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Non-self-averaging in Ising spin glasses and hyperuniversality
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I. A. Campbell
Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
(Received 28 August 2015; published 11 January 2016)

Ising spin glasses with bimodal and Gaussian near-neighbor interaction distributions are studied through
numerical simulations. The non-self-averaging (normalized intersample variance) parameter U,y (7, L) for the
spin glass susceptibility [and for higher moments U,,(7,L)] is reported for dimensions 2,3,4,5, and 7. In
each dimension d the non-self-averaging parameters in the paramagnetic regime vary with the sample size L
and the correlation length &(T,L) as U,,(B8,L) = [K4&(T,L)/L]" and so follow a renormalization group law
due to Aharony and Harris [Phys. Rev. Lett. 77, 3700 (1996)]. Empirically, it is found that the K, values are
independent of d to within the statistics. The maximum values [U,,(T,L)]max are almost independent of L in
each dimension, and remarkably the estimated thermodynamic limit critical [U,, (T, L)]n.x peak values are also
practically dimension-independent to within the statistics and so are “hyperuniversal.” These results show that the
form of the spin-spin correlation function distribution at criticality in the large L limit is independent of dimension
within the ISG family. Inspection of published non-self-averaging data for three-dimensional Heisenberg and
XY spin glasses the light of the Ising spin glass non-self-averaging results show behavior which appears to
be compatible with that expected on a chiral-driven ordering interpretation but incompatible with a spin-driven

ordering scenario.

DOI: 10.1103/PhysRevE.93.012118

I. INTRODUCTION

The non-self-averaging parameter, usually noted A or Uy,
represents the normalized intersample variability for systems
such as diluted ferromagnets or spin glasses where the micro-
scopic structures of the interactions within individual samples
are not identical. The parameter is defined for ferromagnets as
the intersample variance of the susceptibility normalized by
the mean susceptibility squared [1],

aX(T,L>]2  var((g?)
x(T,L) | — [g»)P?

where o(7T,L) is the standard deviation of the equilibrium
sample-by-sample distribution of the susceptibility. We denote
by (---) the thermal mean for a single sample and by [- - -]
the sample mean. In Ising spin glasses (ISGs) the spin glass
susceptibility replaces x. The non-self-averaging definition
can be widened to other observables [1]; we will also discuss
the behavior of non-self-averaging of higher moments (g>)
and (g*) of the spin overlap parameter ¢ defined in Eq. (5). In
general the U,,, parameter is defined as

var({|g|"))
[gIm1? -

Aharony and Harris [ 1] gave a fundamental renormalization
group discussion of non-self-averaging in diluted ferromag-
nets, which can be applied also to spin glass models. First,
they showed that in the paramagnetic regime, at temperatures
above the critical temperature, U,, (which they referred to as
R,) behaves as

Un(B,L) = [ ) ey

Un(B,L) = (@)

Un(T,L) ~ (§(T,L)/L)", 3)

where d is the dimension of the system and &£(7,L) is the
standard finite size second moment correlation length (see, for
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instance, Ref. [2]). This rule can be understood in a simple
physical picture: the intersample variability depends on the
ratio of the sample volume to the correlated volume. Roughly,
each sample is contained in a “box” of volume L¢. When this
box volume is much larger than the correlated volume & (T)?,
all samples will have essentially identical properties; when the
inverse is true, each sample has its own individual properties.

Then at the critical point 7, where &£(T") diverges in the
thermodynamic limit (ThL), U (7., L) becomes independent
of L even when L tends to infinity [1]. In this strongly
non-self-averaging regime the observables for each individual
sample have different properties. The passage as a function
of temperature in the thermodynamic limit from “all samples
identical” (randomness irrelevant) to “all samples different”
(randomness relevant) is a fundamental signature of the
physical meaning of ordering in systems with disorder or in
spin-glass-like systems. Aharony and Harris show that the
value of Uy (T,,L) in the limit of large L should be universal
for ferromagnets with different forms of disorder in a given
dimension. We find empirically that within the ISG family this
critical parameter is practically dimension-independent, i.e.,
“hyperuniversal.”

