N
N

N

HAL

open science

How to Improve Persistent-Object Management using
Relationship Information?

Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, Philippe Lahire

» To cite this version:

Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, Philippe Lahire. How to Improve Persistent-
Object Management using Relationship Information?.
”The White Object Oriented Nights”, Jun 2000, Saint-Pétersbourg, Russia. pp.1-20. hal-01289992

HAL Id: hal-01289992
https://hal.science/hal-01289992
Submitted on 17 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

WOON 2000 4th International Conference

https://hal.science/hal-01289992
https://hal.archives-ouvertes.fr

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

How 17O IMPROVE PERSISTENT-OBJECT
MANAGEMENT USING RELATIONSHIP
INFORMATION?

May 23, 2000

Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and
Philippe Lahire!

Abstract: The OFL model proposes a reified description of the main concepts in-
cluded in the object-oriented languages based on classes. With this model and
one of its interesting characteristics — the ability to create and/or parame-
terize the relationships between classes such as inheritance — we aim to show
that we can benefit from the information associated with these relationships
when they are used in the framework of applications which share persistent
data. Therefore we shall develop examples to show this contribution through
two relationships: specialization and generalization of class. For each of these
examples, we present the conditions needed to establish the relationship. Then
we shall study the loading and updating phases and we shall detail the differ-
ent resulting situations. For these situations, we will give arising constraints
and operations to perform. Thus, we want to demonstrate the interest of such
relationships between classes associated with more accurate semantics to share
persistent objects.

Keywords: Persistence, Relationship, Class, Specialization, Generalization, Evo-
lution

1 Introduction

The aim of our study is to improve the sharing of persistent objects between different
applications. To this end we want to decrease the dependence of those objects
with the structure of the schema of classes. The means that we use to achieve
this objective is to take advantage of the semantic information provided by the
import relationships between classes. Indeed, this information allows us to loosen
instantiation relationships, without breaking them, while an application is running.

The fact that several applications access the same persistent objects implies two
possibilities:

Partial schema of classes Some applications may have only a partial knowledge
of the persistent schema of classes. The instances of known classes are of course

!For all Authors: Laboratoire I3S (UNSA/CNRS), Team OCL, 2000 rte. des lucioles, Les
Algorithmes bat. Euclide B, BP 121, F-06903 Sophia Antipolis CEDEX, France. E-Mails: {Ade-
line.Capouillez | Robert.Chignoli | Pierre.Crescenzo | Philippe.Lahire}@unice.fr

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 1/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

directly accessible. However we may also want to load other persistent objects
that can be seen as instances of known classes.

Evolution of classes The classes of an application can evolve. The persistent
instances stored by the former versions of these classes should be able to be
loaded, used, and even translated in order to be adapted to the new versions.

The second situation, the evolution of classes, will be dealt with the management
of specialized version relationships such as those of the Presage system [Tal94]. In
this paper, we shall only present elements of a solution for the first situation.

In section 2 we will first present the context of our work, then we will show the
contributions of the relationship information thanks to the two following examples:
specialization relationship in section 3 and generalization relationship in section 4.
For each of these examples, we present the conditions needed to establish the rela-
tionship. Then we shall study the loading and updating phases and we shall detail
the different resulting situations. For these situations, we will give arising constraints
and operations to perform. We want thus to demonstrate the interest of relationships
between classes associated to more accurate semantics to share persistent objects.
We will conclude with an overview of possible future works.

2 Framework of the study

2.1 OFL model

The OFL model [CCL99a, CCCLO00]|, which is the basis of this work, is defined to
bring out the notion of relationship between classes in the object-oriented languages
(such as Java |GJS96, AGI8, Fla99|, Fiffel [Mey92|, or C++ [Str97]). OFL is de-
signed in the software engineering context [Ous99|. It describes, for each language,
one language-concept entity which manages one or several description-concepts.
These description-concepts represent the different kinds of classes (for example, in
Java, we can find classes, interfaces, arrays, ...). Each of them can be considered
as the source or as the target of a relationship (described by a relationship-concept)
such as inheritance or aggregation.

