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CLASSIFICATION OF SPECIAL CURVES IN THE SPACE OF

CUBIC POLYNOMIALS

by

Charles Favre & Thomas Gauthier

Abstract. — We describe all special curves in the parameter space of complex cubic polyno-
mials, that is all algebraic irreducible curves containing infinitely many post-critically finite
polynomials. This solves in a strong form a conjecture by Baker and DeMarco for cubic
polynomials.

Let Perm(λ) be the algebraic curve consisting of those cubic polynomials that admit an
orbit of period m and multiplier λ. We also prove that an irreducible component of Perm(λ)
is special if and only if λ = 0.
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2. The Böttcher coordinate of a polynomial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Curves in Poly3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Green functions on special curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5. Special curves having a periodic orbit with a constant multiplier . . . . . . 20
6. A polynomial on a special curve admits a symmetry. . . . . . . . . . . . . . . . . . 25
7. Classification of special curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1. Introduction

The space Polyd of complex polynomials of degree d ≥ 2 modulo affine conjugacy forms a

complex analytic space that admits a ramified parameterization by the affine space Ad−1
C .

The study of the set of degree d polynomials with special dynamical features forms the
core of the modern theory of holomorphic dynamics. We shall be concerned here with
the distribution of the set of post-critically finite (PCF) polynomials for which all critical
points have a finite orbit under iteration. This set is a countable union of points defined
over a number field, see e.g. [I, Corollary 3]. It was proved in [L] in degree d = 2 that any
sequence of Galois-invariant finite subsets of PCF polynomials converges in the sense of
measures to the so-called bifurcation measure in Poly2. This was generalized in [FG] in
any degree under a mild assumption and further explored in [GV]. The support of this
measure has been characterized in several ways in a series of works [DF, Du1, Du2, G3],
and it was shown by the second author [G1] to have maximal Hausdorff dimension 2(d−1).

In a beautiful recent paper [BDM], Baker and DeMarco have proposed a way to de-
scribe the distribution of PCF polynomials from the point of view of the Zariski topology.

First author is supported by the ERC-starting grant project ”Nonarcomp” no.307856, both authors are
partially supported by ANR project “Lambda” ANR-13-BS01-0002.
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They defined special algebraic subvarieties as those subvarieties Z ⊂ Polyd admitting a
Zariski-dense subset formed by PCF polynomials, and asked about the classification of
such varieties. More precisely, they offered a quite general conjecture [BDM, Conjec-
ture 1.4] inspired by the André-Oort conjecture in arithmetic geometry stating that any

polynomial(1) lying in a special (proper) subvariety should admit a symmetry (possibly of
degree ≥ 2). They gave a proof of a stronger version of this conjecture in the case the
subvariety was isomorphic to an affine line.

Our objective is to give the list of all special curves in the case d = 3, thereby prov-
ing Baker-DeMarco’s conjecture for cubic polynomials. To do so, following the seminal
work [BH] of Branner and Hubbard, we shall use the parameterization (c, a) 7→ Pc,a of
the parameter space by the affine plane with

Pc,a(z) :=
1

3
z3 − c

2
z2 + a3, z ∈ C, (c, a) ∈ C2 .

Observe that Pc,a then admits two critical points c0 := 0 and c1 := c and that this map
defines a finite branched cover of the moduli space Poly3 of cubic polynomials with marked
critical points.

Here is our main result.

Theorem A. — An irreducible curve C in the space Poly3 is special if and only if one
of the following holds.

1. One of the two critical points is persistently pre-periodic on C, i.e. there exist integers
m > 0 and k ≥ 0 such that Pm+k

c,a (c0) = P k
c,a(c0) or Pm+k

c,a (c1) = P k
c,a(c1) for all

(c, a) ∈ C.
2. There is a persistent collision of the two critical orbits on C, i.e. there exist (m,k) ∈

N2 \ {(1, 1)} such that Pm
c,a(c1) = P k

c,a(c0) for all (c, a) ∈ C.

3. The curve C is given by the equation {(c, a), 12a3 − c3 − 6c = 0}, and coincides with
the set of cubic polynomials having a non-trivial symmetry, i.e. the set of parameters
(c, a) for which Qc(z) := −z + c commutes with Pc,a.

Recall that for any integer m ≥ 1 and any complex number λ ∈ C the set Perm(λ)
consisting of all polynomials Pc,a ∈ Poly3 that admits at least one periodic orbit of period
m and multiplier λ is an algebraic curve (see §5 for a more precise description).

The geometry of these curves has been explored by several authors, especially when λ =
0. The irreducible components of Perm(0) has been proven to be smooth by Milnor [Mi3],
and the escape components of these curves have been described in terms of Puiseux series
by Bonifant, Kiwi and Milnor [BKM] (see also [K, §7]). On the other hand, DeMarco
and Schiff [DMS] have given an algorithm to compute its Euler characterisitc.

