Introducing SCADE Model-Based Development into a Safety-Critical System Environment

With the publishing of ED-12C and ED-218, an opportunity has been created in which Model-Based Development is better defined for a Safety Critical System Environment. This positioning paper describes the approach and methodology applied to move from a conventional development, to a Model-Based Development. The major issue of how to integrate the two development methodologies is discussed.

Introduction

Since the publication of ED-12B, advances and experience have been gained in model-based development and verification, their application, and supporting tools. As the use of this technology for critical software applications in avionics has increased, there are a number of issues that need to be considered to ensure the safety and integrity goals are met. With the ED-12C [1] edition and introduction of ED-218 [START_REF]ED-218[END_REF] these issues are addressed.

For engine control systems the demand placed on the provider is that the software is produced to ED-12C Safety Critical Level A standard [1]. Section 1 of this paper considers the selection of a model-based development tool with a certified code generator which meets the requirements of ED-12C and ED-218. This removes the obligation to perform code reviews and low level testing in the Vmodel process [START_REF]ED-218[END_REF]. Section 2 discusses the integration of the candidate Model-Based Development Tool (MBDT) with the existing technology that had been used over a series of control system developments. Section 3 addresses the tooling that currently supports the existing process. This poses the question of whether to update and integrate, or to generate specific tooling to support the MBDT. Finally Section 4 is concerned with other aspects of the introduction of a Model-Based Development into projects.

Section 1 -Selection and Process for the Model-Based Development Tool

The primary criterion for selecting a Model-Based Development Tool is that there is an ED-12C qualifiable code generator that produces ADA code from a model. A mandated process under ED-12B/C is to demonstrate, using independent review and test, that the code meets the low level design. A significant amount of resource is spent doing this, however very few coding errors are made, typically 2% against 70% in requirements. Under ED-12C if the code has been produced by a qualified code generator then the demonstration is no longer required. Investigating the availability of qualifiable code generators discovered that ANSYS/Esterel Technologies [START_REF]SCADE Suite -Esterel Technologies -A Division of Ansys Corp[END_REF] markets such a product -SCADE Suite, as a member of a four part product set. SCADE Suite uses either KCG C qualifiable code generator, or a currently unqualifiable KCG ADA code generator (KCG ADA is undergoing a process which is expected to complete in 2015 which will result in a qualifiable version). Further investigation showed that there are no qualifiable ADA code generators available. SCADE Suite comes with a large set of utilities; however these are not qualifiable for reasons other than technology. SCADE Suite has a significant user base and, since Esterel Technology became part of ANSYS, the tool is expected to be available to support development over the life time of an engine.

A gated process to introduce a SCADE design process into the company was enacted. This not only examined all aspects of using SCADE for designing and modelling engine behaviour, but the business case as well. Part of the process is to have prototype and pilot projects to demonstrate that the SCADE methodology and tooling is robust and complete. An important part of the process is training, so a SCADE Tutorial was written for use in-house to be led by an internal tutor. The SCADE Tutorial emphasises the particular aspect of designs that are commonly used on projects. The training covered both design and model test coverage features of SCADE and is used in conjunction with the SCADE Suite examples and documentation.

Three 'Golden Examples' or exemplars, were developed by a trained implementation team using a previously implemented set of High Level Requirements (HLRs). They modelled a scheduler, a signal validation scheme and an engine status state machine. They were analysed against the original developments to validate the artefacts produced and compare metrics. The SCADE process identified a problem in a requirement specification which was corrected immediately. In the original implementation the problem had gone through a full development cycle before being identified and corrected. The full SCADE package was then exercised in a pilot project. A team of four engineers from a sister company were trained using our internally developed training material 'The SCADE Tutorial', and then given the same 'Golden Example' requirements to design and verify. This pilot team also discovered the specification problem and completed the task in a slightly longer time than the original team. Full ED-12C Level A processes were used in both cases and, because SCADE KGC ADA is not currently qualified, the code artefacts are subject to review. SCADE is now In-Service within the company and has been successfully used on three engine types for shaft break detection, air flow and lean burn components.