Hereafter, we present the few elements of OFL which are mandatory for the
understanding of this paper.

e The system is fully reified: the classes (such as in CLOS or Smalltalk) and the
relationships are also described as instances.

e The feature definition (functions, procedures and attributes) and the invariant
(of class), described under the form of conjunction of conditions, are stored
within classes.

e The values of the attributes are stored within instances.
e When we speak about type of a feature, this means:

— for an attribute: its type,

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 2/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

— for a procedure: the set of types of its parameters,

— for a function: the set of types of its return and its parameters (the
return is considered as a result-parameter which provides only a syntactic
simplification).

e Each class defines a default value for each of its attributes.

The main original aspect of our approach is to focus on the properties of the
relationship-concepts (relationships between classes) in order to exploit these data.
The first interest of this rich description is that we can use this new information
to improve the quality of the developed software. Therefore, we can provide better
documentation, maintenability, reusability, ... Another interest is to be able to
make a better specification of the relationships between classes in object-oriented
languages. For example, we can set a real specialization or generalization (or ...)
relationship, as in the modeling stage (UML [BJR98, RJB98, JBR99|), between two
classes rather than using inheritance as a roundabout way.

Unlike Java, C+-, Eiffel, ..., each of which offers an inheritance relationship
with fixed semantics, we want to propose a more flexible way to design more ade-
quate relationships. Like CLOS [Kee89| and Smalltalk [GR83|, we can redefine the
operational semantics of inheritance or even define new relationships. But unlike
them, we want to offer the programmer a simple way to do that [CCL99b|.

This paper does not present the OFL model nor the way to construct new rela-
tionships. We only want to show here some improvements to object-oriented pro-
gramming within the framework of persistence.

2.2 Context

First, we are in the context of a persistent programming language which does not rely
on a database management system. So some problems may appear. For example,
in an object-oriented database management system, when you load an object, you
automatically load its class. We assume a persistent programming language which
would not proceed this way. Indeed, as said in the introduction, an application may
have evolved independently of the persistent schema, but we think that we can even
so provide loading of the object.

Thus, we want to point out that we are in the framework of a programming
language where the loading of a class from the persistent schema is not performed
implicitly?. Therefore, loading an instance does not imply loading its class. Our
approach is indeed to load this instance by adapting it to the transient schema (the
application one). We admit that it is also possible to load a flattened view?® of the
class. We do not make any assumption on the fact that the loading operation is
more or less static or dynamic.

We have chosen to use the ROOPS service [Cap99| which provides a persistent
modeling of OFL entities. ROOPS is designed in order to allow the storage of both

2The explicit loading of classes is obviously feasible.
3For a class, flattened means a transitive closure is made on this class. All its features are so
seen as local.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 3/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

instances and classes but also of all the information dealing with the relationships
between classes?. The aim is to control and maintain, the persistent information,
with as much accuracy as possible. Therefore, the persistent representation of classes
and relationships are here implemented in order to improve the use of persistent
instances® but not to allow the dynamic loading of classes and relationships. This
is obviously feasible in another context.

To explain our approach, we shall now give a definition of the following terms:
migration, loading and updating.

What is meant by migration is the process which allows to change the class of
an object. It is not the polymorphism which allows to consider an object as an
instance of a compatible class. It is an irreversible transformation (unless we do
an opposite migration which is not a cancellation but another transformation which
cannot guarantee that the object will come back to its original state). Therefore,
the migration allows to break the instantiation relationship which exists between an
instance and its class.

The loading is the operation which makes an object go from the persistent world
to the transient one. The updating process is the reverse operation.

In the framework of our approach, we did not allow to perform the following
operations during the updating process:

e The migration. We consider that the change of class for an object is too much
important an operation and it can not be made implicitly by an application
when updating. Indeed, an application could lose the track of an instance that
it created if another application makes this instance migrate.

e The modification of the value of persistent attributes which are not
loaded in the transient world. In order to keep the integrity of persistent
instances at the updating time, those attributes, which are not loaded by the
application, must not be modified.

e The representation of an object of the real world by several persis-
tent instances. In order to keep the integrity of the persistent world (any
persistent object has a unique identity) at the updating time, if the transient
image of the persistent instance is incompatible with this persistent instance,
the creation of a new persistent instance corresponding to the same object is
prohibited.

