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Supporting students’ development of 
mathematical explanation: A case of 
explaining a definition of fraction
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This paper aims to conceptualize the work of supporting 
students’ development of mathematical explanation.  
To provide an empirical basis, I analyse instructional 
interactions managed by the same teacher for teaching 
the brown rectangle problem for different cohorts of stu-
dents across five years.  The four core tasks of teaching 
are (1) attending to the organic structure of the math-
ematical task; (2) mapping the scope of answers onto 
the targeted mathematical ideas; (3) hearing the math-
ematical needs embedded in students’ explanations; 
and (4) distributing and building a mathematical talk 
collectively.

Keywords: Decomposition, the work of teaching, 

mathematical explanation, fraction.

INTRODUCTION

Teaching is often described as a complex activity be-
cause it involves managing multiple relationships 
simultaneously with students and with content over 
time (Cohen, Raudenbush, & Ball, 2003; Lampert, 
2001).  To make this complex work doable and learn-
able for teachers, especially for beginning teachers, 
several scholars (Boerst et al., 2011; Grossman et al., 
2009; Sleep, 2012; Thames, 2009) have addressed the 
need to decompose the work of teaching into its con-
stituent components.  As a result, a core practice of 
teaching has begun to be decomposed into nested 
practices with varying grain sizes.  Despite these in-
itiatives, the call for “a specific technical language 
for describing the implicit grammar and for naming 
the parts” (Grossman et al., 2009, p. 2069) has not met 
an agreed-upon robust framework yet.  For example, 
in decomposing the work of steering instruction to-
ward the mathematical point, Sleep (2009) identifies 
seven core tasks of teaching and further decompos-

es each core task into strategies and problematic is-
sues.  The core tasks she identifies are not mutually 
exclusive but rather might be enacted simultaneous-
ly.  Furthermore, in decomposing each core task into 
strategies, she does not associate it with particular 
teaching moves.  On the other hand, in decomposing 
the work of leading a mathematical discussion, Boerst 
and colleagues (2011) start with the larger grain size of 
domains (e.g., leading a discussion) and then specify 
it into a smaller grain size of techniques (e.g., revoic-
ing), while articulating intermediate practices (e.g., 
clarifying student thinking) that connect between 
domains and techniques.  A brief review of literature 
on decomposition, despite focusing on a different do-
main of teaching practices, gives a particular prom-
inence to the structure of decomposition, the level 
of decomposition, and the link to teaching moves or 
discourse moves. 

Given the lack of agreed-on grammar for decompos-
ing the work of teaching, this study aims to decom-
pose one of the key teaching practices that are crucial 
for accomplishing the ambitious goal of developing 
mathematical power and mathematical proficiency 
for all students: the work of supporting students’ de-
velopment of mathematical explanation.  The practice 
of giving, hearing, and evaluating explanation has 
been considered an important goal for learning be-
cause it resolves cognitive dissonance and facilitates 
cognitive development in the process of knowledge 
construction.  More specifically, giving explanations 
can serve as opportunities for students to reflect on 
their own thinking and to reconstruct their existing 
knowledge, while hearing others’ explanations pro-
vides opportunities for students to appropriate lan-
guage that a teacher or more advanced students use, 
to recognize any cognitive dissonance that contradicts 
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their own understanding, and to use others’ expla-
nation as a resource to extend their own knowledge.

Despite its crucial role for learning, there is a general 
consensus that most students do not have sufficient 
opportunities to develop their own explanations in 
U.S. mathematics classrooms (e.g., Stigler & Hiebert, 
1999).  One reason might be that many teachers believe 
that giving an explanation to students is more efficient 
and less complicated than eliciting an explanation 
from students.  Even if this belief is being challenged 
as greater emphasis is being placed on eliciting an 
explanation from students, it is pedagogically de-
manding work for teachers.  This is well captured by 
Cohen’s (2011) metaphor in describing challenges in 
extending students’ knowledge as he writes:

Teachers and learners face the same gulfs of ig-
norance, but from different sides.  Learners must 
somehow build bridges across the gulf, but these 
bridges are often fragile because the learners 
work from relative ignorance.  The teacher’s as-
signment is to help learners build those bridges, 
but they work from greater knowledge. … Rather 
than helping learners construct and reconstruct 
bridges of their own, teachers present the fin-
ished results of their learning.  That reduces the 
likelihood that teachers can cultivate a practice of 
teaching, for it can limit learners’ understanding. 
(Cohen, 2011, p. 106)

This metaphor also applies to challenges in support-
ing students’ development of mathematical explana-
tion.  On the one side, students do not have sufficient 
language to explain their mathematical ideas (Forman 
& Larreamendy-Joerns, 1998) and their explanations 
are distant from disciplinary explanation (Leinhardt, 

2001).  On the other side, teachers often present the 
compressed, polished, and finished form of mathemat-
ical explanations to students rather than helping stu-
dents construct their own explanation.  Considering 
this demanding but crucial work, this study examines 
what is entailed in supporting students’ development 
of mathematical explanation, and particularly, the 
ways of using instructional resources to that end.  

