. In the
dilute case, i.e. for [η], we perfomed very accurate analytical calculations which gives the value of [η] in presence of a
single wall. In the semi-dilute case, i.e. regarding β, we numerically analyze the particle-particle HI within a uniform
distribution of non-Brownian disks with a very weak confinement, we find β = 3.6± 0.1 very close to the analytically
value β∞ = 3.6.

We find that the main source of dissipation arises in the fluid region between particles and walls. But another
important source of dissipation lies in the region between two particles that are at 45◦ (mod 90◦) from each other
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(the 0◦-angle is taken from horizontal position when particles are aligned along the flow parallel to the walls). While
increasing confinement, local dissipation density increases between each particle and walls but decreases between
particles because of the disappearance of 45◦ configurations due to the geometrical constraint. The increasing of
dissipation between particles and walls is a contribution of each individual particle (i.e. it is a linear φ-variation) and
it increases [η]. If the latter effect can be expected, we also observe a much less predictable phenomenon: the creation
of “dips” of dissipation between aligned and close particles, where locally, dissipation is less than the dissipation
created by the shear flow without particles. Thus, an aligned pair of particles along the flow dissipates less than two
non-interacting particles: this is the contribution of pairs of particles to dissipation (i.e. a φ2-variation) and it leads
to a negative contribution to the HI and explains the negativeness of β. This phenomenon finds its origin in the
slow-down of the angular velocity of each particle due to their mutual interaction within the pair aligned along the
flow. In light of this 2D interpretation, we checked that this result holds in 3D.

The paper is organized as follows, in section 2 we present the numerical method, in section 3 we show the re-
sults concerning particle-wall and particle-particle HI. Then, we compare our results with the 3D case. For sake of
readability, details of analytical calculations are given in appendixes A, B, C and D. Then in section 4, we conclude.

II. NUMERICAL MODEL

From the modeling point of view, our problem can be seen as a fluid/structure interaction. Therefore, it could
be modeled by a coupling between Stokes equations for the dynamics of the surrounding incompressible fluid and
Newton-Euler equations for the motion of rigid bodies. The action of the fluid on the particles is modeled by the
hydrodynamic forces and torques acting on particles’ surface and they can be considered as the right hand side of
Newton-Euler equations. In addition, particles interact with the surrounding fluid using a no-slip boundary condition
in Stokes equations. However, this explicit coupling can be unstable numerically and its resolution often requires very
small time step. In addition, as we have chosen to use Finite Elements Method FEM (for accuracy reasons) and since
the positions of particles change with time, we have to remesh the computational domain at each time step or in best
cases at every few time steps.

For all these reasons we chose another strategy to model our problem. Instead of using Newton-Euler equations for
modeling the particles’ motion and Stokes equations for the fluid flow, we use only the Stokes equations in the whole
domain (including the interior of the particles). We take into account the presence of particles by using a second
fluid with a high viscosity on which we impose a rigid body constraint. This type of strategy is widely used in the
literature under the generic names of “penalty-like methods” or “fluid particle dynamics” [38–43].

In what follows, we describe briefly the basic ingredients of the FEM method as well as the penalty technique
applied to our problem. To do this we need to recall some mathematical notations.

The fluid flow is governed by Stokes equations of an incompressible fluid that can be written as follows :

−η0∆u + ∇p = 0 in Vf , (2)

∇ · u = 0 in Vf , (3)

u = u∞ on ∂Vf . (4)

Where :

• η0, u and p are respectively the viscosity, the velocity field and the pressure.

• Vf is the domain occupied by the fluid. Typically Vf = V \ B if we denote by V the whole domain and by B
the rigid particles’ domain,

• ∂Vf is the border of Vf ,

• u∞ is some given vector field for the boundary conditions (typically a velocity field representing the shear flow).

It is known that under some reasonable assumptions the problem (2)-(3)-(4) has a unique solution (u, p) [44].
As we will use the FEM for the numerical resolution of problem (2)-(3)-(4), we need to write its variational

formulation. For sake of simplicity, we start by writing it in a standard way (fluid without particles), then we modify
it using penalty technique to take into account the presence of particles. In what follows, we describe briefly these
two methods, the standard variational formulation for the Stokes problem and the penalty technique to handle the
rigid body motion of particles.
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A. Variational formulations

The variational formulation of our initial problem (2)-(3)-(4) is given by : Find (u, p) (see appendix of [45] for more
details) such that :

2η0

∫
Vf

τ (u) : τ (v) dV −
∫
Vf

p∇ · v dV = 0,∀v, (5)∫
Vf

q∇ · u dV = 0,∀q, (6)

u = u∞ on ∂Vf . (7)

Where τ (u) is the strain tensor

τ (u) =
1

2

(
∇u + (∇u)t

)
(8)

and v and q are respectively the test functions for the velocity field u and the pressure p taken in some functional
space (see [45]). As we have Dirichlet boundary conditions (7), v is supposed to vanish on ∂Vf .