2.3 Caption

Finally, figure 1 gives the common caption of all the other figures of this document,
therefore they will only show the specific part of their caption.

7 is an tmage of © means that j describes the same object as i but with another
type. X is the same class as Y means that X, from the persistent world, is faithfully
represented by Y in the transient world.

4The relationships between classes and objects, such as that of the instantiation, or between
objects are also designed in OFL and ROOPS. But this paper does not intend to address these
kinds of relationships.

5An improvement can actually be expected because the structural information is more precise.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 4/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

CAPTION
|:| Class i --->j jisanimageofi
O Occurrence X oo > X wantsto usei
i —--»X jisanoccurrenceof X X <o>—Y XisthesameclassasY

Figure 1: A common caption

3 Specialization relationship

3.1 Definition of the relationship

A specialization relationship defines a relationship between a source-class and a
target-class. Inheritance, which is generally present in the object-oriented languages
and which can also be found in UML, is a good approximation of this relationship
[Mey97]. The necessary and sufficient conditions to be able to establish a special-
ization relationship between the S source-class and the C target-class are:

1. S owns all the features of C.
2. S can add new features to C.

3. S can redefine the features of C if and only if the type of redefined attributes,
redefined feature parameters, and redefined function results are specialized
according to the type defined in C (covariance).

4. The invariant of S satisfies the invariant of C.
5. All the instances of S are also instances of C.
The two following examples present typical cases of specialization:

1. The SQUARE class (source-class) is a specialization of the RECTANGLE and LO-
ZENGE classes (target-classes).

2. The PORSCHE class is a specialization of the CAR class.

3.2 Illustration: influences and contributions

To illustrate the use of the knowledge of a specialization relationship for the man-
agement of persistence, we give the example described in figure 2. In the persistent
world, the DIESEL_CAR class (which has a direct d1 instance) is a specialization of
the CAR class.

Here are some elements of the two definitions of class (according that DIESEL_0IL
is a specialization of FUEL). It is not a source code but rather a flattened description
of these classes.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 5/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION
CAR CAR
| DIESEL_CAR
”“HUH~~~““” CAPTION
d1 X — Y Xisaspecialization of Y

Figure 2: A specialization relationship

Class DIESEL_CAR

Class CAR Features
Features owner: PERSON
owner: PERSON fuel: DIESEL_OIL
fuel: FUEL consumption: INTEGER
consumption: INTEGER preheating_time: INTEGER
Invariant Invariant
consumption > 0 (consumption > 0) A
End_Class CAR (preheating_time > 0)

End_Class DIESEL_CAR

In the transient world, an application A loads the CAR class from the persistent
world. But, A does not know the existence of the DIESEL_CAR class (which has been
created by or for other applications). A uses the instances of CAR of the persistent
world and/or creates new ones. In order to illustrate the use of a specialization
relationship, we focus on an example: in A, we want to handle all the instances of
CARS.

3.2.1 Loading

Thanks to our figure we can see that CAR has not got any direct instance. However,
the specialization relationship which joins CAR to DIESEL_CAR allows the polymor-
phism (as inheritance). A consequence is that all the instances of DIESEL_CAR are
also instances of CAR. Indeed, we have to handle, in the transient world, the object
d1 as a CAR” but not as a DIESEL_CAR.

It is obvious that the loading of d1 cannot be made directly. We must adapt
it to its new definition, that of the CAR class (cf. figure 3). For this reason and
because it is a specialization relationship, it is necessary to perform the following

6The access to instances is provided either by the application or the persistent world.
7CAR must be concrete, so all its features are fully implemented.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 6/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION
CAR CAR

CAPTION

X — Y Xisaspecidizationof Y

|

|

DIESEL_CAR !

~ |

- 1

-~ 1

Figure 3: Loading of a specialized object

operation to switch from the persistent instance to its transient image called al.
We must remove the value of the attributes added by DIESEL_CAR to CAR (value
of preheating_time). As we have seen in the context, attributes and methods are
stored in the classes. Therefore, it is not useful to care about them at the instance
level.