We report non-self-averaging measurements in near neigh-
bor interaction ISGs having dimensions 2, 3, 4, 5, and 7, with
bimodal or Gaussian near neighbor interaction distributions.
There is considerable regularity in behavior throughout all
this range of d, which includes the special cases d = 2
where T, = 0 and d = 7, which is above the upper critical
dimension d = 6. In the paramagnetic regime U (T,L) =
[Kdéf(T,L)/L]" with K, =~ 2.5 for all d studied, to within
statistical accuracy. Second, the peak in U,,(T', L) as a function
of T for fixed L has a value U,>(max) for each L which,
after weak small size effects, is independent of L to within
the statistics and almost independent of d, U, (max) = 0.205.
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The location of the peak T(Uj(max)) approaches T, from
the paramagnetic regime (higher T') for d < 4 and from the
ordered regime (lower T) for d > 4. The same rules are
followed for the higher moments of the spin-spin correlations.

II. SIMULATIONS
The standard ISG Hamiltonian is

H==) J;SS; @
ij

with the near-neighbor symmetric distributions normalized
to <Ji,2/> = 1. The normalized inverse temperature is § =
((Jé)/ T?)'/2. The Ising spins live on simple hypercubic
lattices with periodic boundary conditions. The spin overlap
parameter is defined as usual by

1
g=1;0 S'st. )

where the sum is taken over all spins and A and B indicate
two copies of the same system. The spin glass susceptibility is
then defined as usual: x(8,L) = L[{g*)].

The equilibration techniques (which are different in dimen-
sion 2) are described in Refs. [3,4]. On a technical level, it
turns out that the values of U, and particularly the peak
values can fluctuate slightly in an irregular manner at each size,
possibly because of outliers in some of the distributions. Also,
the values depend sensitively on strict equilibration having
been achieved.

III. DIMENSION 2

It is well established that short range ISGs in dimension 2
only order at T = 0[5,6]. The Gaussian ISG has a nondegener-
ate ground state and a continuous energy level distribution. The
bimodal ISG has an effectively continuous energy level regime
down to an L-dependent crossover temperature 7*(L) below
which the thermodynamics are dominated by the massively
degenerate ground state [7]. This is a finite-size regime; in the
ThL regime the bimodal ISG can be considered to have an
effectively continuous energy level distribution similar to that
of the Gaussian ISG.

Measurements on two bimodal models and the Gaussian
model ISG in dimension 2 [8] show a clear scaling of U (T, L)
as a function of £(7T',L)/L, with all the maxima in U (T,L)
close to 0.20. We show for the standard bimodal ISG in
dimension 2 (see Fig. 1) the data scaled against £(7,L)/L ona
log-log plot. This brings out the fact (not mentioned in Ref. [8])
that for temperatures above the peak location temperature, the
Aharony-Harris rule [1] Ux(T,L) = [K»£(T,L)/L]? holds,
with K, = 2.5(1). Below the peak obvious finite size effects
due to the crossover to the ground state-dominated regime
set in.

From the same simulation runs, data for the higher moments
(g)(T,L) and (g*)(T, L) were obtained, and the values of the
normalized variances Us3(T, L) and Uy (T, L) were evaluated.
Equivalent plots to Fig. 1 are shown for Us3(T,L) and
Uy(T,L) in Figs. 2 and 3 with Us3(T,L) = [3.29&(T,L)/L]?
and Uy(T,L) = [4.36&(T,L)/L1>.
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FIG. 1. Bimodal 2D ISG. Non-self-averaging parameter
Uxn(T,L) against the normalized correlation length §(7,L)/L. L =
12, 16, 24, 32, 48, 64, 96, 128 from right to left. The straight line has
slope 2.

The same data are presented as Uy (T,L) against T for
fixed L in Fig. 4; the peak location is moving towards 7' = 0
with increasing L, and the maximum value is very gradually
growing with increasing L. A simple extrapolation of the peak
data from L =4 to L = 128 indicates a limiting infinite L
peak value close to 0.200.

The Us3(T,L) and Uy(T,L) peak values and positions
evolve in a very similar way to the Uy (T,L) peaks, ex-
trapolating to large L limit values Usz = 0.38 and Uy =
0.60 (Figs. 5 and 6). On the low-temperature side of the
bimodal data, a minimum in each of the U,,(T,L) at an
L-dependent temperature followed by a plateau (see Ref. [8])
provides a clear indication of the crossover from the effectively
continuous energy level regime to the degenerate ground
state-dominated regime. For the largest sizes, this crossover
lies below the lowest temperatures at which measurements
were carried out.
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FIG. 2. Bimodal 2D ISG. Non-self-averaging parameter
Us3(T,L) against the normalized correlation length &(7',L)/L.
L =24, 32, 48, 64, 96, 128 from right to left. The straight line
has slope 2.
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FIG. 3. Bimodal 2D ISG. Non-self-averaging parameter
Uyp(T,L) against the normalized correlation length &(7',L)/L.
L =24, 48, 64, 128 from right to left. The straight line has
slope 2.