The variational formulation (5)-(6)-(7) has the advantage to depend explicitly on τ (u) which will be very useful
to handle the rigid body motion. Note that this formulation is equivalent to the classical one thanks to the following
identity ∫

Vf

τ (u) : τ (v) dV =
1

2

∫
Vf

∇u : ∇v dV (9)

which holds for incompressible fluid. All details of calculations to obtain these variational formulations can be found
in [45].

B. Penalty Method

We now briefly describe the penalty strategy in the framework of FEM method (see [38, 39] for more details).
The first step consists in rewriting the variational formulation (5)-(6)-(7) by replacing the integrals over the real

domain occupied by the fluid (Vf = V \B) by those over the whole domain V (including the particles B). It simply
means that we extend the solution (u, p) to the whole domain V . More precisely, the penalty method replaces the
particles by an artificial fluid with a high viscosity. This is made possible by imposing a rigid body motion constraint
on the fluid that replaces the particles (τ (u) = 0 in B). Obviously, the divergence free constraint is also insured in B.
The problem (5)-(6)-(7) is then modified as follows : Find (u, p) such that :

2η0

∫
V

τ (u) : τ (v) dV +
2

ε

∫
B

τ (u) : τ (v) dV

−
∫
V

p∇ · v dV = 0,∀v, (10)∫
V

q∇ · u dV = 0,∀q, (11)

u = u∞ on ∂V. (12)

Where ε� 1 is a given penalty parameter.
Finally, if we denote the time discretization parameter by tn = nδt, the velocity and the pressure at time tn by

(un, pn), the velocity of a particle at time tn by Wn and the position of its center by Xn, we can write our algorithm
as :

Wn =
1

V olume(B)

∫
B

un dV (13)

Xn+1 = Xn + δtWn (14)
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(un+1, pn+1) solves :

2η0

∫
V

τ (un+1) : τ (v) dV +
2

ε

∫
B

τ (un+1) : τ (v) dV

−
∫
V

pn+1∇ · v dV = 0, (15)∫
V

q∇ · un+1dV = 0, (16)

un+1 = u∞ on ∂V. (17)

This algorithm is valid for any dimension. Here, it has been implemented in 2D using a user-friendly FEM software
Freefem++ [46] (http://www.freefem.org/ff++).

III. RESULTS ON DISSIPATION AND EFFECTIVE VISCOSITY.

A. Particle-wall interaction - with a single wall.

In this section, we calculate the intrinsic viscosity [η] defined above in eq.(1) for a dilute 2D suspension. To do so,
we consider a single rigid circular particle in a confined shear flow (see figure 1). The shear rate γ̇ is maintained to 1 for
all the simulations. The whole mesh is composed by 8000 triangles and each particle is represented by approximately
70 elements. The velocity field u is approximated by finite elements of degree 2 (P2) and the pressure is approximated
by linear finite elements (P1). Finally, we use free boundary conditions in x-direction.

L

U

−U

l

0

l

x

y

2a

y
p

FIG. 1. A circular particle in a linear shear flow in presence of walls. Shear rate is γ̇ = 2U/` and it is maintained to γ̇ = 1 in
the simulations.

The box is large enough (L/` = 60) so that no boundary effects are present in x−direction, and the wall interdistance
` is varied in order to study the effect of the confinement. The volume fraction is then φ = πa2/(L`). Since the
x−dimension of the system is very long compared to the y one, the effective viscosity of this system should depend
only on the dimensionless distance to the wall ỹ = yp/` as well as on the confinement C = a/`. The total dissipation

http://www.freefem.org/ff++


6

is:

D =
1

2
η0

∫
V

∣∣∇u + ∇ut
∣∣2 dV, (18)

where u is the velocity field in the fluid phase as well as in the particle. Inside particles, due to their solid motion, there
is no dissipation and the integral holds on the whole domain (fluid and particles). In the spirit of homogenization, we
consider an homogeneous Newtonian fluid of viscosity ηeff . The total dissipation is then:

D = ηeff γ̇
2L`. (19)

The viscosity is obtained by equating eq.(18) and eq.(19), it gives:

ηeff =
η0

2γ̇2L`

∫
V

∣∣∇u + ∇ut
∣∣2 dV. (20)

And intrinsic viscosity is such that:

[η](ỹ, C) = lim
φ→0

ηeff − η0

η0φ
(21)

The problem is symmetrical with respect to the center of the channel (ỹ = 1/2). Thus, we can restrict our study on
the range: `/2 < yp < `− a (i.e. 1/2 < ỹ < 1− C). The simulations consist in setting a particle at different ỹ in the
channel in the range given above and calculate the effective viscosity.

Figure 2 shows the results for several distances to the wall and for several confinements. When the particle
approaches the wall, the viscosity of the system increases. The rate of increase is higher when the particle is closer to
the wall. For small confinement values, we recover [η] = 2 consistent with exact 2D values [35, 36]. For intermediate
confinements, the viscosity is higher near the wall and decreases to [η] = 2 when approaching the center of the channel.
It is interesting to note that for strong confinements, the viscosity never decreases to the limit [η] = 2 for a centered
particle. This is due to the fact that for these confinements, the presence of walls cannot be neglected for any position
of the particle.