Likewise, invariants are stored within classes while instances store only attribute
values. Therefore, the object d1 does not describe the type of its features: the
DIESEL_CAR class does it. If some of these features have been redefined according
to CAR, then they inevitably have been specialized. So their value in d1 remains of
course compatible. As a consequence, no particular adaptation is necessary on the
type of features.

3.2.2 Updating

When the application A has used (and modified or not) a1, the user is faced with two
situations while updating the persistent world according to the state of the transient
world:

No updating is wanted. Application A uses persistent data but does not want
to propagate any of its modifications to the persistent world. Thus, there is nothing
to do in such a case.

An updating is wanted. This is possible only if the value of each attribute (of
al) specialized in DIESEL_CAR is compatible with its type in DIESEL_CAR. It is also
necessary that al, to which the direct attributes of DIESEL_CAR had been added
with their value from d1, satisfies the invariant of DIESEL_CAR (cf. figure 4).

If these two conditions are not satisfied, A is notified that the updating (under-
stood as: without making d1 migrate, without modifying the value of its attributes
that were not handled by A and without creating a new persistent object which is
not dependent on d1) is impossible. It is not possible because we cannot make d1

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 7/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION
CAR CAR

CAPTION

X — Y Xisaspecidizationof Y

|

|

DIESEL_CAR !

~ |

- 1

-~ 1

Figure 4: Updating of a specialized object

migrate. To modify the value of the attributes that were not used by A and to create
a new persistent object which is independent from d1 are also forbidden.

It is obvious that any direct instance of a class® in the persistent world can
always be loaded and updated without any difficulty. The problem happens only for
indirect instances.

3.2.3 Another situation

We can study the reverse situation. In the persistent world of figure 5, there is an a2
instance of the CAR class (of which DIESEL_CAR is a specialization). The application
B of the transient world loads the DIESEL_CAR class but not CAR’. In B, we want
to handle all the persistent instances of DIESEL_CAR as well as all the instances
of CAR which are compatible with DIESEL_CAR (i. e. “all the CARs that could be
DIESEL_CARs” or else “all the direct instances of CAR which satisfy the conditions of
a DIESEL_CAR”).

This problem is solved, in section 4, bearing in mind that specialization is the
reverse of generalization.

4 Generalization relationship

4.1 Definition of the relationship

A generalization relationship is the reverse of a specialization relationship described
in section 3. For lack of anything better, the inheritance present in the object-
oriented languages is sometimes used to implement a generalization [Mey97|. In

8TIn our version relationships, which will be presented in a future paper, each version of a class
would be itself a class with its direct instances.

9Two situations can occur. Either CAR has been added to the persistent schema of classes after
the design of B, or the designer of B has loaded a flattened view of DIESEL_CAR without taking
care of the remaining part of the persistent schema of classes.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 8/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION

CAR / DIESEL_CAR
’
4 B
’ :
’ B
/ :
/ B

7
4 DIESEL_CAR

CAPTION
" X —= Y X isspecialization of Y

Figure 5: Another configuration for a specialization relationship

order to be able to establish a generalization relationship between a S source-class
and a C target-class, it is necessary to satisfy the following conditions:

1. S cannot define new features.
2. S can remove some features from C.

3. S can redefine the features of C if and only if the type of redefined attributes,
redefined feature parameters and redefined function results are generalized
according to the type defined in C.

4. The invariant of S is equivalent or less strict than the C one.
5. The set of the instances (extension) of S includes all the instances of C.

The two examples of the specialization relationship can be analysed again for
the generalization relationship and we add a new one:

1. The RECTANGLE and LOZENGE classes (source-classes) are generalizations of the
SQUARE class (target-class).

2. The CAR class is a generalization of the PORSCHE class.

3. The ATRCRAFT class is a generalization of both HELICOPTER and PLANE classes.

4.2 Tllustration: influences and contributions

To illustrate the influence of the generalization relationship in the management of
persistent objects, we reuse the CAR and DIESEL_CAR classes defined in section 3.2.
As in generalization, this example is presented in figure 6.