Data for U (T, L) for the Gaussian ISG (not shown) are
very similar to the bimodal data, except that there is of course
no crossover effect.

For both the bimodal and the Gaussian two-dimensional
(2D) models (Fig. 7) the peak position scales in the standard
manner as

[Twax(L) — T.1 = AL’ [1 +aL™], (©6)

where T, = 0 and v is the correlation length exponent, which
is already accurately estimated (see Ref. [5] for the Gaussian
and Ref. [4] for the bimodal) and a correction term is needed.
Thus we have Uy, fits: Tinax(L) = 1.2L~135[1 4+ 0.71L~9%]
for the Gaussian and T (L) = 1.12L7'/48[1 4 2.54L7045]
for the bimodal. The Ty, (L) values for Usz and Uy are not
identical to the U,, values, but the scaling fits are of very
similar form.

[In a rather different context (see Fig. 2[a] of Ref. [9])
the non-self-averaging parameter peak position for the three-
dimensional (3D) random field Ising model moment at zero

0.20

0.00

FIG. 4. Bimodal 2D ISG. Non-self-averaging parameter
Uxn(T, L) against the temperature 7. L = 128, 96, 64, 48, 32, 24, 16,
12, 8, 6, 4 from left to right. The straight line indicates extrapolation
to criticality at 7 = 0.
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FIG. 5. Bimodal 2D ISG. Non-self-averaging parameter
Us3(T,L) against the temperature 7. L = 128, 96, 64, 48, 32, 24,
16, 12, 8, 6 from left to right. The straight line indicates extrapolation
to criticality at 7 = 0.

temperature has been shown to behave as a function of L in a
remarkably similar way, with fields & replacing temperatures
and no correction term. The observed peak heights are
independent of L.]

The zero temperature infinite size limit can be defined in two
ways. Taking the successive limits L — oo, T — 0 gives an
extrapolated value U,,(0,00) = 0.190(5) for both bimodal and
Gaussian models, while the successive limits T — 0, L — o0
gives a value ~0 in the Gaussian case; with the present data
it is hard to estimate in the bimodal model because of the
Crossover.

IV. DIMENSION 3

The bimodal ISG in dimension 3 has a transition tem-
perature for which the most recent estimate is 7, = 1.102(3)
[2,10,11], and the Gaussian ISG has a transition temperature
estimated to be T. = 0.951(9) [2]. The critical values of
the dimensionless correlation length ratio [£(T,L)/L]. are
estimated to be 0.652(3) and 0.635(10), respectively.

0.6
051
0.4

03]

U,,(T.L)

0.2
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0~0 ] T T T T T T T T
00 02 04 06 08 10 12 14 16
T

FIG. 6. Bimodal 2D ISG. Non-self-averaging parameter
Uy(T,L) against the temperature 7. L = 8, 16, 32, 64, 128 from
right to left. The straight line indicates extrapolation to criticality at
T =0.
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FIG. 7. Temperature of the maximum of the non-self-averaging
parameter U (T, L) against size L for the 2D ISGs. Bimodal: data red
circles, fit upper blue curve. Gaussian: data black squares, fit lower
green curve. Fit expressions are in the text.

Hasenbusch et al. [10] have generously posted their raw
tabulated simulation data for the bimodal ISG in dimension 3
as Supplemental Material with their publication. In addition
to the present measurements on 2'3 samples of sizes L = 4, 6,
8, 10, 12 we have extracted a selection of values of U (8,L)
from the tables of Ref. [10], choosing the data sets with the
largest numbers of temperatures, L = 16, 20, 24. In each case
the data correspond to measurements on about 10° samples.

The Uxp(T,L) bimodal data in 3D have almost L-
independent peak values Uy (T, L)max = 0.207(3) with peak
locations tending gradually downwards towards 7, as L
increases (Figs. 8 and 9; see Ref. [12], which also observed
a very similar peak height for a 3D next-nearest-neighbor
bimodal model). Small fluctuations as a function of L can be
put down to residual equilibration differences as the statistical
errors in these data are very small because of the large numbers

E(T,L)L

FIG. 8. Bimodal 3D ISG. Non-self-averaging parameter
Uxn(T,L) against the normalized correlation length &(7,L)/L.
L =10, 12, 16, 20, 24 (pink, purple, cyan, green, black) right
to left. L =16, 20, 24 from Ref. [10]. The straight line has
slope 3.
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FIG. 9. Bimodal 3D ISG. Non-self-averaging parameter
Uxn(T,L) against temperature 7. L = 4, 6, 8, 10, 12, 16, 20, 24 (blue,
red, black, pink, purple, cyan, green, brown) right to left. L = 16, 20,
24 from Ref. [10]. Vertical line 7.

of samples. At the critical temperature the finite-size scaling
limit for [T — T.,L — oo]is Uxn(T.,L) = 0.147(3) [10].

