Maxime Perrotin 
  
Konrad Grochowski 
  
Marcel Verhoef 
  
Damien Galano 
  
Michal Mosdorf 
  
Michal Kurowski 
  
François Denis 
  
Estelle Graas 
  
Michał Mosdorf 
  
Michał Kurowski 
  
la diffusion de documents scientifiques

Keywords: SDL, ASN.1, AADL, MSC, VDM, Spark/Ada

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

When creating software in the context of critical embedded systems, one of the first tasks is to set up a development plan with a clear strategy focusing on the priorities set by the customer and/or the end user of the system.

Priorities have to take a number of elements into account, for example requirements related to:

• Development schedule • System safety • System dependability • Quality assurance and documentation • Quality of the software code for performance, optimization • Quality of the software code for readability, maintainability • Reuse and automation • etc.

In practice it is well known that all these requirements can not be covered at the same level of quality. Thus imposing a tight development schedule or low costs typically implies sacrificing some other aspects such as system analysis, robustness, testing or documentation. The question is then to know if it is possible to overcome this sacrifice and at what price. Is there any technology, tool, science that can support a software development process in such a way that perhaps by putting more effort in some places, it could improve significantly the overall software lifecycle as a side effect? TASTE is a platform that was created with this goal in mind, and is used to explore and disseminate advanced software technologies in order to be ready for future space missions.

What are the systems that we target?

Today's processes for the development of classical Earthorbiting spacecrafts are well mastered by our few European large system integrators: development is vastly done manually, but based on years of experience and reuse. The feedback we get is that each new satellite inherits from a lot of existing material and most of the time there is no need to change the approach while yet meeting most of the requirements seen above. It is therefore not these kind of wellestablished processes that are under focus: Europeanmade classical satellites have simple, qualified software which need no major upgrade according to industry.

On the other hand, new upcoming space missions such as formationflying systems, deepspace probes, robotic systems and next generation launchers usually are much more challenging. For example, do we know how to deal with distributed systems in space? Can we specify with lists of textual requirements all the complex scenarios to handle fault management? The companies that are involved in these new missions, now that the European Space Agency is open to many new countries, are more diverse today than in the past, and some have little background in the space domain and little software items to reuse. There are many areas where projects could benefit from dedicated tools and languages to approach new problems areas. For example, automatic code generation, which seemed underperforming and cumbersome a few years ago, is now mature and efficient enough to deal with software production. We need to characterize properly our expectations and find places where we could save time by automating repetitive tasks in order to put effort on more creative work.

TASTE provides means to achieve this goal. By looking at the needs first, the idea is to find and easily adopt a good combination of technologies to make concrete and quantifiable progress in a software development lifecycle. By relying on solid, well matured technologies such as ASN.1, SDL and AADL, and by keeping the eyes open on various programming paradigms, with a longterm and opensource support in mind, TASTE is making the synthesis of the past 20 years of work in the field of modelbased development, together with the recent trends in software programming using safer languages (VDM, Ada2012, Rust, F# and others). Of course, the results are not limited to space applications. Indeed, a safe and modern software development approach should in principle benefit all areas where the cost of a system malfunction is high and cannot be compensated by quick fixes after the deployment phase.

What have we done so far?

The development of TASTE started in 2008, and has been cofunded by ESA, industry, and universities. Many partners have participated and brought a lot of knowledge and material in the toolset. The overall strategy, vision and work plan is established by ESA.

In that context, a lot of work has already been achieved, and as a technology demonstrator, TASTE is already a fullfeatured set of tools, that goes very far in several areas of software development and deployment. The tool contains:

• a userfriendly entry point, containing a graphical editor for capturing a system architecture using the AADL language, and a state machine editor implementing partly the SDL language [START_REF] Opengeode | [END_REF] Fig. 1 

TASTE userfriendly GUIs

• a full, commercialquality ASN.1 compiler dedicated to safetycritical systems, generating optimized Ada and C code, but also customizable documentation using template files • technology to glue heterogeneous languages: user code can be written in C, Ada, Simulink, SDL, VHDL • A custom integration of the Cheddar and Marzhin tools providing scheduling analysis of realtime systems • a lot of other tools that ensure a correctbyconstruction approach, allows to run simulations, perform regression testing and monitoring, create links to system databases, and much more.