From the point of view of pluripotential theory, the distribution of the sequence of
curves (Perm(λ))m≥1 has been completely described by Bassanelli and Berteloot in [BB2]
in the case |λ| ≤ 1 (see also [G2] for the case |λ| > 1 and [BB1] for the case of quadratic
rational maps).

Inspired by a similar result from Baker and DeMarco, see [BDM, Theorem 1.1] we also
give a characterization of those Perm(λ) that contain infinitely many PCF polynomials,
and prove

(1)the conjecture is actually stated for any rational maps, and a stronger conjecture related to Pink and
Zilber’s conjectures can be found in [De2].
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Theorem B. — For any m ≥ 1, the curve Perm(λ) contains infinitely many post-
critically finite polynomials if and only if λ = 0.

The general strategy of the proof of these two theorems was set up by Baker and
DeMarco. They start with an irreducible algebraic curve C ⊂ Poly3 containing infinitely
many PCF polynomials (in Theorem B the curve C is a component of some Perm(λ)).
We observe however that they used at several key points their assumption that the curve
C has a single branch at infinity. To remove this restriction we had to include three new
ingredients:

– we construct a one parameter family of heights for which Yuan-Thuillier’s equidis-
tribution theorem applies;

– we investigate systematically the arithmetic properties of the coefficients of the ex-
pansion of the Böttcher coordinates and its dependence on the parameters c, a;

– to build the symmetry we rely on a recent algebraization result of Xie [X] that gives
a criterion for when a formal curve in the affine plane is a branch of an algebraic
curve.

A characteristic feature of our proofs is to look at the dynamics induced by cubic polyno-
mials over various fields: over the complex numbers and over p-adic fields (see e.g. §4.1),
over the field of Laurent series (see the proof of Proposition 3.6 and §5), and over a number
field (see §3). We use at one point the universality theorem of McMullen [McM3] which
is a purely Archimedean statement. Moreover the work of Kiwi [K] on non-Archimedean
cubic polynomials over a field of residual characteristic zero plays a key role in the proof
of Theorem B.

Let us describe in more detail how we proceed, and so pick an irreducible algebraic curve
C ⊂ Poly3 containing infinitely many PCF polynomials. We may suppose that neither c0
nor c1 are persistently pre-periodic on C. By a theorem of McMullen [McM1, Lemma 2.1]
this is equivalent to say that both critical points exhibit bifurcations at some (possibly
different) points in C. There is a more quantitative way to describe the set of bifurcations
using the Green function gc,a(z) := limn→∞

1
3n log max{1, |Pn(z)|}. Indeed both functions

g0(c, a) := gc,a(c0), g1(c, a) := gc,a(c1) are non-negative and pluri-subharmonic, and it is a
fact [De1, §5] that the support of the positive measure ∆g0|C (resp. ∆g1|C) is equal to
the set of parameters where c0 (resp. c1) is unstable.

The first step consists in proving that g0|C and g1|C are proportional, and this conclusion
is obtained by applying an equidistribution result of points of small height due to Yuan [Y]
and Thuillier [T]. We first observe that C is necessarily defined over a number field K
since it contains infinitely many PCF polynomials, so that we may introduce the functions
g0,v, g1,v for all (not necessarily Archimedean) places v over K. These functions can now
be used to build a one-parameter family of heights on C by setting

hs(p) :=
1

deg(p)

∑

q,v

max{s0g0,v(q), s1g1,v(q)}

where s = (s0, s1) ∈ R2
+, and the sum ranges over all Galois conjugates q of p and over all

places v over K. When s0 and s1 are positive integers, then we prove in §3 that the height
hs is induced by a continuous semi-positive adelic metrization in the sense of Zhang on a
suitable line bundle over C of positive degree, so that Yuan-Thuillier’s theorem applies.
This gives us sufficiently many restrictions on g0 and g1 which force their proportionality.
The key arguments are Proposition 3.6 that is close in spirit to [BDM, Proposition 2.1
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(3)], and the fact that the function max{g0,v , g1,v} is a proper continuous function on Poly3
for any place v.

From the proportionality of g0 and g1 on a special curve, we are actually able to conclude
the proof of Theorem B. This step is done in §5. We suppose by contradiction that our
special curve C is an irreducible component of some Perm(λ) with λ 6= 0. Then each
branch at infinity of C defines a cubic polynomial over the complete field of Laurent
series C((t)). And we show that except when c0 or c1 is persistently periodic in C the
multipliers of all periodic points are exploding on that branch by [K]. We then analyze

the situation of a unicritical(2) polynomial in C and computing the norm of the multiplier
of its periodic points in a suitable field of residual characteristic 3, we are able to get the
required contradiction.