When scaled against £(7',L)/L, in the paramagnetic range
Un(T,L) = [K3E(T,L)/L1? following the Aharony-Harris
law, with K3 = 2.6(1) (Fig. 8). The peak locations correspond
to £&(T,L)/L ~ 0.35. Alternatively the peak locations can be
approximately scaled as [Tjnax — 1.1] = 1.07L~1/21, or if the
value of v = 2.56 from Ref. [11] is imposed with a correction
term, as [Tmax — 1.1]1 = 0.8L~1/23%[1 4 0.8L'].

In the large L limit, the Us3 and Uy peak locations are
tending to 7, and the peak values extrapolate to U3 ~ 0.39
and Ugy ~ 0.61 (Figs. 10 and 11).

V. DIMENSION 4

Uxp(T,L),Usz(T,L) and Uu(T,L) data for the Gaussian
ISG in dimension 4 are shown in Figs. 12, 13, 14, and 15. The
data correspond to N = 8192 samples for each L. The critical
temperature is 7, = 1.80(3) [2,3], and the finite size critical
value for the normalized correlation length ratio [§/L]. =
0.440(5) [2,3]. Scaling against the normalized correlation
length (Fig. 12), U (T,L) = (K4.>’§(T,L)/L)4 again following

FIG. 10. Bimodal 3D ISG. Non-self-averaging parameter
Us3(T, L) against temperature 7. L = 4, 6, 8, 10, 12 (blue, red, black,
pink, purple) right to left. Vertical line 7...
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FIG. 11. Bimodal 3D ISG. Non-self-averaging parameter
Uuy(T, L) against temperature 7. L = 4, 6, 8, 10, 12 (blue, red, black,
pink, purple) right to left. Vertical line 7.

the Aharony-Harris law, with K4 = 2.7(1) and peaks located
at&(T,L)/L = 0.43(2) so very close to £(T,,L)/L.

Data obtained for the four-dimensional (4D) bimodal ISG
(not shown) follow a very similar pattern with the same
peak height. The locations of the U,,,(T,L) peaks are almost
independent of L. This was noted for Uy (7,L) in the 4D
Gaussian ISG in Ref. [12] and in Ref. [13] for a bond-diluted
bimodal model; it follows from the proximity of the peak
&(T,L)/L and critical £(T,,L)/L values. For the bond-diluted
bimodal model, the peak height is again ~0.205 [13]. Because
of the quasi-L-independence, the peak location extrapolated
to infinite size provides an estimate for 7;, which is limited in
precision only by the statistical uncertainties; no scaling of the
peak position against L is possible in this dimension.

The Gaussian U, (T, L) peak heights become independent
of L to within the statistical errors after weak finite size effects
for small L (Figs. 13, 14, and 15). The stability of the U,,,,(T,L)
peak heights as L is varied turns out to be a useful empirical
criterion for the quality of equilibration.

T T T T
0.2 03 04 0506

g(T,L)L

FIG. 12. Gaussian 4D ISG. Non-self-averaging parameter
Uxn(T, L) against the normalized correlation length §(7',L)/L. L = 4,
6, 8, 10, 12 (blue, red, black, pink, green), right to left. The straight
line has slope 4.
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FIG. 13. Gaussian 4D ISG. Non-self-averaging parameter
Un(T,L) against the temperature 7. L =4, 6, 8, 10, 12 (blue,
red, black, pink, green) from right to left. The horizontal line is
an extrapolation to criticality at T = T, (vertical line).

Alternatively, considering the U,,(T,L) as dimensionless
variables, the intersections of the curves for fixed L should also
give a criterion for estimating 7, but the statistical fluctuations
and corrections to scaling affect the intersections much more
drastically than they do the peak location, which means that
this is an imprecise criterion in the 4D case as noted in
Ref. [13].