Section 2 -Integration of the Model-Based Development Tool and the Existing Process

The existing process uses Artisan Studio [START_REF]Acronyms SCADE -Safety Critical Application Development Environment[END_REF] for UML Modelling and development and we will always want an Artisan model to place the SCADE components into. This means that all SCADE components have to be integrated into our Fixed Priority Scheduler (FPS) for the Electronic Engine Controller (EEC). The software architecture is modelled in UML and each schedulable component in the model can only have "init" and "run" methods in each software component class. So a way had to be found to access SCADE through a single entry point so as to be able to integrate the SCADE component into the architectural model. A SCADE component stereotype allows the architecture modelling tooling to generate a SCADE/UML interface. A call is generated of the type "componentSCADE_execute" within the "component.run" method, passing a ".ctx" SCADE context object as a parameter. Also the data for the accessor methods to the boundary items between SCADE and the architecture model have to be passed as parameters, these are picked up as sensors within the SCADE package. Any test points are set up as probes and passed back through the ".ctx" SCADE context object. Having a single entry point means that requirement testing has to be behavioural testing in black box mode. Subsequently we discovered, for verification tooling and testing reasons, that multiple entry points might be preferable, if so then a "componentSCADE_execute" operation is needed for each one. However this should be carefully considered, due to the extra work involved.

Section 3 -Tooling for Two Methodologies

In the existing development environment, the processing of hand written ADA is handled by the tool and its code generator. This builds the component source file from all the architectural diagrams and the hand written code. The ADA is checked for SPARK compliance and complied by an in-house complier based on GNAT. At this point the component source files go through an ED-12C mandated review process to check that code meets design. Often the code is subjected to find and fix testing on a rig to expose and capture requirement, design and code problems. On completion of the review, the components are put into a build and undergo a test process. SCADE Suite provides a simulation and model test coverage MTC facility, thus the designer can model and simulate the design. This provides an early opportunity to discover if any problems exist in the component HLRs and, at the end of the design process, there is a high confidence in the validity of the model. After a design review the model code is transferred to the test process for testing against the HLRs.

In order to integrate SCADE Suite with the architecture model, a set of tools were developed. These are based on the work carried out in the 'Golden Examples' and the pilot activities. Previously altering the FPS was not an option, so a convention to name SCADE operations as "componentSCADE_execute" was made. The "component.run" method is designed exactly as before, but now with "componentSCADE_execute" method embedded, which passes, as a minimum, a ".ctx" SCADE context object as a parameter. The SCADE Integrator tool was developed to generate the SCADE component model according to the structure defined in the architecture model. This picks up all the Methods, Interfaces, Development Variables and Test Points in the component class and creates the SCADE Component Model. Any SPARK annotations are also generated. Data Tables are processed by a Graphical Data Loader tool which puts the data into graphical data packages in the architecture model for use by the software components. SCADE Suite operates in its own environment and holds all the type definitions in single file called "KCG_types". This is not an issue when there is a single "componentSCADE_execute" in the "component.run" method. However when there are more than one, then there is a problem with duplicated "KCG_types" files.

Another feature is that SCADE Suite creates its own variable names. For example a record structure "{delta, flt}" is named "daft_1". Understanding this algorithm is easy, however when it comes to Graphical Data with multidimensional arrays, naming proved to be impenetrable. The SCADE Code Processor tool was developed to structure/call KCG using command line arguments and to edit the graphic data files to integrate with KCG generated code files. For example each of the "KCG_types" is forced to generate as "componentSCADE_KCG_types", resolving the name space issue.

The testing tool used for the existing systems is ADATest. Our in-house Component Under Test Explorer tool (CUTE) is used to generate the necessary test cases to demonstrate coverage and robustness. The output ADATest is an ".ath" file which is executed to test the component and gather coverage from an instrumented version. CUTE was modified to access the architecture model "componentSCADE_execute" method and produce "componentSCADE.sth" files for processing by SCADE. There was no change to how CUTE was used. The SCADE Manager was developed to process the CUTE "componentSCADE.sth" files and generate ".sss" files and run SCADE MTC in command line mode. This generates coverage reports for the SCADE components.

Model-Based Systems Engineering (MBSE) is used to produce HLRs. In order to provide traceability the SCADE LifeCycle Requirements Management tool is used. This uses regular expressions to process a range of documents, including ".pdf", ".doc" and ".xls", and also has an interface to DOORS. The requirement tags are extracted from the HLRs and allocated to the SCADE operations. A rich set of views and utilities are available in the tool to make requirement tracing easy. Finally the software design document generator tool was modified to integrate the SCADE design documentation produced by SCADE Suite.

The truncated SCADE V lifecycle under ED-12C and ED-218 is given in Figure 1, the SCADE Context diagram is given in Figure 2 and the conversion of the UML Component into SCADE is given in Figure 3. The major issue was the previous decision to use the KCG ADA code generator. This is currently being "made qualifiable" and will finally eliminate the need for code reviews. Until this happens they still have to be performed to comply with ED-12B/C for certification. Against using the qualified C generator was the necessity of providing ADA/C conversion wrappers for every SCADE call. In an environment where safety is critical and Worst Case Execution Time (WCET) has to be as low as possible, the wrappers were considered to be unnecessary overhead. Another factor was the interfaces between the layers of the architecture models. As SCADE is being used initially on a refresh program, the effort of re-designing the existing systems would have been too great for the benefit obtained. So introducing SCADE and integrating with existing software has to be as robust as possible and this burden falls on the tooling effort.