The DIESEL_CAR class is loaded by an application A from the transient world.
This class is stemming from the persistent world which also contains the CAR class

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 9/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION
DIESEL_CAR DIESEL_CAR
| CAR
CAPTION
al X —= Y Xisageneraization of Y

Figure 6: A generalization relationship

(a generalization of DIESEL_CAR). A has no knowledge of CAR. There is a persistent
al instance of CAR. We can admit that the application A wants to handle all the
persistent instances of DIESEL_CAR but also those of CAR which are compatible with
the description of a DIESEL_CAR.

4.2.1 Loading

We can see that the DIESEL_CAR class has no instance, the CAR class has one. How-
ever, this instance can be viewed under some conditions as a DIESEL_CAR.

An al instance of CAR in the persistent world can become a di instance of
DIESEL_CAR in the transient world, following the next chronological steps:

1. a1 is loaded in transient memory (let us call it al-aux).

2. Each missing attribute from al-aux according to DIESEL_CAR is added to
al-aux with its default value defined in DIESEL_CAR.

3. If and only if al-aux satisfies the invariant of DIESEL_CAR, then in the transient
world, it is viewed as an instance of DIESEL_CAR called d1 (cf. figure 7).

If the condition mentioned in the last step is not satisfied then al-aux is removed
from the transient world. Therefore, the loading of a1l is impossible.

As for the specialization (cf. section 3.2.1) during the adaptation from al to di,
we do not address neither the invariants nor the routines because they are described
at the class level and not at the instance level.

4.2.2 Updating

When all the operations are finished in the transient world, we deal with the updating
phase in the persistent world. Several situations can occur:

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 10/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION
DIESEL_CAR DIESEL_CAR

\ :

: CAPTION
1

CAR I X—=Y X isageneralization of Y
g :
- - 1
77777777777777777777 -

Figure 7: Loading of a generalized object

No updating is wanted. All the modifications made in the transient world are
lost.

An updating is wanted. Here we face two alternatives:

e No value of an attribute added to d1 have been modified!’. In this case,
it is useless to keep the value of these attributes. al from the persistent world
is therefore updated according to the attributes of d1 defined in CAR (cf. figure
8). Moreover this is directly possible because the invariant of DIESEL_CAR is
compatible with the CAR invariant. Indeed, this compatibility is ensured by
the semantics of the generalization relationship.

PERSISTENT WORLD APPLICATION

DIESEL_CAR DIESEL_CAR

A
\ \ CAPTION
‘

X —Y Xisagenerdization of Y

Figure 8: Updating of a generalized object (particular case)

e The value of at least one attribute added to d1 have been modified.
We want to keep al from the persistent world as a direct instance of CAR. We
also want to keep the new information brought by A which considers al as a

0They still have their default value.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 11/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

DIESEL_CAR. In this purpose, we add an adapter to al in the persistent world.
It allows to consider al as a direct instance of DIESEL_CAR. This adapter called
d1-al contains all the values of the direct attributes of DIESEL_CAR. In our
example, we keep all the values of the attributes of d1 that are not in a1'! (cf.
figure 9). The values of the attributes of d1 contained by CAR are updated in
al, those specific to DIESEL_CAR are updated in di-a1. An adapter can be the
interface of only one instance. An instance can have several adapters, each of
them being attached to a different type!2.

PERSISTENT WORLD APPLICATION

DIESEL_CAR DIESEL_CAR

A A
7 1
J \ i CAPTION
. |
1
1
! §
I
I
I

X —= Y Xisageneraization of Y

Instance adapter

,,,,,

Figure 9: Updating of a generalized object

4.2.3 Another situation

We will study the reverse situation. In the persistent world, we find the CAR class
which generalizes DIESEL_CAR (with a d2 instance). In the transient world, an
application B only loads CAR. B wants to handle all the CARs of the persistent world.
It is easy to notice on figure 10 that it is the same configuration that of specialization
described in section 3.

5 Prospects and conclusion

Thanks to the two examples studied, this paper has presented our first works on the
use of information associated to the relationship between classes in order to manage
persistent objects.