VI. DIMENSION 5

Uxn(T,L), Us3(T,L), and Uyy(T,L) data for the Gaussian
ISG in dimension 5 are shown in Figs. 16, 17, 18, and 19.
The data correspond to 4096 samples for each L. The critical
temperature is T, = 2.390(5), and the finite size critical value
for the normalized correlation length ratio [£/L]. =~ 0.45
[14]. We are not aware of other comparable simulation
measurements in this dimension. Data obtained for the 5D
bimodal ISG (not shown) are very similar. The U,,,, (T, L) peak
heights become independent of L to within the statistical errors
after weak finite size effects for small L.

0.00 T T
16 1.7 18

1:9 2i0 2:1 2:2

FIG. 14. Gaussian 4D ISG. Non-self-averaging parameter
Us3(T, L) against the temperature 7.L = 4, 6, 8, 10, 12 (blue, red,
black, pink, orange) from right to left. The horizontal line is an
extrapolation to criticality at 7 = T, (vertical line).
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FIG. 15. Gaussian 4D ISG. Non-self-averaging parameter
Uu(T, L) against the temperature 7. L =4, 6, 8, 10, 12 (blue, red,
black, pink, orange) from right to left. The horizontal line is an
extrapolation to criticality at 7 = T, (vertical line).

When scaled against the correlation length ratio, in the
paramagnetic range Ux(T,L) = [Ks&(T,L)/L]> following
the Aharony-Harris law [1], with Ks = 2.5(1). The peak
locations correspond to £(T,L)/L ~ 0.50. As this ratio is
greater than [§/L], the locations of the U,,(T,L) peaks are
at temperatures below T, and the peak temperatures move
upwards towards 7. with increasing L. The peak location
extrapolated to infinite size provides an estimate for T,
which is again limited by the statistical precision but which
provides a useful independent check on the value of the
ordering temperature. As the peak position changes are small,
a quantitative scaling of the peak positions is not possible.

VII. DIMENSION 7 AND SUMMARY

By this dimension, N the number of spins per sample has
become very large, (N = 823,543 for L = 7), which imposes
practical limits on the sizes and numbers of samples in the

U,,(B.L)

10* T )
0.1 1

&(B.LIL

FIG. 16. Gaussian 5D ISG. Non-self-averaging parameter
Uxn(T, L) against the normalized correlation length §(7',L)/L. L = 4,
6, 8, 10 (blue squares, red circles, black triangles, pink inverted
triangles). The straight line has slope 5.
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FIG. 17. Gaussian 5D ISG. Non-self-averaging parameter
Uxn(T,L) against the temperature 7. L =4, 5, 6, 7, 8, 9, 10 (blue,
green, red, olive, black, orange, pink) from right to left on the right.
The horizontal line is an extrapolation to criticality at 7 = T (vertical
line).

simulations. The simulations were carried out for L =3 to 7
with 512 samples at each L.

The dimension 7 bimodal ISG has an ordering temperature
T, = 3.39(1) estimated using the standard Binder cumulant
crossing point technique [14] in agreement with the high-
temperature series expansion (HTSE) estimates 7. = 3.37(2)
[15] and T, = 3.384(15) [16]. (Curiously the HTSE value
given in Ref. [17] corresponds to T, = 3.459. We suspect a
typographical error). As this dimension is above the upper
critical dimension d = 6, the critical exponents y = 1 and
v = 1/2 are known exactly. In this case in the paramagnetic
regime U (T,L) = [K,&(T,L)/L1°, with an exponent which
appears to be ~ 6 rather than 7 (Fig. 20). This could arise
from the breakdown of the relations between scaling exponents
above the upper critical dimension. Because of the limited
number of samples and the small values of L at this dimension,
this estimate is not very precise.

FIG. 18. Gaussian 5D ISG. Non-self-averaging parameter
Us3(T, L) against the temperature 7. L =4, 5, 6, 7, 8, 9, 10 (blue,
green, red, olive, black, orange, pink) from right to left on the right.
The horizontal line is an extrapolation to criticality at T = T, (vertical
line).
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FIG. 19. Gaussian 5D ISG. Non-self-averaging parameter
Uus(T, L) against the temperature 7. L =4, 5, 6, 7, 8, 9, 10 (blue,
green, red, olive, black, orange, pink) from right to left on the right.
The horizontal line is an extrapolation to criticality at 7' = T, (vertical
line).

In the plot of Ux(T,L) against T' (see Fig. 21), the
L-independent critical finite-size crossing point value is
Uxn(T,) = 0.15, and the [Uxn(T,L)lmax peak heights are
independent of L and equal to & 0.21 to within the statistics,
as for the other dimensions. The maxima locations move
towards 7, from within the ordered regime. This behavior is
very similar to that observed in the mean field ISG SK model
[18,19], where again the U,>(T, L) peak heights tend to about
0.21.