Technical insight

Any complex system development requires the combination of many different disciplines to cover wide ranges of requirements. In terms of software, it is common to make use of a large number of technologies to address various aspects of the same problem:

• When coding manually, C and Ada are used to cover onboard software functionalities • Assembly language is sometimes used for lowlevel code and boot software The TASTE philosophy is to let application domain specialists spend most of their effort on their area of expertise and let tools automate the tedious parts which are of little interest to the system engineers. This means taking the wide variety of technology needed in practice, and putting everything together using tools, in order to ensure a system development that is correct by construction. It is not yet possible everywhere of course, but this is the goal we try to achieve. Correctness by construction covers different facets including this one: the provision of languages that are domainspecific allows to have one and only one way of addressing a problem and rely on the research done in the area to prevent at the source the risk of a bad software implementation. To illustrate this facet, consider the following examples:

• Embedded systems are fundamentally based on state machines. Systems react on their environment and behave depending on their current mode of operation. Using a language such as SDL [4] in TASTE gives the right syntax and the corresponding checkers to ensure by construction that the application focuses on the state machine and nothing else. • Data types: rather than reasoning in terms of physical encoding (size of integers, endianness), think about the range of values that are needed by the applications.

Even if it will need to be quantified, we expect that the generalized use of dedicated languages combined with tools automating software production, on the long term, will save a lot of time that is today spent on developing manually recurrent software functionalities.

User feedback

TASTE as a whole is only used by few companies. As shown in the case study presented in the next chapter, some of the TASTE components have already reached a high level of quality and usability and have proven excellent applicability to reallife projects ; but in this chapter we will discuss the braking factors and way forward to make sure that in the future, TASTE will be better known and used by many.

Taking the decision to adopt "unusual" technologies for a new project such as those present in TASTE (modelling tools, code generators, etc.) is always raising a number of questions: did anyone try them before in a similar context? is the technology really mature? what are the risks versus the benefits? is there a community of users? is there a commercial support available? is the underlying technology going to be supported on the long run? will someone be able to maintain the generated code in a satellite in 15 years? and by the way do we really want to automate the repetitive tasks that we have been doing manually for 30 years?

Even if some languages used in TASTE seem widely known in other domains of applications (e.g. ASN.1 or SDL are standard languages for telecommunication systems), they still represent small communities of users, and experience in computer science shows that technology is fragile and so pillars can collapse quickly. For example, UML that was called by many a "de facto standard" for modern software development is today declining fast and is abandoned by several tool vendors and users. From the point of view of nontechnical decision makers, it can be difficult to see the difference between fashionable technologies which are designed for marketing purposes and technologies with solid grounds that can really help if used properly.

When the decision is taken, there is of course a price to pay. One part of this price is related to the effort needed to make an efficient use of the selected technology. Assimilation of knowledge requires effort and time. The techniques we are considering (state machines, abstract data types, model checking, etc.) are scientifically sound and mature, but at the same time they are often not widely known or understood by industrial developers. As a consequence there are limited useful resources and user feedback available so it is often perceived that the investment is risky due to little immediately visible benefits.

It is relevant to note that in the past few years, a significant interest has raised in software communities towards the functional programming style (declarative style, immutability, recursion, monads, etc.) These techniques are quite ancient but were never considered seriously for inclusion in mainstream, imperative programming languages. And yet they got a sudden and apparently unexpected second life, and many of these techniques are now included as firstclass citizens in many languages (e.g. lambda functions). This simple example shows how software is a living and surprising area that is capable of evolving when technology proves an added value on real use cases.

One of the reasons ESA is investing a lot in software development is because exploration is part of its core mission. Exploration of space requires as a first step, as well as a side effect, exploration of new technology that is also useful on Earth. As a nonprofit technical organization, ESA is not tight to any single tool, language or technology. ESA therefore has the freedom and the possibility to progress with a consistent and long term vision, taking the time to assess tools, make the right choices, and deliver results that do not depend on an immediate hit in market places.

ESA is looking at many possible ways of improving software development and in addition to TASTE has created projects named: SAVOIR and OSRA (trying to establish "reference architectures" of systems) COMPASS (exploring the fault detection mechanisms) EDS (modelling device driver interfaces) and a few others

In order to help these technologies get a chance to be used in operational projects and fly on future missions, ESA is working together with the European space industry to harmonize research and development initiatives and make communities talk together. Many technologies are driven by experts who get stuck in their area due to difficulty to have a global picture of the end user needs, to the lack of networks, connections with other research areas, or simply resources. For example, scientists who create formal methods usually have little time or interest in implementing end user interfaces that yet would be a key to make their results visible and usable by nonexperts. ESA is capable of creating these missing links, animate working groups, experiment and disseminate tools, and that is the chosen direction, now that the level of trust in what tools like TASTE can do allows to go a step further.