Let us come back to the proof of Theorem A. At this point, we have an irreducible
algebraic curve C defined over a number field K and such that g0,v = g1,v at any place
v over K. Recall that for any polynomial Pc,a there exists an analytic isomorphism near
infinity conjugating the polynomial to the cubic monomial map. This isomorphism is
referred to as the Böttcher coordinate ϕc,a of Pc,a. We prove that when c, a are defined
over a number field then ϕc,a is a power series with coefficients in a number field whose
domain of convergence is positive at any place, see Lemma 2.2 and Proposition 2.3.

Building on an argument of Baker and DeMarco, we then show that outside a compact
subset of the analytification of C (for any completion of K) the values of the Böttcher
coordinates at c0 and c1 are proportional up to a root of unity (Theorem 4.1 (2)).

The proof now takes a slight twist as we fix any polynomial P := Pc,a that is not
post-critically finite and for which (c, a) belongs to C(L) for some finite field extension L
of K. We prove that any such polynomial admits a weak form of symmetry in the sense
that there exists an irreducible curve ZP ⊂ P1 × P1 that is stable by the map (P,P ).
The arguments used by Baker and DeMarco in [BDM, §5.6] break down here and we
apply [X, Theorem 1.5] as a replacement for them. In order to get a polynomial that
commutes with P instead of a correspondence, we proceed as Baker and DeMarco and use
Medvedev-Scanlon’s result [MS, Theorem 6.24] (see [P, Theorem 4.9] for another proof
of this result).

At this point we have proved the following result that we feel is of independent interest.

Theorem C. — Pick any irreducible complex algebraic curve C ⊂ Poly3. Then the fol-
lowing assertions are equivalent:

1. the curve C is special,
2. for any critical point that is not persistenly pre-periodic on C, the set of PCF poly-

nomials lying in C is equal to the set where this critical point is pre-periodic;
3. the curve C is defined over a number field K and there exist integers (s0, s1) ∈

N2 \ {(0, 0)} such that for any place v ∈ MK, we have

s0 · g0,v = s1 · g1,v ,

on the analytification of C over the completion of K w.r.t. the v-adic norm;
4. for any sequence Xk ⊂ C of Galois-invariant finite sets of PCF polynomials with

Xk 6= Xl for l 6= k, the probability measures µk equidistributed on Xk converge
towards (a multiple of) the bifurcation measure Tbif ∧ [C] as k → ∞;

(2)i.e. has a single critical point
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5. there exists a root of unity ζ, and integers q,m ≥ 0 such that the polynomial

Qc,a(z) := ζPm
c,a(z) + (1− ζ) c2 commutes with any iterate P k

c,a such that ζ3
k

= ζ, and

Qc,a(P
q
c,a(ci)) = P q

c,a(cj) for some i, j ∈ {0, 1} and all (c, a) ∈ C.

In (4) the current Tbif is defined as the ddc of the plurisubharmonic function g0 + g1.
Its support in C2 is known to be equal to the set of unstable parameters, see e.g. [DF,
§3]. Notice that for any curve C there exists a critical point which is not persistently pre-
periodic on C since by [BH] the set {g0 = 0} ∩ {g1 = 0} is compact in A2

C. In particular,
the assertion (2) is consistent.

To complete the proof of Theorem A, we analyze in more detail the possibilities for a
cubic polynomial to satisfy the condition (5) in the previous theorem. Namely, we prove
that the set of parameters admitting a non-trivial symmetry of degree 3m > 1 is actually
finite. Theorems A and C are proved in §7.

We have deliberately chosen to write the entire paper for cubic polynomials only. This
simplifies the exposition but many parts of the proof actually extend to a larger context.
Let us briefly discuss the possible extensions and the limitations of our approach.

All ingredients are present to prove Baker-DeMarco’s conjecture for a curve in the space
of polynomials of any degree d ≥ 2. It is however not clear to the authors how to obtain
the more precise classification of special curves in the same vein as in Theorem A.

We note that there are serious difficulties that lie beyond the methods presented here
to handle higher dimensional special varieties V in Polyd. The main issue is the following.
To apply Yuan’s equidistribution theorem of points of small heights it is necessary to have
a continuous semi-positive adelic metrics on an ample line bundle on a compactification of
V , and we are at the moment very far from being able to check any of the three underlined
conditions.

Trying to understand special curves in the space of quadratic maps requires much more
delicate estimates than in the case of polynomials. A first important step has been done
by DeMarco, Wang and Ye in a recent paper [DMWY].

Acknowledgements. — We thank Xavier Buff and Laura DeMarco for discussions at
a preliminary stage of this project.