METHOD

The methods for studying teaching have adopted 
terms, concepts, and techniques from other disci-
plines (e.g., grounded-theory; ethnography), but have 
not further articulated how the selected method ad-
dresses issues that particularly matter for teaching.  
To make an explicit connection between the phenom-
enon being studied and the method being chosen, I 
briefly articulate the study design, which is situated 
in the instructional triangle (Cohen et al., 2003). 

Teaching is often examined as a single case in which a 
teacher teaches a particular topic for a single group 
of students, but multiple cases of teaching are also ex-
amined.  In such an examination, a variety of methods 
are employed.  One way of examining multiple cases is 
to maximize the variation of components within the 
instructional triangle—a teacher, students, and con-
tents.  For example, to identify elements of expertise 
of teaching, Leinhardt (1985) contrasts performance 
of expert teachers with that of novice teachers.  In 
another example, in order to identify the common 
model of instructional explanation and to specify the 
features of instructional explanation in each subject, 
Leinhardt (2001) analyses instructional explanations 
in history and in mathematics.

Figure 1: The study design
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This paper approaches the problem in another way, 
minimizing much of the variation among components 
of the instructional triangle in a more controlled con-
text in which only students vary (see Figure 1).  As one 
of the greatest predicaments of teaching is its depend-
ence on students (Cohen, 2011), analysing instruction-
al interactions managed by the same teacher teaching 
the same mathematical task to different cohorts of 
students without substantial differences in students’ 
mathematical abilities is crucial to identify the core 
tasks of teaching across the particulars of students 
and unfolding instructions.  This method untangles 
the ways in which the same teacher adjusts the work 
of supporting students’ development of mathematical 
explanation wherein each cohort of students brings 
different mathematical ideas, stances, issues, lan-
guage, ambiguity, and difficulties in explaining the 
same mathematical task. 

To provide an empirical basis, I analyse a longitu-
dinal data set from the Elementary Mathematics 
Laboratory (EML), a two-week summer mathematics 
program for entering fifth graders taught by Professor 
Deborah Ball at the University of Michigan’s School 
of Education, across five years (EML2007, EML2008, 
EML2009, EML2010, and EML2013).  There are no 
prerequisites to participate in the EML, but it mainly 
focuses on students who are struggling with learning 
mathematics rather than students who are outper-
formed in mathematics.  Considering the process of 
recruitment, there were no substantial differences 
in students’ abilities in mathematics across five years.  
Each year, approximately 25–30 students, who are eth-
nically, racially, linguistically, and socioeconomically 
diverse, participate in a whole-group mathematics 
class every morning during the two-week program.

As part of a large-scale study which analyses instruc-
tional interactions managed by the same teacher for 
teaching four different mathematical tasks across 
multiple years, this paper mainly focuses on the 
brown rectangle problem (see Figure 2).  The brown 
rectangle problem has been used with slight varia-
tions in the layout of the rectangle (i.e., where the 
shaded part is located; the rotation of the drawing), 
the colour of shaded parts, the inclusion of written 
problem statement on the poster, the presentation of 
two sub-problems (posting together vs. posting sepa-
rately), and the wording of the problem statement (the 
big rectangle vs. the rectangle; shaded in vs. shaded 

in brown), but the mathematical demand remains the 
same across years.

The analysis of each individual year provides detailed 
images of explanations that individual students pro-
duce, the process of constructing a mathematical 
explanation collectively by each cohort, and instruc-
tional supports that the teacher provides to develop 
a mathematical explanation for the brown rectangle 
problem.  The cross-year analysis illustrates that in-
struction for teaching the same mathematical task un-
folds somewhat differently, even by the same teacher.  
The similarities across multiple cases become strong 
candidates to be scaled up into the coherent structure 
of supporting students’ development of mathematical 
explanation, whereas the differences across multi-
ple cases offer analytical opportunities to examine 
whether or not the particular instructional feature 
plays a role in supporting students’ development of 
mathematical explanation.  In doing so, I do not treat 
such differences as discrepant or disconfirming evi-
dence, but use the differences as the data to reveal the 
underlying structure of the work of teaching to sup-
port students’ development of mathematical expla-
nation.  In addition, the differences observed across 
years do not necessarily represent the characteristics 
of the expert teacher’s teaching practice.  Looking 
at the multiple uses of the brown rectangle problem 
by the same teacher to different groups of students 
allows to elicit the demands entailed in the work of 
supporting students’ development of mathematical 
explanation and framing the underlying structure 
that serves to meet such demands.