Case Study PROBA3 Coronagraph Instrument Software

PROBA3 is a mission devoted to the inorbit demonstration of precise formation flying techniques and technologies for future ESA missions. It will fly an instrument named ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun) as primary payload, making use of the formation flying technique to form a giant coronagraph capable of producing a nearly perfect eclipse, and allowing to observe the sun corona closer to the rim than ever before. The coronagraph system is distributed over two satellites flying in formation (approx. 150 meters apart). The so called Coronagraph Spacecraft(CSC) carries the camera and the so called Occulter Spacecraft(OSC) carries the sun occulter disc.

Fig.4 PROBA3 formation flying overview and orbit.

The proposed PROBA3 Coronagraph System (ASPIICS) will be the first space coronagraph to cover the range of radial distances between 1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse, but without the effects of the Earth's atmosphere. ASPIICS will combine observations of the corona in white light and polarization brightness with images of prominences in the He I 5876 Å line.

ASPIICS will provide novel solar observations to achieve the two major solar physics science objectives: to understand physical processes that govern the quiescent solar corona, and to understand physical processes that lead to coronal mass ejections and determine space weather ( [START_REF]Design status of ASPIICS, an externally occulted coronagraph for PROBA3[END_REF]).

The PROBA3 coronagraph optical design follows the general principles of a classical externally occulted Lyot coronagraph. The external occulter, hosted by the Occulter Spacecraft, blocks the light from the solar disc while the coronal light passes through the circular entrance aperture of the Coronagraph Optical Box (COB), accommodated on the Coronagraph Spacecraft (CSC).

COB, its control devices, and some other mechanisms form the Coronagraph Instrument. Following case study describes usage of some TASTE tools in development of Coronagraph Instrument Software (CISW).

CISW main responsibility is to integrate and control other instrument's subassemblies in order to achieve some level of autonomy from spacecraft, including automatic execution of all observation related operations.

It is common that one of the most important part of software design is its interface, but in this situation (combining multiple subsystems into one single interface visible from main platform system) it is even more crucial to ensure proper integration of CISW with satellite, by enforcing consistency of data definitions between requirements, documentation and final implementation.

TASTE addresses those issues using language for modelling of data called ASN.1. This language was designed to ensure endtoend data consistency: from a single description of data structures, tools can guarantee by constructions that semantically equivalent representations exist at any point in time in:

• software code,

• software documentation,

• system databases, • test scripts.

It is also a well known standard, used for years in telecommunications, with various other tools available. Using this language it was possible to easily translate communication data related CISW requirements, like ones visible on Fig. 5 into ASN.1 model (Fig. 6). Such model is readable even by nonprogrammers and provides short step between textual requirements and verifiable model.

Fig.6 ASN.1 description of some of the TC sent to CISW by the satellite platform

Although this model provides information only on logical components of data, it can easily be extended to describe physical representation. ASN.1 itself contains some standard encoding rules, like GSER, PER etc. It makes creation of data representation model very easy just information about used encoding standards for already provided ASN.1 data models is needed. Yet in some situations, like with CISW, when some enforced encoding rules are outside of ASN.1 scope, standard solutions are not enough. Fortunately TASTE provides another language, ACN, which was designed for ESA with purpose of describing encoding rules for ASN.1 defined structures [START_REF]ASN.1 and ACN[END_REF].

Fig. 7 ACN encoding rules for TC described in ASN.1.

Figure 7 shows, how previous ASN.1 model can be enhanced into complete data representation model by including of ACN encoding rules. With that addition, model contains enough information to be a source for generated detailed documentation, or encoding and decoding procedures for production code.

In CISW development the ASN.1 compiler named asn1scc [START_REF]ASN.1 and ACN[END_REF] was used, which started as part of TASTE (and it is still included in it) but now it is a standalone tool. It is being used to ensure consistency between ASN.1 model (based on requirements), flight and testing code (some C functions generated from model), and required software interface documentation (partially generated from model). Consistency is achieved by treating ASN.1 and ACN model files as source code with asn1scc calls being included in build process. Same files are also used to generate documentation (Fig. 8), which will become part of Interface Control Document (ICD) required document, which shall allow other components' providers to interface with CISW. ASN.1 and ACN files will be included in that document as attachments (together with generated C header files), allowing their reuse by document receivers. DMT allows to create Python and SQL (among many others) bindings for structures described in ASN.1. In CISW testing SQL bindings are mostly used to log and later analyze telemetry reported by working software. Each received message can be stored in database, in decoded form, allowing execution of complex queries for example to calculate statistic of reported housekeeping parameters. Work needed to enable SQL bindings was minimal, assuming Python bindings already existed. With them many additional tools (including analytical) can be used by developers. At this moment they're used for manual tests, but probably, together with code development, some automatic integration tests will be created and connected to internal verification test suite.