For asymtotic cases (i.e. small confinements), it is possible to compare our numerical results to an analytical
expression of [η]. We analytically calulate [η] for a given distance between the particle and the wall. We made an
expansion similar to the one done in [47] where we consider the problem of a single circular particle near a single
wall. The fluid is considered as infinite along the x−direction and semi-infinite along y. One can expand the velocity
field u(x, y) as a polynomial function of the dimensionless distance between the center of the particle and the wall:
h0 = (`− yp)/a = (1− ỹ)/C. The reflection method [47] is employed to satisfy boundary conditions at the wall. We
find the solution for u by using eq.(21), we stop the expansion at the 6th order and it reads (the expansion valid to
order o(1/h12

0 ) is given in Appendix D):

[η]1wall(h0) = 2 +
2

h2
0

− 1

4h4
0

+
15

16h6
0

+ o(1/h6
0). (22)

In figure 2, eq.(22) fits very well the numerical data for small confinements: the model is valid for confinements smaller
than about C ∼ 0.065.

For dilute suspensions, the contribution of each particle to [η] is simply added. Thus, for a suspension of N similar
particles of which positions are known, one can express the intrinsic viscosity of the whole suspension as:

[η](C) =
1

N

N∑
i=1

[η](ỹi, C), (23)

where ỹi = yp,i/` is the dimensionless vertical position of the ith particle.

This first part of our work, allows us to see that the main contribution of each individual particle to the effective
viscosity is due to the increase of dissipation between each particle and walls. We now examine denser suspensions,
to understand the role of pairs of particles to the effective viscosity.
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FIG. 2. Intrinsic viscosity depending on the dimensionless vertical position ỹ for several confinements. For small confinements,
when the particle is close to the middle of the channel (ỹ ≈ 0.5) the asymptotic value [η] = 2 is recovered. For stronger
confinements, even when the particle is centered (ỹ ≈ 0.5), we get [η] > 2. Red circles: C = 0.022, green triangles: C = 0, 0665,
blue +: C = 0.143, black x: C = 0.25. The analytical expansion [eq.(22)] (solid curves) fits quite well numercial results for
small confinements (C < 0.065).

B. Particle-particle hydrodynamic interactions between two walls

Once increasing the volume fraction φ, hydrodynamic interactions between pairs of particles start to contribute
to the effective viscosity [β term of eq.(1)]. In 3D, it was shown [19–21] that this contribution first decreases for
intermediate confinements and even becomes negative for stronger confinements. As shown in this paper, the same
effect arises in 2D.

We calculate the relative effective viscosity as a function of volume fraction for several values of confinement ranging
from C = 0.01 to C = 0.45 (see figure 3 for some specific chosen confinement values). We clearly see a negative
curvature of the curves ηeff (φ) for strong confinements. We fit these curves with a 2nd order polynomial as in eq.(1)
and obtain values of [η] and β as a function of C. Note that we do this fit for values of φ below φmax = 12% ± 2%
where no third order contribution in φ are necessary to fit the data. We vary a bit φmax from 10% to 14% as well
as particle configurations in order to evaluate the uncertainty on [η] and β. On figure 4, we see the increase of [η]
as a function of C and the decrease of β as well as its sign change for strong confinements. Note that for stronger
confinements, β re-increases to 0 asymptotically. For small confinement values (i.e. C = a/`→ 0) we asymptotically
reach the following values for an infinite fluid [η]∞ = 2 and β∞ = 3.6 ± 0.1. These numerical values are in perfect
agreement with the reported value of the literature: [η]∞ = 2 in 2D [35, 36] and with our own analytical result
β∞ = 3.6 (see appendix C).
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FIG. 3. Relative effective viscosity as a function of the volume fraction φ for several values of confinements: C = 0.01 (black
circles), C = 0.13 (red squares) and C = 0.286 (blue triangles). Solid curves are the fits done with eq.(1). For C = 0.01,
[η] = 2.0 and β = 3.6. For C = 0.12, [η] = 2.4 and β = 3.2. For C = 0.3, [η] = 4.2 and β = −2.0 We clearly see an increase
of intrinsic viscosity [η] (slope at the origin) and a decrease and even a negative value of the curvature β when increasing
confinement.
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FIG. 4. Parameters [η] (black squares) and β (red circles) as a function of confinement C. The error bars are calculated from
several fits done with different maxima of the volume fraction (see text). Values of [η]∞ and β∞ are indicated by horizontal
dashed lines.

Since it is much more convenient to represent the velocity field in 2D as well as the dissipation density, we can

easily give an interpretation of our results. Figure 5 shows the dissipation density field δ = 1
2η0 |∇u + ∇ut|2 for a

suspension of particles that are randomly distributed between the walls. Dissipation density around a single disk has
a cos(4θ) angular distribution (see appendix A) with maxima around π/4 (mod π/2). Therefore, it is not surprising
that each pair of particles dissipates energy with the same kind of symetry i.e. along the axis of extension/compression
of the shear flow, i.e. at 45◦ (mod 90◦) [see Fig.(5)]. Along x and y, pairs dissipate much less.