The higher order Us3(T, L) and Uy(T, L) (Figs. 22 and 23)
follow much the same pattern. Finally we have collected the
ISG Uy, Uss, and Uyq peak height data for all the dimensions
studied. These are displayed in such a way as to underline the
interdimension regularities in Figs. 24, 25, and 26. Within the
present statistics the peak heights are dimension independent
for dimensions 3 to 7 and are slightly lower in dimension 2.

U,,(T.L)

10*

10°+

E(T,L)yL

FIG. 20. Bimodal 7D ISG. Non-self-averaging parameter
Uxn(T, L) against the normalized correlation length §(7',L)/L. L = 4,
5, 6, 7 (blue circles, green triangles, red inverted triangles, olive
diamonds). The straight line has slope 6.
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FIG. 21. Bimodal 7D ISG. Non-self-averaging parameter
Uxn(T,L) against temperature 7. L = 3,4, 5, 6, 7 (cyan, blue, green,
red, olive) left to right on the left. Vertical line 7,. Horizontal line
extrapolation.

VIII. THE GAUGE GLASS

The gauge glass (GG) is a canonical vector spin glass (see,
for instance, Ref. [20]) where XY spins on a [hyper]cubic
lattice of size L interact through the Hamiltonian

H=—J) cos(gi —¢; — Ay), @)
ij

the sum ranging over near neighbors. The ¢; represent the
angles of the spins, and the A;; are quenched random variables
uniformly distributed between [0,2]. J is conventionally set
equal to 1. Periodic boundary conditions are applied. The GG
does not support chiral ordering. The GG in dimension 3 has
a critical temperature 7, = 0.47(1) [20-22].

The non-self-averaging parameter Uy (L,T) scales with
&E(L,T)/L [21] and shows a maximum peak height indepen-
dent of L and a peak position Tr,x(L) near £&(L,T)/L = 0.35.
The paramagnetic regime data [21] appear by inspection
to be compatible with the Aharony-Harris rule Ux(L,T) ~
[E(L,T)/L)? although the published data are not presented

0.00 ; . ;
3.0 3.1 3.2 33 34 3.5 36

FIG. 22. Bimodal 7D ISG. Non-self-averaging parameter
Us3(T, L) against temperature 7. L = 3,4, 5, 6, 7 (cyan, blue, green,
red, olive) left to right on the left. Vertical line 7.. Horizontal line
extrapolation.
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FIG. 23. Bimodal 7D ISG. Non-self-averaging parameter
Uyy(T,L) against temperature 7. L = 3,4, 5, 6, 7 (cyan, blue, green,
red, olive) left to right on the left. Vertical line 7,. Horizontal line
extrapolation.

in this way. As the critical correlation length ratio is
[E(L,T)/L]. = 0.54 [21], the Uxp(L,T) peak temperature
location moves downwards with L and tends towards 7. The
3D GG vector spin-glass Uy (T, L) thus follows basically the
same rules as followed by Uy (T, L) in the ISG in 3D, except
that the GG peak maximum is 20.10 instead of 0.205. Data on
GGs in dimensions 2, 3, and 4 from measurements which were
not designed to estimate the non-self-averaging parameter [22]
are consistent with Uy (7T, L) peak values near 0.10 in each
dimension. We can speculate that this family of spin-glass
models also has its characteristic dimension-independent value
of the non-self-averaging peak height.

IX. HEISENBERG AND XY SPIN GLASSES

These spin glasses have the same Hamiltonian as the
ISGs but with vector spins which are Heisenberg (three
component) or XY (two component), respectively. Numerical
measurements on Heisenberg spin glasses (HSGs) are of

0.25

0.20

0.15

0.10

U, fmax}(L)

0.05

0.00] ; ; ; . . . )
0.00 005 010 015 020 025 030 035

1/L

FIG. 24. Peak values of the non-self-averaging parameter
Uxn(T,L) against inverse size 1/L for all the ISGs studied. Open
symbols are for Gaussian ISGs, closed for bimodal ISGs. Red squares
2D, pink triangles 3D, black circles 4D, blue diamonds 5D, green
inverted triangles 7D.