While finishing the writing of this paper we have learned that Dragos Ghioca and Hexi
Ye have independently obtained a proof of our Theorem A. Their approach differs from
ours in the sense that they directly prove the continuity of the metrizations induced by the
functions g0,v and g1,v. We get around this problem by considering metrizations induced
by max{s0g0,v, s1g1,v} for positive s0, s1 instead. We warmly thank Ghioca and Ye for
sharing with us their preprint.

2. The Böttcher coordinate of a polynomial

In this section, K is any complete metrized field of characteristic zero containing a square-
root λ of 1

3 . It may or may not be endowed with a non-Archimedean norm.
IfX is an algebraic variety over K, thenXan denotes its analytification as a real-analytic

or a complex variety if K is Archimedean, and as a Berkovich analytic space when K is
non-Archimedean (see e.g. [B, §3.4-5]).
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2.1. Basics

As in the introduction, we denote by Poly3 ≃ A2 the space of cubic polynomials defined
by

(1) Pc,a(z) :=
1

3
z3 − c

2
z2 + a3 .

It is a branched cover of the parameter space of cubic polynomials with marked critical
points. The critical points of Pc,a are given by c0 := c and c1 := 0.

For a fixed (c, a) ∈ K2 the function 1
3 log

+ |Pc,a(z)|− log+ |z| is bounded on A1,an
K so that

the sequence 1
3n log+ |Pn

c,a(z)| converges uniformly to a continuous sub-harmonic function
gc,a(z) that is called the Green function of Pc,a.

We shall write g0(c, a) := gc,a(c0), g1(c, a) := gc,a(c1), and

G(c, a) := max{g0(c, a), g1(c, a)} .

Proposition 2.1. — There exists a constant C = C(K) > 0 such that

sup
A2,an
K

∣∣G(c, a) − log+max{|a|, |c|}
∣∣ ≤ C ,

and this constant vanishes when the residual characteristic of K is at least 5.

A proof of this fact is given in [BH, §4] (see also [DF, §6] for a more detailed proof) in
the Archimedean case and in [FG, §2] in general.

2.2. Expansion of the Böttcher coordinate

For any cubic polynomial P ∈ K[z], we let the Böttcher coordinate of P be the only formal
power series ϕ satisfying the equation

ϕ ◦ P (z) = ϕ(z)3(2)

which is of the form

ϕ(z) = λz + α+
∑

k≥1

akz
−k ,(3)

with α, ak ∈ K for all k ≥ 1.

Lemma 2.2. — Given any (c, a) ∈ K ×K, the Böttcher coordinate ϕc,a(z) of the degree

3 polynomial Pc,a := z3

3 − c
2z

2 + a3 exists, is unique, and satisfies

ϕc,a(z) = λ
(
z − c

2

)
+

∑

k≥1

ak(c, a)z
−k ,

where

(4) ak(c, a) ∈ Z

[
λ,

1

2

]
[c, a] with deg (ak) = k + 1 .

Moreover the 2-adic (resp. 3-adic) norm of the coefficients of ak are bounded from above

by 2k+1 (resp. 3k/2).
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Proof. — The defining equation (2) reads as follows:


λ

(
z − c

2

)
+

∑

k≥1

ak(c, a)z
−k




3

=

λ

(
z3

3
− c

2
z2 + a3 − c

2

)
+

∑

k≥1

3kak(c, a)

z3k (1− 3c
2z + 3a3

z3
)k

An immediate check shows that terms in z3 and z2 are identical on both sides of the
equation. Identifying terms in z yields

3λ3(c2/4) + 3λ2a1 = 0, so that a1 = −λ

4
c2,

whereas identifying constant terms, we get

3λ2a2 + 6λ2(−c/2)a1 + λ3(−c3/8) = λ(a3 − c/2)

hence

a2 = −5λ

24
c3 +

1

3λ
(a3 − c

2
) .

This shows (4) for k = 1, 2, since λ−1 = 3λ.
We now proceed by induction. Suppose (4) has been proven for k. Identifying terms in

z−(k−1) in the equation above, we get

3λ2ak+1 − 3cλ2ak +
3λ2

4
c2ak−1+

+ λ
∑

i+j=k

aiaj − λ
c

2

∑

i+j=k−1

aiaj +
∑

i+j+l=k+1

aiajal =

∑

l≥1

3lal

[(
1 +

3c

2z
+

a3

z3

)−l
]

k+1−3l

where

[(
1 + 3c

2z + a3

z3

)−l
]

j

denotes the coefficient in z−j of the expansion of (1+ 3c
2z +

a3

z3
)−l

in power of z−1. Observe that this coefficient belongs to Z[12 ][c, a] and has 2-adic norm

≤ 2l and is a polynomial in c, a of degree at most j. It follows that the polynomial

al(c, a)

[(
1 +

3c

2z
+

a3

z3

)−l
]

k+1−3l

is of degree at most k + 1 − 3l + l + 1 = k + 2 − 2l < k + 1. The induction step is then
easy to complete using again λ−1 = 3λ.