In these examples, the use of specific relationships (specialization and general-
ization) shows that they are more pertinent than a simple inheritance relationship.
Indeed, inheritance can be used for numerous uses (such as specialization, general-
ization, views, versions, code reuse, ...). It is therefore impossible for the system to
attach some strong semantics to the edges (inheritance relationship) of the schema

1Hence the notation d1-al: d1 minus al.
12Tt means an object can have several instantiation relationships to different classes.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 12/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

PERSISTENT WORLD APPLICATION

DIESEL_CAR / CAR
7/
/ -
/ N
7/ N
7/ N
7/ -
/ R

/

, CAR

CAPTION
d2 X —= Y X isageneralization of Y

Figure 10: Another configuration for a generalization relationship

of classes. It is even more difficult to use this semantics when the instances are
loaded by applications which only know a part of this schema.

We have also shown that a better knowledge of relationships between classes
— at the persistent level as well as in transient applications — allows to handle
instances which, otherwise, would not be loadable by applications.

These are our development prospects:

e the generalization of this approach to version relationships to handle the ap-
plication evolution,

e the study of the influence of use relationships (such as aggregation or compo-
sition) in addition to that of the import relationships (of which inheritance is
the spearhead) which has been made in this paper,

e an extension of this approach removing some of the constraints set in the
context section (for example, we could accept migration in some situations),
and

e the programming of a prototype handling a subset of the OFL model, for
example by extending Java with one or several new relationships.

References

[AG98] K. Arnold and J. Gosling. The Java Programming Language. The Java
Serie. .. from the Source. Sun Microsystems, 2 edition, 1998.

[BJR98] G Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language
User Guide. The Object Technology Series. Addison-Wesley Publishing
Co., October 1998.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 13/14

WOON 2000 (4th International Conference "The White Object Oriented Nights") May 23, 2000

[Cap99|

[CCCLO0]

[CCL99a|

|CCLO9b)

[Fla99]

1GJS96]

[GRS3]

[TBROY]

[Kee89]

[Mey92|

[Mey97]

[Ous99]

[RIBOS|

[Str97]

[Tal94|

A. Capouillez. ROOPS : un service paramétrable de persistance pour
OFL. Technical Report 99-15, Laboratoire Informatique, Signaux et Sys-
témes de Sophia-Antipolis, septembre 1999.

A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. Gestion des
objets persistants grace aux liens entre classes (a paraitre). In Conférence
Objets, Composants, Modéles 2000, mai 2000.

R. Chignoli, P. Crescenzo, and P. Lahire. An Open Object Model
based on Class and Link Semantics Customization. Technical Report 99-

08, Laboratoire Informatique, Signaux et Systémes de Sophia-Antipolis,
March 1999.

R. Chignoli, P. Crescenzo, and P. Lahire. Customization of Links between
Classes. Technical Report 99-18, Laboratoire Informatique, Signaux et
Systémes de Sophia-Antipolis, November 1999.

D. Flanagan. Java in a Nutshell: a Desktop Quick Reference. O’Reilly,
3 edition, December 1999.

J. Gosling, B Joy, and G Steele. The Java Language Specification. The
Sun Microsystems Press Java Series. Sun Microsystems, 1996.

A. Goldberg and D. Robson. Smalltalk-80 — The Language and its Im-
plementation. Computer Science. Addison-Wesley Publishing Co., 1983.

I. Jacobson, G. Booch, and J. Rumbaugh. Unified Software Development
Process. The Object Technology Series. Addison-Wesley Publishing Co.,
January 1999.

S. Keene. Object-Oriented Programming in Common Lisp — A Program-
mer’s Guide to CLOS. Addison-Wesley Publishing Co., 1989.

B. Meyer. FEiffel: The Language. Object-Oriented Series. Prentice Hall,
1992.

B. Meyer. Object-Oriented Software Construction. Professional Technical
Reference. Prentice Hall, 2 edition, 1997.

C. Oussalah, editor. Génie objet : analyse et conception de l’évolution.
Hermes, septembre 1999.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. The Object Technology Series. Addison-Wesley
Publishing Co., December 1998.

B. Stroustrup. The C++ Programming Language. Addison-Wesley Pub-
lishing Co., 3 edition, 1997.

G. Talens. Gestion des objets simples et composites. Thése de Doctorat
en Génie Informatique, Automatique et Traitement du Signal, Université
Montpellier II, février 1994.

© Adeline Capouillez, Robert Chignoli, Pierre Crescenzo, and Philippe Lahire 14/14