PROBLEMS OF STUDENTS’ INITIAL 
EXPLANATIONS FOR THE BROWN 
RECTANGLE PROBLEM

In order to understand what is entailed in supporting 
students’ development of mathematical explanation, 

What fraction of the rectangle below is shaded brown?
 

What fraction of the rectangle below is shaded brown?

Figure 2: The brown rectangle problem
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it is critical to first diagnose problems that students 
have in explaining the brown rectangle problem.  
Some of these problems are more generic and apply 
to all mathematical tasks, but others are more unique 
to a particular mathematical task.  If each mathemati-
cal task would require a specialized form of reasoning 
to develop a mathematical explanation, the problems 
that students struggle with would be different and 
the supports that a teacher needs to provide would 
be different accordingly.  Identifying such problems, 
both generic and unique to the type of mathematical 
task, contributes to revealing how a mathematical 
task plays a role in the work of teaching and the use 
of instructional resources.  The following list below 
is a more general characterization and a more com-
prehensive collection of problems that individual 
students have in offering an initial explanation for 
the brown rectangle problem across five years.

―― Having difficulties providing, hearing, and con-
structing an explanation

―― Not establishing the mathematical grammar to 
describe the objects to be explained

―― Using inaccurate language in which its intended 
meaning is different from the accepted mathe-
matical definition

―― Using pre-defined mathematical terms

―― Skipping the logical structure of naming a frac-
tion or paying attention to the partial compo-
nents of naming a fraction

―― Losing the purpose and focus of what is being 
explained

―― Not building correspondences between an an-
swer, an explanation, and representations

―― Heavily using demonstrative pronouns

―― Grounding explanation on non-mathematical 
reasons or procedural knowledge

―― Missing the key definitional ideas of naming a 
fraction

Despite sharing these similar problems in explaining 
the brown rectangle problem, the collective process 

of constructing mathematical explanation does not 
always remain the same across five years.

THE CONSTRUCTION OF COLLECTIVE 
RESOURCES: DIFFERENCES ACROSS COHORTS 
AND IMPLICAITONS FOR TEACHING

The process of recruiting and selecting EML stu-
dents is quite similar from one year to another, so 
it is presumed that there are no substantial differ-
ences in students’ mathematical abilities across five 
years.  Despite the homogeneous features of the EML 
cohorts across five years, the cohort’s mathematical 
ideas, stances, dispositions, and issues do not always 
remain the same.  The observed differences are (1) 
the answers that the students collectively discuss in 
a public space; (2) the proportion of the students who 
produce correct answer to the students who produce 
incorrect answers; (3) the intensity of counterargu-
ments made against a competing proposal and the 
process of being convinced by a competing proposal; 
(4) when the key idea of “equal” emerges; and (5) math-
ematical issues that matter the most for each cohort.

First, the answers that each cohort discussed collec-
tively in a public space are not the same.  For the first 
part of the brown rectangle problem, only one correct 
answer (1/3) was proposed in the EML 2007, the EML 
2008, and the EML 2010, but three answers (1/3, 2/3, 
and 2/6) were proposed in the EML 2009 and two an-
swers (1/3, 1/2) were proposed in the EML 2013.  For the 
second part of the brown rectangle problem, four an-
swers (1/4, 1/3, 1 and 1/3, and 1/2) were proposed in the 
EML 2007, two answers (1/4 and 1/3) were proposed in 
the EML 2008, one answer (1/4) was proposed in the 
EML 2009, five answers (1/4, 1/3, 1/6, 2/8, and 4/16) 
were proposed in the EML 2010, and three answers 
(not a fraction, 1/4, and 1 and 1/2) were proposed in 
the EML 2013.  Even though the teacher made similar 
attempts to elicit multiple answers, different groups 
of students brought a different set of answers in a pub-
lic space.  Beyond attending to the number of answers 
elicited in a public space, an important task of teach-
ing includes (1) not dismissing any proposals made in 
a public space but unpacking the reasoning behind the 
proposals; (2) introducing the key incorrect answers 
if they are not brought by students; (3) mapping the 
proposed answers to the targeted mathematical ideas; 
(4) deciding what needs an immediate agreement or 
disagreement and what needs to be preserved; and (5) 
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customizing questions, probes, and prompts based on 
the dynamics of proposed answers. 