2.3. Extending the Böttcher coordinate

Recall that G(c, a) = max{g0(c, a), g1(c, a)}.

Proposition 2.3. — There exists a constant ρ = ρ(K) ≥ 0 such that the Böttcher coor-
dinate of Pc,a is converging in {z, log |z| > ρ+G(c, a)}.
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There exists another constant τ = τ(K) ≥ 0 such that the map (c, a, z) 7→ ϕc,a(z)
extends as an analytic map on the open set

{(c, a, z) ∈ A2,an
K × A1,an

K , gc,a(z) > G(c, a) + τ} ,

and ϕc,a defines an analytic isomorphism from Uc,a := {gc,a > G(c, a) + τ} to A1,an
K \

D(0, eG(c,a)+τ ) satisfying the equation (2) on Uc,a. We have

(5) gc,a(z) = log |ϕc,a(z)|K on Uc,a .

Finally, τ = 0 except if the residual characteristic of K is equal to 2 or 3.

We shall use the following lemma which follows easily from e.g. [FG, Proposition 2.3].

Lemma 2.4. — There exists a constant θ = θ(K) ≥ 0

sup
A1,an
K

|gc,a(z)− log+ |z|| ≤ θ .

Moreover, θ is equal to 0 except if the norm on K is Archimedean or the residual charac-
teristic of K is equal to 2 or 3.

Proof of Proposition 2.3. — Assume first that K is Archimedean, and set τ = 0. In that
case most of the statements are proved in [DH] (see also [BH, §1]). In particular, ϕc,a(z)
is analytic in a neighborhood of ∞ and extends to Uc,a by invariance and defines an
isomorphism between the claimed domains. It is moreover analytic in c, a, z.

To estimate more precisely the radius of convergence of the power series (3), we rely
on [BH, §4] as formulated in [DF, §6]. First choose C = CK > 0 such that G(c, a) >
log+max{|a|, |c|} −C. Then log |z| > C +G(c, a) implies |z− c

2 | > max{1, |a|, |c|} − | c2 | ≥
1
2 max{1, |a|, |c|} hence log |z − c

2 | > G(c, a) − log 2, so that gc,a(z) > log |z − c
2 | − log 4 >

G(c, a), and ϕ converges in {z, log |z| > G(c, a) + ρ} with ρ := C as required.

From now on, we assume that the norm on K is non-Archimedean.

When the residual characteristic of K is different from 2 and 3, then (4) implies |ak| ≤
max{1, |c|, |a|}k+1 so that ϕ converges for |z| > max{1, |c|, |a|}, and log |ϕ(z)| = log |z|.
Recall that that we have G(c, a) = logmax{1, |c|, |a|} by Proposition 2.1 so that one can
take ρ = 0. Pick any z such that g(z) > G(c, a), and observe that |Pn(z)| → ∞. Then we
get

(6) gc,a(z) = lim
n→∞

1

3n
log |Pn(z)| = lim

n→∞

1

3n
log |ϕ(Pn(z))| = log |ϕ(z)| = log |z| .

In particular the set {g > G(c, a)} is equal to A1,an
K \ D(0, eG(c,a)), and ϕ is an analytic

map from that open set onto itself. It is an isomorphism since log |ϕ(z)| = log |z| as soon
as g(z) > G(c, a). The proposition is thus proved in this case with τ = 0.

In residual characteristic 2, |ak| ≤ (2 max{1, |c|, |a|})k+1 whence ϕ converges for |z| >
2max{1, |c|, |a|}, and as above log |ϕ| = log |z| in that range. Recall that G(c, a) −
log+max{|c|, |a|} ≥ C = C(K), so that log |z| > G(c, a) + log 2 − CK implies |z| >
2max{1, |c|, |a|}, which proves that the power series (3) converges for log |z| > G(c, a) + ρ
with ρ = log 2 − C. Set τ := ρ + θ where θ is the constant given by Lemma 2.4. Us-
ing log |ϕ(z)| = log |z| as above, we get that ϕc,a defines an analytic isomorphism from

Uc,a := {gc,a > G(c, a) + τ} to A1,an
K \ D(0, eG(c,a)+τ ).

In residual characteristic 3, |ak| ≤ (31/2 max{1, |c|, |a|})k+1 whence ϕ converges

|z| > 31/2 max{1, |c|, |a|}, and log |ϕ| = log |λz| in that range. Recall that G(c, a) −
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log+max{|c|, |a|} ≥ C = C(K), so that log |z| > G(c, a) + log 31/2 − CK im-

plies |z| > 31/2 max{1, |c|, |a|}, which proves that the power series (3) converges for

log |z| > G(c, a) + ρ with ρ = log 31/2 − C. We conclude the proof putting τ := ρ + θ as
before.

