Confinement of a bioinspired nonheme Fe(ii) complex in 2D hexagonal mesoporous silica with metal site isolation
Résumé
A mixed amine pyridine polydentate FeII complex was covalently tethered in hexagonal mesoporous silica of the MCM-41 type. Metal site isolation was generated using adsorbed tetramethylammonium cations acting as a patterned silanol protecting mask and trimethylsilylazane as a capping agent. Then, the amine/pyridine ligand bearing a tethering triethoxysilane group was either grafted to such a pretreated silica surface prior to or after complexation to FeII. These two synthetic routes, denoted as two-step and one-step, respectively, were also applied to fumed silica for comparison, except that the silanol groups were capped after tethering the metal unit. The coordination of the targeted complex was monitored using UV-visible spectrophotometry and, according to XPS, the best control was achieved inside the channels of the mesoporous silica for the two-step route. For the solid prepared according to the one-step route, tethering of the complex occurred mainly at the entrance of the channel.