Critical to the success of the project was the development of SCADE and SCADE MTC Tutorials. These are complementary to those provided by SCADE Suite. The SCADE Tutorials are concerned with generating a set of SCADE projects from nothing and exploring each set of SCADE primitives in depth. This is especially true with maps and folds, which was found to be a difficult concept to grasp.

Also the examples are tailored to meet typical types of project component.

By generating the 'Golden Examples', from a previously implemented HLR set, comparisons were able to be made between the two SCADE teams which found that there were no significant differences between the quality of the teams work or the time spent. This showed that the SCADE Tutorial and training is fit for purpose. The detection of the problem in the original HLRs helped demonstration of the value proposition of introducing the SCADE process.

A set of SCADE Utilities comparable with the existing Utilities were created. By looking across three existing projects only those which were in all three were generated. An exercise was carried to calculate the WCETs and they were compared with the existing times. The auto generated code was within 3% of the hand written code and in the binary search turned out to be faster. SCADE Suite is architected such that SCADE Utilities and project specific versions of Utilities can be deployed simultaneously. The intention is to make the SCADE Utilities product line software components once KCG ADA is qualified.

Due to the IT policy and against advice SCADE Suite was installed on a Citrix network. This proved impossible to run, and so it was installed on the local machine. This again proved to be a problem, due to SCADE Suite requiring to write logging files in its' program directory, which is against our IT policy. The solution turned out to be to run SCADE from a shortcut with the Start In parameter set to a writeable directory.

The look and feel of SCADE Suite was good, and the help system was exceptional. If anything it was over thorough, which is not often stated. The whole SCADE process took about 4 man years to achieve, and was rigorously progressed through a gated improvements process.

By using SCADE the dynamic of planning and project management is changed. The software spend is loaded upfront into the system and software interface and on into the design phase. Of course the cost of code review and low level testing is removed, but is taken up with design activity costs. As part of the ED-12C/ED-218 process there is also a need to re-execute the tests in target to show compatibility with target hardware with attached costs. When comparing SCADE development components against existing development a cost saving of about 18% was seen due to the removal of scrap and rework (S&R), where the components have been right first time. We made the benefit of S&R almost a break even cost because we knew that there were further benefits to be gained, but hard to quantify. As expertise increases other aspects of project spend will be reduced.

Another feature of using SCADE is the effect that it has on the levelling of requirements. There is a tendency to write requirements in a language that resembles pseudo code, and effectively imposes unnecessary constraints on the designers. Using SCADE diagrams to express design helps to encourage a more optimum level of high level requirements. A much greater interaction and discussion between the systems and software engineers was noticed as an evolved behaviour. From our initial experiences it is expected that further changes will occur in the way that projects are managed and resourced, which is a good thing in an environment of continuous improvement.

Conclusion

Ideally anyone wanting to use SCADE Suite should start on a new project that is not dependent on an existing system. ANSYS also provide a SCADE System product which integrates with SCADE Suite, which could have eliminated our architecture tool integration issues. However this should be compared against other vendors or indeed the merits of integrating with existing incumbent systems and processes. Since the code does not need to be inspected the selection of a specific language KCG based on source language preferences should not be an issue but where the code is to be integrated with other code the overheads of mixing languages must be considered. If SCADE Suite is to be used with existing systems then be prepared for lots of challenges. However with a robust plan, analysis, diligence and perseverance it can be achieved.

Figure 1 

 1 Figure 1 -SCADE V Life Cycle

Figure 2 -Figure 3 -

 23 Figure 2 -SCADE Context Diagram

Acknowledgements

All this would not have been possible without the expert help of Edward Anguish, Steven Blyth (Ansys), Andy Burrell, Simon Daniel, Ian Hopkins, Dr Stuart Hutchesson, Yinan Jiang, David Merrifield, Andy Rayner and Tim Roughan.

CUTE -Component Under Test Explorer

SPADE -Southampton Program Analysis Development Environment

SPARK -SPADE ADA Kernel

Authors

Dr Phil Birkin CEng MIET can be contacted at philip.birkin@controlsdata.com Duncan Brown CEng FBCS Roll-Royce Fellow can be contacted at duncan.brown@controlsdata.com