Remark. — It is possible to argue that τ = 0 also in residual characteristic 2. Although
we do not know the optimal constant τ in residual characteristic 3 the Böttcher coordinate

is likely not to induce an isomorphism from {gc,a > G(c, a)} to A1,an
K \ D(0, eG(c,a)).

3. Curves in Poly3

In this section we fix a number field K containing a square-root λ of 1
3 and take an

irreducible curve C in Poly3 that is defined over K. Our aim is to build suitable height
functions on C for which the distribution of points of small height can be described using
Thuillier-Yuan’s theorem. Our main statement is Theorem 3.9 below.

Recall that given any finite set S of places of K containing all Archimedean places, OK,S

denotes the ring of S-integers in K that is of elements of K of v-norm ≤ 1 for all v /∈ S.
We also write Kv for the completion of K w.r.t. the v-adic norm.

3.1. Adelic series

A formal power series
∑

n anz
n is said to be adelic on K if its coefficients belong to OK,S

where K is a number field, and S a finite set of places on K; and for each place v on K the

series has a positive radius of convergence rv := lim supn→∞ |an|−1/n
v > 0. Observe that

rv = 1 for all but finitely many places.

Lemma 3.1. — Suppose α(t) =
∑

n ant
n is an adelic series with a0 = 0 and a1 6= 0.

Then there exists an adelic series β such that β ◦ α(t) = t.

Proof. — Suppose an ∈ OK,S for all n, and write β(t) =
∑

n bnt
n. The equation β◦α(t) = t

amounts to b0 = 0, b1 = a−1
1 , and the relations

bna
n
1 +

∑

1≤k≤n−1

bk





∑

j≤n

ajt
j




k


n

= 0 ,

for any n ≥ 2 where [·]n denotes the coefficient in tn of the power series inside the brackets.
It follows that bn ∈ OK,S′ for all n where S′ is the union of S and all places v for which
|a1|v > 1. The convergence of the series follows from Cauchy-Kowalewskaia’s method of
majorant series or from the analytic implicit function theorem, see [C] and [Se, p. 73].

Lemma 3.2. — Pick k ∈ Z, and suppose α(t) =
∑

n≥k ant
n is an adelic series with

ak 6= 0. Then there exists an adelic series β such that β(t)k = α(t).

Proof. — As in the previous proof, suppose an ∈ OK,S for all n, and write β(t) = b1t +∑
n≥2 bnt

n. We get bk1 = a1, and for all n ≥ 2

an = kbk−1
1 bn−k + Pn(b1, . . . , bn−k−1) ,

where Pk is a polynomial with integral coefficients. This time all coefficients bn belong to
a finite extension of K containing a fixed k-th root of a1, and S′ is the union of S and all
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places v such that |kbk−1
1 |v < 1. The analyticity of the series is handled as in the previous

proof.

Lemma 3.3. — Pick k ∈ Z, and suppose α(t) =
∑

n≥k ant
n is an adelic series with

ak 6= 0 Then there exists an adelic series β such that α ◦ β(t) = tk.

Proof. — The equation α ◦ β(t) = tk is equivalent to

1 +

∑

j≥2

ajt
j−1




k

1 +

∑

l≥1

αl


t+

∑

i≥2

ait
i




l

 = 1 .

Identifying terms of order tn, one obtains

kan+1 +





1 +

∑

2≤j≤n

ajt
j−1




k

1 +

∑

l≥1

αl


t+

∑

1≤i≤n

ait
i




l





n

= 0

which shows that β is unique, has coefficients in OL,S′ where S′ contains S and all places
at which |k|v < 1. The fact that β is analytic at all places is a consequence of the

inverse function theorem and the fact that the power series t 7→ (1 + t)1/n := 1 + 1
nt +

(1/n)(1/n−1)
2 t2 +O(t3) has a positive radius of convergence.

We shall also deal with adelic series at infinity which we define to be series of the form
α(z) =

∑
k≤N bkz

k+
∑

k≥1
ak
zk

with N ∈ N, bk, ak ∈ OK,S and
∑

k≥1 akt
k is an adelic series.

Observe that this is equivalent to assume that α(t−1)−1 is an adelic series.

3.2. Puiseux expansions

We shall need the following facts on the Puiseux parameterizations of a curve defined
over K. These are probably well-known but we include a proof for the convenience of the
reader.

Proposition 3.4. — Suppose P ∈ K[x, y] is a polynomial such that P (0, 0) = 0 and

P (0, y) is not identically zero. Denote by n : D̂ → D := {P = 0} the normalization map,
and pick any branch c ∈ n−1(0) of D at the origin.