PHYSICAL REVIEW E 93, 012118 (2016)

0.45
0.40+

$48. Z§ N .
E..;\E/.‘!\Ejjé%;_ 2§‘§/

— Dx-

0.251 o

0.354
0.304

0.20+
0.15
D 0.104
0.05

satmax}(1/L)

0.00 : : . . .
000 005 010 015 020  0.25
1/L

FIG. 25. Bimodal and Gaussian ISG non-self-averaging Us;(L)
peak values against inverse size 1/L. Closed symbols bimodal, open
symbols Gaussian. Red squares 2D, pink triangles 3D, black circles
4D, blue diamonds 5D, green inverted triangles 7D.

particular importance because the canonical experimental
spin-glass dilute alloys (AuFe, CuMn, AgMn) are all Heisen-
berg systems, so it should be possible to understand the
ordering mechanism in “real life” spin glasses on the basis
of numerical data on Heisenberg models. We have no new
data to report on these models, but it is of interest to consider
published non-self-averaging data in the light of the ISG
results.

Both Heisenberg and XY spin glasses can support chiral-
glass order as well as spin-glass order, and for many years there
have been two conflicting interpretations of the numerical data
on the ordering transitions in these models in dimension 3.
According to the first interpretation, the ordering is spin-spin
interaction driven; basically the ordering process is much
the same as in ISGs, and the chiral order follows on as a
geometrically necessary consequence of the onset of spin
order, without the chiral interactions playing any significant
role in the spin glass transition [23-27]. The alternative

ST .

./.\ \§><.
0. 50 1 .il\.

0.454 ”\D\
\.

0.75 1
0.70+
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0. 60-

0.40 1
0.35 1 |
0.30 1
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0.20
0.15
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FIG. 26. Bimodal and Gaussian ISG non-self-averaging Us4(L)
peak values against inverse size 1/L. Closed symbols bimodal, open
symbols Gaussian. Red squares 2D, pink triangles 3D, black circles
4D, blue diamonds 5D, green inverted triangles 7D.

U44{max}(L)
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interpretation is that the driving role in 3D HSG or XYSG
ordering is played by the chirality, so that there is first a chiral
order onset followed at a lower temperature by spin ordering
transition [28-31]. (Similar disagreements concerning fully
frustrated 2D XY models were resolved definitively in favor
of a distinct chiral-order transition just above a spin-order
transition [32,33].) The arguments of both schools to support
their respective interpretations in the 3D HSG and XYSG
models have been essentially based on analyses of the data
for the crossing points of the dimensionless normalized
spin and chiral (s and c) correlation lengths &,(7',L)/L and
&(T.L)/L.

The numerical simulations in the spin glasses are even more
demanding than in the fully frustrated models, and because of
intrinsic finite-size corrections and the need to reach strict
equilibration at each L, extrapolations to infinite L in order
to estimate the ThL crossing point locations are delicate.
As simulations were extended to larger sizes in successive
Gaussian HSG and XYSG measurements interpreted on
the spin-driven ordering scenario, the joint spin or chiral
crossover temperature was estimated to be T.(H SG) ~ 0.160
[23], T.(HSG) =~ 0.145 with a KTB-like critical line [24],
marginal but very similar spin and chiral behavior (XY SG
and HSG) [25,26], and most recently 7.(H SG) =~ 0.120 [27].
No non-self-averaging results were reported. From detailed
3D bimodal and Gaussian HSG and 3D Gaussian XYSG
measurements, the two separate transition temperatures on
the chiral-driven ordering scenario are estimated to be (bi-
modal HSG) [29], T.(c) = 0.194(5) and T.(s) < 0.15, (Gaus-
sian HSG) T.(c) = 0.143(3) and T.(s) = 0.125(40.006/ —
0.012) [30], and (XYSG) T.(c) =0.308(5) and T.(s)=
0.274(3) [31]. Non-self-averaging data were shown in each
case.

In the light of the ISG results reported above, it would
appear that in Heisenberg and XY spin glasses non-self-
averaging could provide an independent primary numerical
criterion for spin and/or chiral ordering much less sensitive
to finite-size effects and to strict equilibration (as already
suggested in Ref. [29]). On the first (spin-driven order-
ing) scenario one would expect the spin non-self-averaging
parameter Uy (T,L) to follow much the same rules as
for the ISG or the GG chiral-free vector spin-glass cases
discussed above, with a peak location moving towards an
upper spin-ordering temperature 7,(s) as L increases, and a
regular behavior reflecting Uy (T,L) ~ [£,(T,L)/ L] in the
paramagnetic regime above T.(s). On this interpretation the
chiral Uy (T,L) would be weaker than the Uy, (T,L); if a
Ux(T,L) peak exists, it would be located at a temperature
below or possibly at the ThL Uy, (T, L) peak.