Second, the proportion of the students who produced 
correct answer to the students who produced incor-
rect answer is not the same across cohorts.  For the 
first part of the brown rectangle problem, nearly 
all of the students came up with the correct answer.  
On the other hand, for the second part of the brown 
rectangle problem, the incorrect answers were more 
prevalent than the correct answer in the EML 2007, 
the EML 2008, the EML 2010, and the EML 2013, but 
most of the students recorded the correct answer in 
the EML 2009.  If the proportion of correct answer 
to incorrect answers might be related to the mathe-
matical stance that students bring to the instruction, 
an important task of teaching includes (1) surveying 
the composition of students’ mathematical ideas; (2) 
ensuring that a mathematical stance is not influenced 
by the idea held either by the majority of students or 
by advanced students; and (3) customizing questions, 
probes, and prompts based on the proportion of the 
students who produce correct answer to the students 
who produce incorrect answers.

Third, the intensity of counterarguments made 
against a competing proposal and the process of be-
ing convinced by a competing proposal was not the 
same.  Except in the EML 2009, students proposed the 
key incorrect answer of 1/3 for the second part of the 
brown rectangle problem, but the degree of defend-
ing the incorrect answer and what made them being 
convinced by the correct answer was not the same.  
Some cohorts were more easily convinced by the idea 
that adding a line makes equal parts, but others were 
more resistant and hesitant to accept the idea because 
it contradicts  their non-mathematical perception that 
adding a line changes the problem.  The process of 
reconciling the competing proposals was not the same 
across five cohorts, but all of the cohorts ultimately 
arrived on the agreement that making equal parts is 
an important idea for naming a fraction and drawing 
a line provides an easy access to seeing the equal parts.  
As the intensity of counterargument and the resist-
ance of accepting the competing proposal increased, 
the cohort constructed richer collective resources to 
convince others who had a competing proposal.  It is 
not an easy task for a teacher to support students to 
have a strong stance on their mathematical ideas and 
to have them sustain their perseverance, but detecting 
such a moment, confronting competing ideas, and 

providing sufficient opportunities to defend one’s 
proposal is an important task for supporting students’ 
development of a mathematical explanation.

Fourth, the key idea of “equal” emerged at different 
stages of developing a mathematical explanation.  It 
was early proffered by a student who proposed the 
answer of 1/4 in the EML 2007 as well as by a student 
who proposed the answer of   “not a fraction” in the 
EML 2013, but emerged in the process of comparing 
between the equally partitioned rectangle and the un-
equally partitioned rectangle in the EML 2008, 2009, 
and 2010.  Eliciting the targeted mathematical idea 
and developing the accurate mathematical language 
is key for developing a mathematical explanation, but 
an important task is not just accepting the targeted 
mathematical idea offered by a single individual stu-
dent, but providing supports for students to use those 
collective resources. 

Lastly, the mathematical issues that matter the most 
for each cohort are not always the same.  For the sec-
ond part of the brown rectangle problems, the EML 
2007 cohort spent a significant amount of time to make 
sense of 1/2, the EML 2008 cohort discussed whether 
or not the line changes the problem, the EML 2010 
cohort engaged in removing the existing line or add-
ing an additional line to make unequal parts, and the 
EML 2013 cohort spent time making sense of 1 and 1/2.  
An important task of teaching is to adjust the instruc-
tional time according to the mathematical issues that 
each cohort struggles with the most.

In basic ways, the students and their mathematical 
proficiency were similar across years, but each co-
hort brought different mathematical ideas, stances, 
dispositions, and issues to explain the brown rectan-
gle problem.  Thus each cohort developed different 
collective resources that became available for use ei-
ther by the teacher or by students.  In comparing the 
mathematical ideas, stances, dispositions, and issue 
brought by different groups of students, I offer the 
following observations.  First, the mathematical scope 
and terrain of collective resources that each cohort 
establishes varies to a certain degree, but all of the 
five cohorts develop the key ideas for naming a frac-
tion.  Second, there are variations in what collective 
resources are available for use to develop a mathe-
matical explanation across cohorts, but the practice 
of constructing collective resources is quite the same.  
Third, some collective resources are for immediate or 
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necessary use, but others remain in reservoir or are 
optional for use either by a teacher of by students.  
Fourth, the same mathematical issue is treated dif-
ferently based on the established knowledge that each 
cohort constructs.  Lastly, eliciting multiple answers 
has been considered an important pedagogical prac-
tice for fostering students’ mathematical abilities and 
enriching mathematical discussion, but how the pro-
posed answers could be used as resources for maxi-
mizing the development of mathematical explanation 
needs to be further examined.