Then one can find a finite extension L of K, a finite set of places S of L, a positive
integer n > 0, and an adelic series β(t) ∈ OL,S [[t]] such that

1. there is an isomorphism of complete local rings ÔD̂,c ≃ L[[t]];

2. the formal map t 7→ (tn, β(t)) parameterizes the branch c in the sense that x(n(t)) =
tn, and y(n(t)) = β(t).

Proof. — We first reduce the situation to the case D is smooth at 0. To do so we blow-up
the origin X1 → A2 and let D1 be the strict transform of D. Since D̂ is normal the map
n lifts to a map n1 : D̂ → D1, and we let p1 be the image of c in D1.

In the coordinates (x, y) = (x′, x′y′) (or (x′y′, y′)) the point p1 has coordinates (0, y1)
where y1 is the solution of a polynomial with values in K hence belongs to an algebraic
extension of this field. We may thus choose charts (x, y) = (x′, (x′+c)y′) (or (x′(y′+c), x′))
with c ∈ K̄ such that c is now a branch of D1 = {P1 = 0} at the origin, and P1 ∈ K̄[x′, y′].

We iterate this process of blowing-up to build a sequence of proper birational morphisms
between smooth surfacesXi+1 → Xi, i = 1, . . . , N until we arrive at the following situation
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for X := XN : the strict transform C of D by π : X → A2 is smooth at a point p ∈ π−1(0)
and intersects transversally the exceptional locus of π.

The normalization map n : D̂ → D lifts to a map m : D̂ → C and the image of c by m is
equal to p. Finally there exist coordinates z, w centered at p such that (x, y) = π(z, w) =
(A(z, w), B(z, w)) with A,B ∈ K̄[z, w], the exceptional locus of π contains {z = 0}, and
C = {R(z, w) := w− za(z)−wQ(z, w) = 0} where a ∈ K̄[z], Q ∈ K̄[z, w] and Q(0, 0) = 0.

Fix an algebraic extension L of K and S finitely many places of L such that A,B,R
have their coefficients in OL,S .

We now look for a power series γ(t) =
∑

k≥1 γkt
k such that R(t, γ(t)) = 0. Its coefficients

satisfy the relations

γk = [t2a(t)]k +






k−1∑

j=1

γjt
j


 Q


t,

k−1∑

j=1

γjt
j





k

which implies that γ exists, is unique, and all its coefficients belongs to OL,S . It follows
from the analytic implicit function theorem, that γ is also analytic as a power series in
Lv[[t]] for any place v.

Let us now consider the two power series (α(t), δ(t)) := π(t, γ(t)). They both belong
to OL,S , are analytic at any place, and we have P (α(t), δ(t)) = 0. Since P (0, y) is not

identically zero, we may write α(t) = tn(a +
∑

k≥1 αkt
k) for some n > 0 and a 6= 0.

Replacing L by a suitable finite extension, and t by a′t for a suitable a′ we may suppose
that a = 1 and αk ∈ OL,S for all k.

By Lemma 3.3, there exists an invertible power series â(t) = t +
∑

k≥2 akt
k that is

analytic at all places with coefficients ak ∈ OL,S and such that α ◦ â(t) = tn. Once this
claim is proved one sets β(t) := δ ◦ â(t), so that π(â(t), γ(â(t))) = (tn, β(t)).

Since m is injective and maps the smooth point c ∈ D̂ to the smooth point p ∈ C, it

induces an isomorphism of complete local rings ÔC,p ≃ ÔD̂,c. Observe that the complete

local ring ÔC,p = L[[z, w]]/〈R〉 is isomorphic to L[[t]] by sending the class of a formal
series Φ to Φ(t, γ(t))). Composing with the isomorphism of L[[t]] sending t to â(t), we get

an isomorphism ÔD̂,c ≃ L[[t]] such that (x(n(t)), y(n(t))) = π(n(t)) = π(â(t), γ(â(t))) =

(tn, β(t)) as required.

3.3. Branches at infinity of a curve in Poly3

Consider an irreducible affine curve C ⊂ Poly3 defined over a number field K. We denote
by Poly3 ≃ P2 the natural completion of Poly3 ≃ A2 using the affine coordinates (c, a).

Let C̄ be the Zariski closure of the curve C in Poly3, and n : Ĉ → C̄ be its normalization.

A branch at infinity of C is a point in Ĉ lying over C̄ \ C.

Proposition 3.5. — There exists a finite extension L of K and a finite set of places S
such that the following holds.

For any branch c of C at infinity there is an isomorphism of complete local rings ÔĈ,c ≃
L[[t]] such that c(n(t)), a(n(t)) are adelic series at infinity.