On the second (chiral-driven order) scenario, it would
be the chiral U,.(T,L) which would show a peak first,
with a peak location tending towards the (upper) chiral
ordering temperature 7,.(c) as L increases. In the paramagnetic
regime one would expect a regular behavior of the chiral
non-self-ordering Uy (T,L) with increasing L, governed
by U (T,L) ~ [SC(T,L)/L]3. On this scenario the spin
Uy(T, L) would then show a peak location somewhere below
the chiral Uy.(T,L) peak, with a location tending towards
an ordering temperature 7.(s) below T.(c), together with a
paramagnetic regime Uy, (T, L) behavior behaving irregularly

PHYSICAL REVIEW E 93, 012118 (2016)

at least at small L because the paramagnetic spin ordering is
perturbed by the dominant onset of chiral order.

Very informative non-self-averaging data have been pub-
lished on the 3D HSG with bimodal interactions [29], on the 3D
HSG with Gaussian interactions [30], and on the 3D Gaussian
XYSG [31]. In each case the pattern is the same. First,
there is a strong Uy (T, L) peak at an almost L-independent
temperature T =~ 0.19, T =~ 0.145, T ~ 0.31, respectively, so
in each case close to the 7,.(c) value estimated independently
from other criteria [29—31]. In the paramagnetic regime there is
aregular narrowing in temperature of the U,,.(T, L) peak with
increasing L which appears compatible with the Aharony-
Harris law Uao(T,L) ~ [E.(T,L)/L]? though the data are
not presented in this form. Second, in each case, the spin
Uxns(T,L) peak is either not visible (HSGs) or is marginal
(XYSG) down to the lowest temperature at which non-self-
averaging measurements were made, 7 ~ 0.145, T =~ 0.11 to
0.13 depending on L, and T = 0.24 to 0.275 depending on L
in the three cases.

Thus the non-self-averaging data Us,.(T', L) and U (T, L)
in the three models [29-31] appear by inspection to be
fully compatible with the chiral-driven ordering interpretation
[28-31], but incompatible with the HSG behavior expected on
the spin-driven ordering scenarios [23-27], unless there are
strong finite-size effects such that a U,y,(T, L) peak (invisible
in the present data) moves up in temperature with increasing L
to rejoin the U (T, L) peak. Independent arguments in favor
of the chiral-driven ordering are given in [34].

It would appear that further numerical measurements
designed specifically to study the non-self-averaging could
resolve conclusively the question of the driving mechanism
for ordering in Heisenberg and XY spin glasses.

X. CONCLUSION

The non-self-averaging data on ISGs in all dimensions
show a remarkable regularity. In each dimension there is
a peak as a function of temperature in the standard non-
self-averaging parameter U,(T,L) and in the higher-order
parameters Us3(T,L) and Uwx(T,L) whose values are L-
independent after weak small size effects. As can be seen
in Figs. 24, 25, and 26 the peak values U (T, L)max =~ 0.21,
Us3(T,L)max =~ 0.40, Ugy(T, L)max =~ 0.62 are independent of
dimension to within the statistics for dimensions 3, 4, 5,
and 7 (and for infinite dimension SK model [18,19] U
measurements), with a slightly smaller value in dimension 2. In
the paramagnetic regime above the peak the Aharony-Harris
renormalization group law [1] U,,(T,L) = (KdS(T,L)/L)d
is obeyed, with K;(Uy) =~ 2.6 for all dimensions. Both of
these empirical observations can be classed tentatively as
“hyperuniversal behavior.”

Published [21] and unpublished [22] data on the GG, a
vector spin glass which does not support chirality, suggest that
non-self-averaging rules analogous to those that hold in the
ISGs appear to apply but with a different characteristic peak
height Uy (T, L)max =~ 0.10.

XY and Heisenberg spin glasses can support chiral ordering
as well as spin ordering. In the light of the non-self-averaging
behavior reported above for the ISG models, the published spin
and chiral non-self-averaging data [29-31] in 3D Heisenberg
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and XY models appear to be incompatible with a spin-driven
ordering scenario [23—27] but support the alternative conclu-
sion that the spin-glass ordering in these models is chiral-
driven rather than spin-driven, in the Kawamura scenario [28].
An important implication would be that order in the canonical
experimental Heisenberg spin glasses is also chirality driven.
We suggest that simulations directly designed to study the
non-self-averaging in these systems should be undertaken.

PHYSICAL REVIEW E 93, 012118 (2016)
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