Then, by increasing the confinement, we observe an increase of dissipation between each particle and walls (see
figure 6) and a decrease of dissipation between particles since the number of configurations with two close particles
at 45◦ (mod 90◦) obviously decreases while the number of configurations of aligned particles along x-axis increases
for higher confinements. Thus, by increasing C, particle-wall dissipation tends to increase the intrinsic viscosity [η]
since it is due to each individual particle while dissipation inside pairs tends to decrease the contribution of HI to the
effective viscosity and makes β decrease. Now, we are going to examine the dissipation and the dissipation density
around a pair of particles in order to understand why the β term is becoming negative above a given confinement i.e.
when particles are aligned along the flow.

In order to evaluate the dissipation D as a function of the pair orientation in the shear flow, we consider two
confined particles and we vary the angle θ between the line joining each particle center and the x-axis (see figure
7). We calculate the dissipation D on the whole simulation box by using eq.(18). Since ηeff (φ) = D/(γ̇2L`), by
using eq.(1) and eq.(23) to calculate [η], we can calculate β as a function of the angle θ. It confirms (figure 8) that
the maximum of dissipation (i.e. maximum of effective viscosity) occurs at 45◦ (when this configuration is possible
according to the confinement value). Figure 8 also highlights that when particles are close to alignment i.e. for
θ < 20◦ and θ > 160◦, negative values of β are obtained. Note that for 80◦ < θ < 100◦, we also obtain a negative
value for β but much smaller than for aligned particles. Another way to visualize the dip of dissipation is to compute
the dissipation as a function of disk separation r(x, y) in non-confined situation (fig.9) from the analytical expression
(see appendix B). It is clear that for particles aligned along x or y, the dissipation between the disks is smaller than
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x

y

FIG. 5. Dissipation density for a given particle configuration for C = 0.012 (partial view of the simulation box). Dissipation is
strong between close particles at 45◦. The color scale indicates dissipation values on an arbitrary scale from 1 to 10. Density
of dissipation without particles is 3.

the dissipation without particles. The presence of walls forces the particles to be aligned along x.
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FIG. 6. Dissipation density for a given particle configuration for C = 0.25 (partial view of the simulation box along x).
Dissipation is stronger between particles and walls and there are less particles at 45◦ due to the confinement. Note the ”dips”
of dissipation between particles. The color scale indicates dissipation values on an arbitrary scale from 1 to 10. Density of
dissipation without particles is 3.

0

l
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y

FIG. 7. A pair of particles, the line joining their centers makes an angle θ with the x−axis. Dissipation is integrated inside the
whole simulation box and θ is varied.



12

-10

-5

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120  140  160  180

β

θ

FIG. 8. Parameter β in the case of two disks as a function of θ, for C = 0.25 (red solid curve) and C = 0.29 (blue dashed
curve). Note the negative values of β (see text).

These results are supported by the visualization of the dissipation density and stream lines around the particles.
For a pair of particles at 45◦ we observe an increase of dissipation density between the particles (fig. 10-a). It is due
to two vortices which rotate in the same direction (fig. 10-b) . It creates a zone of strong shear at their intersection
which dissipates a lot.

For a pair aligned along the flow (i.e. along the x−axis), we observe the formation of a compression/extension flow
between the two particles (see figure 11-b) in the dip of dissipation density.



13

y
/a

FIG. 9. Dissipation corresponding of two disks as a function of the disk separation r(x, y) for C → ∞ (see appendix B).
Dissipation in absence of particle is 2.

The dissipation density between two aligned particles δloc is smaller than the backbround density dissipation, (i.e.
the dissipation of the flow without particles δ0 = η0γ̇

2). The origin of this local decrease of dissipation density is due
to the slow-down of angular velocity Ω of the particles when aligned due to their mutual HI (see figure 12): rotation
of each particle slows-down rotation of its aligned neighbour. This slow-down leads to a screening of the imposed
shear rate and of the associated dissipation density between two aligned particles. Note that in figure 12 particles are
weakly confined (C = 0.04). It has been shown before [21] that the confinement also decreases the angular velocity
of each particle. This tends to increase the screening effect of the imposed shear rate between aligned particles. On
the contrary, when particles are close enough but y−shifted, their angular velocity is bigger than when they are far
apart (see figure 12).

The fluid region between two aligned and close particles having a smaller dissipation than the one imposed by the
motion of walls without particles, represents a “dip of dissipation” which contributes to decrease the total dissipation
for aligned pairs of particles compared to two isolated single particles. Indeed, on figure 13, we can observe the
evolution of the dissipation density profile between two particles in a shear (the pair being aligned along the flow).
A dip of dissipation is created between the particles and increases when the two particles get closer. This explains
why the pair interaction (when the pair of particles is aligned along the flow) contributes negatively to the effective
viscosity. Note that the confinement is weak in figure 13, somehow the confinement forces the aligned configuration
where dips of dissipation occur and makes β decrease to negative values.
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a) b)

y

x

FIG. 10. a) Dissipation density and b) current lines and dissipation between two weakly-confined particles (colored in black)
positioned at 45◦ with C = 0.044 (partial view of the simulation box). The color scale indicates dissipation values on both
figures. Density of dissipation without particles is 3.

y

x

FIG. 11. a) Dissipation and b) current lines and dissipation between two weakly confined and aligned particles (colored in
black) with C = 0.044 (partial view of the simulation box). The color scale indicates dissipation values in both figures. Density
of dissipation without particles is 3. Dissipation is clearly weaker than in the case of particles positioned at 45◦ (fig. 10).