Python bindings turned out to be an essential help in development process. Basic bindings come at zero costs, but embedding them in build process, providing some utility functions and glue code for additional modules required some moderate amount of work, but at this moment it seems it was a justifiable invest.

Fig. 9 Example of testing capabilities available via Python bindings.

Figure 9 shows how simple testing complex capabilities of CISW becomes with tests written in Python. All encoding and decoding is done by bindings generated by TASTE. Only connection methods were implemented by hand. Additional gain is that this test can be used with many different real connections starting from unit tests, where whole CISW is embedded inside tests executable (no real connection is used), through connecting to simulator and ending with real serial connection to development board with uploaded CISW. This way the same test can be used by developer on his/her machine and for integration tests with real hardware. Such capabilities greatly enhance both development speed and code quality, which is a rare combination, worth additional work.

Working with TASTE proved that one of its biggest advantages is that it is a completely open source project. For example, at some point it turned out, that C code generated by asn1scc produces some warnings in older versions of C compiler. Those warnings were superfluous and not present in newer versions of compiler, but old version was required by CISW target platform toolset. As CISW team aims at warning free code, this could become an issue, yet it was easily fixed by making a simple change in asn1scc (renaming some generated variables names). Not only it was possible ad hoc due to open source nature of TASTE, it was also easy to provide that change back to community and current version has this issue already fixed.

CISW is still being developed, so it is hard to predict how much impact TASTE will finally have on this project, but at this moment it proved to contain useful engineering tools, which can greatly help in assuring quality, safety and maintainability of code. Those tools are more than just technology demonstrator. Without them development process could not be at the same level of advancement at this point in time and they became its crucial parts. There are other efforts in industry to cover some of these areas. Tools for system engineering, user requirement notation, use case maps etc., are all of interest for the future of the TASTE approach.

Conclusion and future

Fig. 10 Overture showing coverage information after a validation experiment TASTE was created with the objective to develop software with a more scientific mindset than the classical editcompiledebug approach. To go further in that direction, some work is being done for example with formal methods, in particular the suite of VDM languages [START_REF]VDM and the Overture project[END_REF][START_REF] Fitzgerald | Collaborative Design for Embedded Systems Comodelling and Cosimulation[END_REF]. It offers a very powerful approach to specification and implementation of software; it is used in several industrial areas but is mostly unknown to the space community. In the spirit of functional languages, but not limited to that paradigm, it provides a rich and compact syntax to express complex requirements. It forms the basis for formal analysis as well as pragmatic support for testing and validation. On the other hand it offers interactive prototyping and testing, proof support and model checking, which is well suited to the verification of properties when using domainspecific languages. Combining all these technologies in a consistent way might help making a real step forward in the quality of software. This approach to modelbased systems engineering tries to build upon the results from the domain of cyberphysical systems of systems, as promoted by the DESTECS INTOCPS project [START_REF]The DESTECS project[END_REF][START_REF]The INTOCPS project[END_REF]. In this project, we couple abstract continuous time models of the environment, specified in Bond graphs, with discrete event models of the controller (spacecraft) using VDM, which allows validation of system properties very early in the lifecycle, for example by means of 3D visualisation, as is shown in Figure 11. Currently, an early prototype is available where SDL models in TASTE, specifying the reactive systems behavior in terms of state machines, are enriched with VDM models in Overture [START_REF]VDM and the Overture project[END_REF] to express the algorithmic parts of the system behavior, whereby ASN.1 is used as the vehicle to exchange data types between these formal techniques.

Fig. 11 Multidomain cosimulation of a Mars rover using Overture, developed in DESTECS [START_REF]The DESTECS project[END_REF] 

Fig. 5

 5 Fig. 5 Example of requirements for CISW TC.

Fig. 8

 8 Fig. 8 Documentation (in HTML format) generated from ASN.1.This functionality alone proves usefulness of ASN.1 modelling with TASTE tools, but, as usual, it turns out that once model is prepared a lot of new possibilities of its usage appear. CISW developers decided to use asn1scc and other TASTE Data Modelling Tools (DMT) in their internal software verification process, to ensure higher code quality. At first asn1scc was used to generate encoder and decoder unit tests based on data model. Those tests help achieve high code and functionality coverage with close to zero additional development costs. Still, highly regarding code (product) quality, development team decided to invest some time to create own test framework based on possibilities provided by TASTE.