THE CORE TASKS OF TEACHING

The four core tasks in supporting students’ devel-
opment of mathematical explanation for the brown 
rectangle problem are: (1) attending to the organic 
structure of the mathematical task; (2) mapping the 
scope of answers onto the targeted mathematical idea; 
(3) hearing the mathematical needs embedded in stu-
dents’ explanation; and (4) distributing and building 
a mathematical talk collectively.

The first core task is attending to the organic structure 
of the mathematical task.  This core task includes (1) 
focusing on mathematical or non-mathematical at-
tributes which impact the construction of an explana-
tion (e.g., “big rectangle”; the affordance of sticky line; 
drawing the rectangle on the grids); (2) not attend-
ing to mathematical or non-mathematical attributes 
which substantially distract from the construction of 
an explanation; (3) recognizing how the design of the 
mathematical task creates or eliminates confusions 
and how the design of the mathematical task makes 
the key ideas implicit or explicit.

The second core task is mapping the scope of answers 
onto the targeted mathematical ideas.  This includes 
(1) being aware of the scope of answers that students 
propose; (2) deciding which of the proposed answers 
needs an immediate acceptance or denial and which 
needs to be preserved; (3) not delving into the ideas 
that students do not have a shared access to; (4) not 
diverging into the ideas that seriously deviate from 
the targeted mathematical ideas; and (5) spending suf-
ficient instructional time on scaling up the proposed 
answers to the targeted mathematical ideas.

The third core task is hearing the mathematical needs 
embedded in students’ explanation.  This core task 
includes (1) recognizing inaccurate or inconsistent 

language use that impedes building a mathematical-
ly acceptable form of common knowledge; (2) deci-
phering the vague, unclear, or implicit idea conveyed 
by students’ explanations; (3) providing supports to 
build mathematical connections or correspondences 
instead of repeatedly asking general questions; and 
(4) recognizing the skip of or the deviation from the 
logical structure of building an explanation.

The last core task is distributing and building a math-
ematical task collectively.  This core task includes (1) 
not exclusively relying on one students’ contribution; 
(2) being attentive to the trajectory of constructing a 
mathematical explanation; (3) appropriately or suffi-
ciently using a private space and a public space; and 
(4) making each other’s contribution accessible in a 
public space.

DISCUSSION

Given that one of the greatest predicaments of teach-
ing is its dependence of students, it is important to 
figure out how instruction might unfold with differ-
ent groups of students.  On the one hand, one might 
speculate that instruction would unfold in the same 
way by the same teacher teaching the same mathe-
matical task because a teacher might make the same 
decisions based on his or her knowledge, skills, dis-
position, and instructional goals.  On the other hand, 
one might suggest that instruction would unfold in a 
dramatically different way even by the same teacher 
teaching the same mathematical task because teach-
ing entails being responsive to students.  The question 
of how instruction unfolds with different groups of 
students might be answered based on one’s personal 
sensibilities or perceptions built through years of 
their own teaching experiences, but it is not yet rigor-
ously examined in the field  how instruction managed 
by a teacher teaching the same mathematical task is 
likely to unfold differently with different groups of 
students; how collective resources are likely to be 
constructed differently with different groups of stu-
dents; and what is the underlying structure of using 
collective resources with different groups of students.  
By analysing instructional interactions managed by 
the same teacher teaching the same mathematical task 
for different cohorts of students, this study contrib-
utes to identifying core tasks of teaching across the 
particulars of students and unfolding instructional 
dynamics.
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The four core tasks of teaching are not just a mere 
collection of temporal stages, general pedagogical 
strategies, instructional routines, or discourse moves, 
but devised to structurally and attentively capture 
the essential elements of instructional interactions.  
Approaching through pedagogical strategies or dis-
course moves might be one way of examining what 
is entailed in supporting students’ development of 
mathematical explanation, but it entails the risk of 
losing some key elements of instructional interac-
tions.  Instead, this study conceptualizes core tasks 
of teaching by taking into serious account the three-
pronged arrows that a teacher has relationships with 
in the instructional triangle (students, content, and 
students-content) and by anchoring the core tasks of 
teaching into these relationships.  These four core 
tasks are neither sequential nor mutually exclusive.  
Even though there exist differences in what bring to 
foreground and what leaves as background, all four 
core tasks of teaching attend to the coordination be-
tween students and mathematics.
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