The re-increasing of β as a function of C (figure 4) is explained by the fact that when confinement is increased, the
relative distance between particles increases in order to stay in the limit φ < 12%. Therefore, the contribution of HI
between particles decreases (β → 0).

C. Comparison with the 3D case.

In order to confirm our observations in 2D, we made simulations in 3D which are much less convenient to per-
form because of the time and memory consumption as well as the flow field representation. In figure 14, we have
schematically represented two confined spheres located in a plane parallel to the walls.

This is the situation which is relevant for confined configurations. The line joining the spheres makes an angle ϕ
with the shear plane (xOz plane). In figure 15-a, we set two aligned spherical particles in the shear plane (ϕ = 0◦) and
calculate their dissipation density in the plane containing the sphere centers (xOy). Here also, a dip of dissipation is
obtained between the two particles (see figure 15-a). When the line joining the two confined particles makes an angle
ϕ = 45◦ with the shear plane (see figure 15-b), no increase of dissipation density is observed between the particles.
And when ϕ = 90◦, a maximum of dissipation density is observed between the two particles (see figure 15-c). But a
careful averaging on the different configurations (i.e. from ϕ = 0◦ to ϕ = 180◦) shows that the contribution of aligned
particles dominates and leads to a decrease of dissipation for confined pairs of particles. So, even if 3D simulations
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y-shifted Particles

FIG. 12. A pair of particles within a shear flow. Angular velocity Ω of each particle divided by γ̇/2 is plotted as a function

of the particle interdistance r/a = (x2 + y2)1/2/a. While y is fixed, x is varied. Red dashed curve: shifted particles along y.
Particles are symmetrically shifted from the center of the flow, their y-interdistance is 2.5a. Black solid curve: aligned particles
along x (y = 0, θ = 0◦). Note that for large interdistances, in both cases Ω does not tend to γ̇/2 but to a slightly smaller value.
This is due to the confinement effect (here C = 0.044).

a) b) c)

FIG. 13. Dissipation density δ between two aligned particles along the x-axis divided by η0γ̇
2 (i.e. the dissipation density

far from the particles). Here C = 0.04. The vertical dashed lines indicate the interfaces of particles where δ = 0 inside. The
particle interdistance x (since y = 0) is taken between particle centers. a) x/a = 20.3, b) x/a = 10.2 and c) x/a = 3.6. We
clearly see that the dip of dissipation between the particles is enhanced when particles are closer.
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FIG. 14. Two spheres confined in a shear flow. The spheres are in the same plane parallel to the walls.
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FIG. 15. Dissipation density in the x0y plane between two particles as a function of ϕ for a confinement (C = 0.25). a) ϕ = 0◦,
b) ϕ = 45◦ and c) ϕ = 90◦. Non-uniform dissipation field inside particles is due to discretization effect.

require additional unavoidable averagings on different configurations, we see that qualitatively the same interpretation
can be found in 3D and in 2D.

IV. CONCLUSIONS.

In this paper we calculate the intrinsic viscosity [η] and the contribution of hydrodynamic interactions β to the
effective viscosity of a confined 2D suspension. For the less confined case (C = 0.01) we obtain the values [η] = 2.0
and β = 3.6 ± 0.1 very close to the analytical values for an infinite fluid, i.e. [η]∞ = 2 and β∞ = 3.6. Even
for a non-confined suspension the value β∞ = 3.6 is not referenced in the literature. We show that the confined
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3D suspension rheology can be clarified with the help of 2D simulations. The visualization of the entire flow in
2D combined with the calculation of dissipation allows to understand why intrinsic viscosity [η] increases with the
confinement: regions of fluid squeezed between particles and walls have a high dissipation density. Our simulations
also explain why the HI contribution of pairs of particles to the effective viscosity decreases with confinement and
becomes negative: dips of dissipation are created between close particles aligned along the shear flow. This effect
is caused by the slow-down of angular velocity of close and aligned particles. The confinement helps to force the
particles in that specific configuration but similar results are obtained for non-confined but aligned particles. 3D
simulations confirm the interpretation deduced from the 2D results. If 2D models cannot of course replace 3D ones,
we believe that the combination of both approaches can help to clarify some specific points at least qualitatively. 2D
simulations are usually faster, and easier to implement and very convenient for data visualization. They can serve as
a very efficient tool for the development of 3D simulations and for their understanding but are also an important tool
to understand hydrodynamic interactions between bio-entities generally embedded in fluid bio-membranes.
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Appendix A: Single disk in shear flow

The problem of a single disk in shear flow can be fully solved analytically. In this and the following appendices,
we use the coordinate system (x,y) such that the shear flow is written as v∞(x, y) = γ̇exy. For convenience, we
represent 2D vectors as complex numbers in order to simplify the notation. For example, the position will be written
as ζ = x+ iy and the velocity u(x, y) will be written as ξ(ζ) = ux(x, y) + iuy(x, y). It is generally known[48], that a
solution of Stokes equations (2, 3) can be written as

ξ(ζ) = A(ζ)− ζA′(ζ) +B(ζ), (A1)

where A(ζ) and B(ζ) functions that are analytical inside the fluid and the upper bar stands for the complex conjugate.
The undisturbed shear flow is written as

u∞x (x, y) + iu∞y (x, y) =
γ̇(z − z)

2i
. (A2)

Placing a ridid disk of radius a in the origin results in the following expression of the flow outside the disk

ξ(ζ) =
γ̇(z − z)

2i
− iγ̇a2

2z
+
iγ̇a2z

2z2 −
iγ̇a4

z3 . (A3)

It is easy to check that expression (A3) is of form (A1) and that the velocity at the disk boundary corresponds to
rotation with angular velocity −γ̇/2. The dissipation density δ corresponding to the flow (A3) is

δ(ζ) = γ̇2η0

(
1 + 4

a4

|ζ|4
− 12a6

|ζ|6
+

9a8

|ζ|8
−

−2aζ

ζ
3 −

2a2ζ

ζ3
+

3a4

ζ4
+

3a4

ζ
4

)
.

(A4)

Writing ζ = |ζ|eiα, we observe that the angular dependence of δ has the form of δ(ζ) = δ0(|ζ|) + δ4(|ζ|) cos 4α.

https://ciment.ujf-grenoble.fr
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Appendix B: Hydrodynamic interaction of two disks in unconfined shear flow

In order to calculate the the Batchelor coefficient for a 2D suspension of rigid disks, it is first necessary to evaluate
the hydrodynamic interactions of two disks as a function of the vector r separating their centers. For convenience,
we put the particles in positions r/2 and −r/2. The symmetry of the problem dictates that ξ(ζ) = −ξ(−ζ). The flow
disturbance ξ1(ζ) due to a force-free disk with the center at position ζ0 = (rx + iry)/2 can be written as a multipolar
expansion

ξ1(ζ + ζ0) =

∞∑
k=1

Ak
ζk

+
kAkζ

ζ
k+1

+
Bk

ζ
k
. (B1)

The expansion (B1) converges everywhere for |ζ| > a (a being the disk radius as defined above), including infinity,
where the flow disturbance is equal to zero. Were there a force acting on the disk, the expansion (B1) would contain
a logarithmic singularity in the disk center. Accounting for the symmetry of the problem, the velocity disturbance
due to the second disk can be expressed as ξ2(ζ) = −ξ1(−ζ). The total flow field outside of the disks is the sum of
the flow disturbance due to each disk and the unperturbed shear flow at infinity ξ∞ = iγ̇(ζ − ζ)/2 :

ξ(ζ) = ξ1(ζ + ζ0)− ξ1(−ζ − ζ0) + ξ∞(ζ). (B2)

The coefficients Ak, k > 0 and Bk k > 1 are calculated from the no-slip boundary condition at the disks’ boundaries

ξ(ζ0 + aeiσ) = ξ0 + iΩeiσ, (B3)

where σ ∈ R is the parametrization of the boundary of the disk, ξ0 is the velocity of the disk located at r/2 and Ω is
its angular velocity. The condition of (B3) is reduced to a discrete (albeit infinite) linear system by projecting on the
space of Fourier harmonics eikσ. This system is closed by the zero-torque condition =B1 = 0. The resulting system
is solved for the approximate values of Ak and Bk by assuming that each unknown has an analytical expansion in
powers of the small parameter 2a/r. Truncating all calculations to a proper degree of 2a/r allows us to calculate the
coefficients in each expansion. We do not give here the resulting calculations. Instead, we list below several first
terms in the expansion for each parameter of interest, which can serve as a basis of an independent validation of our
study. The parameters of interest are the the velocity ξ0, the angular velocity Ω, and the coefficient A1. The latter
is closely related to the stress generated in suspension. In particular, −4=A1/(Sγ̇) is the contribution of the particle
to the effective viscosity of the suspension, as will be explained in the next section. In figure (9) this contribution is
integrated over S which gives a quantity proportional to dissipation. Here S refers to the total area occupied by the
suspension, as defined above.

<ξPW0 = γ̇

[
r sin θ

2
− a2(sin 3θ + sin θ)

2r
+
a4(sin 3θ − 2 sin θ)

2r3
+ o(a/r)3)

]
, (B4)

=ξPW0 = γ̇

[
a2(cos 3θ − cos θ)

2r
− a4(cos 3θ + 2 cos θ)

2r3
+ o((a/r)3)

]
, (B5)

ΩPW = γ̇

[
−1

2
+
a2 cos 2θ

2r2
− 2a4 cos 2θ

r4
+ o((a/r)4)

]
, (B6)

<APW1 = γ̇

[
−a

4 sin 4θ

r2
+

3a6 sin 4θ

r4
+ o((a/r)4)

]
, (B7)

=APW1 = γ̇

[
−a

2

2
− a4 cos 4θ

r2
− a6(2 + 3 cos 4θ)

r4
+ o((a/r)4)

]
, (B8)

Here all expressions refer to the disk located at r/2 and the superscript PW is added to stress that the values are
calculated for the pairwise interaction of two disks.
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Appendix C: Viscosity of a semi-dilute suspension

The effective viscosity of a semi-dilute suspension has been calculated for force-free spheres on several occasions[3,
32]. Because the present problem is quite similar to the 3D case, we shall only briefly discuss the main steps in the
derivation and then provide the final answer. As shown in [49], the effective viscosity of a suspension of force-free
particles can be calculated as

η = η0 +
1

Sγ̇

∑
α

∫
Γα

fxyds = η0 −
4πη0

Sγ̇

∑
α

=A1(α), (C1)

where α indexes all particles, Γα is the contour of the particle α, fds is the sum of forces acting from the infinitesimal
arc of length ds on the particle boundary. This force acts both on the fluid surrounding the particle, creating the
flow disturbance, and inside the particle, in a way that cancels the imposed shear flow and the flow due to the
other particles. The second equality in (C1) is easy to check for circular objects considered here but its validity is
independent of particle shapes. The value A1 for a given particle depends, generally speaking, on the states and
relative positions of all other particles. Therefore, an averaging of some form is required to obtain a closed-form
solution. Inasmuch as we are interested in the φ2 coefficient of the viscosity expansion in powers of the concentration
φ, only pair-wise interactions of the disks have to be considered in our calculation. The main difficulty here is, however,
that the integral of (B8) over all possible relative orientations of the two disks does not converge absolutely [3, 32].
We trace this difficulty to the fact that eq. (B8) was derived assuming that the distance r between the disks be much
smaller than the size of the region where the shear flow is imposed. Now if we allow the relative distance between two
disks to go to infinity when averaging expression (B8), this assumption will no longer be satisfied. We overcome this
problem by first using the mean-field approximation, similarly to the method used in [3].

In the mean-field approximation, we consider a disc D immersed in a dilute suspension of weakly-interacting rigid
disks. That is, (i) relative positions of the disks are not correlated and they can even overlap with each other and
(ii) all disks have the same (but yet unknown) distribution of forces, which arise from the imposed flow and the
hydrodynamic interaction with the other disks. Our plan is to calculate the viscosity of a semi-dilute suspension of
disks in the mean-field approximation and then to apply the corrections accounting for the fact that disks can not
overlap and for the properly calculated hydrodynamic interactions of two disks. In the mean-field approximation,
each disk is suspended in a homogeneous effective medium that combines the hydrodynamic effects of both the solvent
and the rigid disks. Applying shear rate γ̇ to such a medium, results in a homogeneous distribution of viscous stress
with an average value σMF

xy = γ̇ηMF , where ηMF is the viscosity of the effective medium which we can approximate
by the viscosity of a dilute suspension of disks

ηMF = η0(1 + 2φ+ o(φ)). (C2)

Since the forces acting in the disk are proportional to the imposed viscous stress, we get the following expression for
the effective viscosity of a semi-dilute suspension in the mean-field approximation ηMF :

ηMF = η0[1 + 2φ(1 + 2φ) + o(φ2)]. (C3)

The first correction to expression (C3) takes into account the fact that the disks can not overlap. We calculate this
correction in the following way: Given a disk D, we solve for the effective flow created by those disks Dα that overlap
with it. The terms of order o(φ2) being neglected, this calculation can be performed with the simplification that the
effects of all disks Dα can be taken independently from each other and from the disk D. Placing the origin of the
coordinate plane at the center of the disk D and denoting the center of the disk Dα as the complex number ζα, we
observe that disk Dα creates the following distribution of force densities Φ(ζ) = fx(ζ) + ify(ζ):

Φ(ζ) = 2iγ̇η

2π∫
0

δ(ζ − ζα − aeiσ)e−iσdσ. (C4)

The total force density created by disks overlapping with D results from integration of (C4) multiplied by the prob-
ability density of finding a disk Dα centered at ζα and overlapping with D. This probability density reduces to
φH(2a − |ζα|)/(πa2) when the disks are independently and homogeneously distributed. Here H is the Heaviside
function. Performing the integration, the following density of effective forces is obtained:

ΦOL(ζ) = 4iγ̇ηζ


0 if |ζ| ≤ a√

1− (3a2−|ζ|2)2

4a2|ζ|2 if a < |ζ| < 3a

0 if |ζ| ≥ 3a,

(C5)
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where ΦOL = fOLx + ifOLy and fOL is the effective force density created by all disks overlapping with the disk D.
The flow disturbance produced by the forces (C5) has a complicated form but in the region occupied by the disk D,
a simple straining flow is recovered:

ξOL(ζ) = iγ̇
ζ

2
if |ζ| ≤ a. (C6)

Equation (C6) suggests that the disks overlapping with D would create an additional strain rate γ̇φ2 acting inside
the disk D, which gives a contribution 2φ2η0 + o(φ2) to the effective viscosity (C3). Subtracting this contribution, we
obtain

ηNO = η0[1 + 2φ(1 + φ)] + o(φ2). (C7)

for the effective viscosity ηNO of suspension of not overlapping not interacting disks. The following intuitive expla-
nation can be given to the expression (C7): The average of the rate of strain ∂xuy + ∂yux in a suspension subjected
to a shear rate γ̇ is equal to γ̇. This average can be decomposed into two contributions: the rate of strain inside the
disks is equal to 0 and enters the average rate of strain in the whole suspension with the weight φ. The average rate
of strain inside the suspending fluid has weight 1− φ and, therefore, must be equal to γ̇/(1− φ) = γ̇[1 + φ+ o(φ)] for
the average rate of strain in the whole suspension to be equal to γ̇. This means that each disk D in the suspension is
subject to an effective rate of strain equal to γ̇[1 + φ+ o(φ)]) due to the presence of the other disks if we neglect the
effect of the presence of the disk D on the distribution of velocities in the suspension. Because the coefficient A1 in
(C1) is proportional to the rate of strain acting on the disk, we obtain the result (C7).

The second correction must be applied to expression (C7) in order to account for the short range hydrodynamic
interactions between the disks. Indeed, expression (C7) was calculated with the simplification that when calculating
the hydrodynamic effect of a disk D1 on a disk D2, the state of D1 is taken as if no other disks, including D2, were
not present. This effectively corresponds to neglecting all terms of order o((a/r)2) in expression (B8). Calculating
the contribution of these terms to the effective viscosity of the semi-dilute suspension requires averaging all but the
first two terms in the right hand side of expression (B7) over all possible relative positions of the two disks:

ηeff = ηNO −
4φ2

πa2γ̇

∫ 2π

0

dθ

∫ ∞
2a

rdrδ=APW1 (r, θ), (C8)

where δ=A1(r, θ) is the correction to the value of =A1

δ=A1 = =APW1 − γ̇
(
−a

2

2
− a4 cos 4θ

r2

)
. (C9)

The integral (C8) converges absolutely thanks to the fact that the leading terms in (B8) were split off and averaged
during the calculation of ηNO in (C7). This allows us to perform the integration (C8) for a given number of terms
in the expansion (B8). Taking the a6/r4 term in (B8) yields ηeff ≈ ηNO + 2η0φ

2 + o(φ2) = η0(1 + 2φ+ 4φ2), which
coincides with the result reported in [37], where the same truncation of (B8) was performed. Averaging further terms
in (B8) results in a slightly lower value of the Batchelor coefficient β. Truncating the expansion of APW1 at the term
(a/r)64 gives us β ≈ 3.6. The result of integration (C8) is plotted as a function of kmax, the number of terms taken
in the expansion (B8) in figure 16. The convergence is rather slow because of the non-analytical behavior of APW1 at
r = 2a, which corresponds to the case when the two disks touch each other.
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FIG. 16. Analytical result for Batchelor coefficient β of an unconfined suspension of rigid disks, shown as a function of kmax,
the order of truncation of expansion of =A1 in powers of a/r (cf. eq. (B8)). The results are shown only for even values of kmax

because there are no odd powers in the expansion of =A1. For kmax = 4, β ' 4, for large kmax β is close to 3.6.

Appendix D: Disk near a flat wall

The solution of the problem of two interacting disks can be easily modified to solve the problem of a disk near a
flat wall. We place the wall at position =ζ = 0 of the complex plane and denote the center of the disk as the complex
number ζ0 = iah0, where ah0 is the distance of the center of the disk from the wall, as defined above. The velocity
field ξ = ux + iuy can be written in the following form

ξ(ζ) = A(ζ − ζ0)− (ζ − ζ)A′(ζ − ζ0)−A(ζ − ζ0)+

+B(ζ − ζ0)−B(ζ − ζ0) + (ζ − ζ)B′(ζ − ζ0),
(D1)
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which automatically satisfies the Stokes equation and the no slip boundary condition at the wall. The ansatz (D1) is
a two-dimensional adaptation ([50]) of the the Blake solution ([51]) recast in the complex form. The functions A and
B can be represented as Laurent series about point ζ0, the coefficients of which can be found according to the scheme
outlined in Appendix B. The following result is then obtained:

[η]1wall = 2 +
2

h2
0

− 1

4h4
0

+
15

16h6
0

− 49

128h8
0

+

+
47

128h10
0

+
35

512h12
0

+ o(1/h12
0 ).

(D2)

The convergence of the expansion (D2) is presented in Fig. 17.
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FIG. 17. Convergence of the analytical expression for the intrinsic viscosity contribution [η]1wall of a disk near a rigid wall,
shown as a function of h0 for several values of kmax, the order of truncation of expansion of [η]1wall in powers of 1/h0 (eq.
(D2)).
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