Proof. — Pick a branch at infinity c of C. Let p∗ be the image of c in Poly3 ≃ P2. It is
given in homogeneous coordinates by p∗ = [c∗ : a∗ : 0] and since C is defined over K we
may assume c∗, a∗ are algebraic over K. To simplify the discussion we shall assume that
c∗ = 1 so that p∗ = [1 : a∗ : 0] (otherwise p∗ = [0 : 1 : 0] and the arguments are completely
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analoguous). Let d be the degree of a defining equation P ∈ K[c, a] of C. Observe that
Q(τ, α) := τdP ( 1τ ,

α
τ − a∗) is a polynomial vanishing at (0, 0) such that Q(0, α) is not

identically zero. Note that {Q = 0} can be identified to an open Zariski subset of the
completion of {P = 0} in Poly3, and c with a branch of {Q = 0} at the origin.

Apply Proposition 3.4 to this branch c. We get a finite extension L, a finite set of
places S of L containing all archimedean ones, a positive integer n, an isomorphism of
complete local ring OĈ,c ≃ L[[t]], and a power series β ∈ OL,S [[t]] that is analytic at

all places such that α(n(t)) = β(t) and τ(n(t)) = tn. It follows that c(n(t)) = t−n, and
a(n(t)) = t−nβ(t)− a∗ ∈ OL,S [[t]].

3.4. Estimates for the Green functions on a curve in Poly3

In this section, we fix an irreducible curve C in Poly3 and let L be a number field for which
the previous proposition applies. Fix a place v of L, and let g0,v(c, a) be the function g0
evaluated at c, a in the completion Lv of L with respect to the v-adic norm.

By [DF] and [FG, Proposition 2.4], the function g0 is the uniform limit on compact
sets of 1

3n log+ |Pn
c,a(c0)|. It follows that its lift to the normalization of C is sub-harmonic

(in the classical sense when v is Archimedean and in the sense of Thuillier [T] when v is
non-Archimedean).

To simplify notations, we also write g0,v(t) := g0,v(c(n(t)), a(n(t))) where the adelic
series at infinity c(n(t)) and a(n(t)) are given as above.

Proposition 3.6. — For each branch c of C at infinity, there exists a finite set of place
S of L such that one of the following two situations occur.

1. For any place v of L, the function g0,v(t) extends as a locally bounded subharmonic
function through c.

2. There exist two constants a(c) ∈ Q∗
+ and b(c) ∈ OL,S such that g0,v(t) =

a(c) log |t|−1
v + log |b(c)|v + o(1) for any place v on L.

Remark. — This key result is very similar to [BDM, Proposition 2.1]. Ghioca and He
have proved that g0,v(t) actually extends to a continuous function at t = 0 in case 1. We
also refer to [De2, Proposition 3.1] for a generalization of this result to the case of rational
maps.

Notation. — We endow the field L((t)) with the t-adic norm so that for any Laurent

series Q =
∑

akt
k we have |Q|t := e− ordt(Q) with ordt(Q) = min{k, ak 6= 0}. The resulting

valued field is complete.
In order to avoid confusion, we denote by P(z) ∈ L((t))[z] the cubic polynomial induced

by the family (Pc(n(t)),a(n(t)))t. Observe that the critical points of P are given by c0 and c1
which correspond to the adelic series at infinity 0 and c(n(t)) respectively.

Proof of Proposition 3.6. — For each q ∈ N∗, we set eq := |Pq(c0)|t, so that either eq is
bounded (i.e. c0 belongs to the filled-in Julia set of P) or eq → ∞ (exponentially fast).

Suppose we are in the former case, and consider the sequence of subharmonic func-
tions 1

3q log
+ |P q

t (0)|v defined on a punctured disk D∗
v centered at 0 in A1,an

Lv
. Since

1
3q log

+ |P q
t (0)|v =

log+ eq
3q log |t|−1

v +O(1), the function

hq :=
1

3q
log+ |P q

t (0)|v −
log+ eq

3q
log |t|−1

v
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extends as a subharmonic function to Dv. Since 1
3q log

+ |P q
t (0)|v converges uniformly on

compact subsets in D∗
v to g0,v, hq is uniformly bounded from above on its boundary,

hence everywhere by the maximum principle. It follows from Hartog’s theorem that hq
converges (in L1

loc in the Archimedean case, and pointwise at any non-rigid point in the
non-Archimedean case) to a subharmonic function, hence g0,v is subharmonic on Dv. But
g0,v is non-negative so that (1) holds.

Suppose that log eq → ∞. Recall that c(n(t)) and a(n(t)) are adelic series at infinity
that belong to t−nOL,S [[t]] for a suitable integer n ≥ 1. Write ϕt := ϕPc(n(t)),a(n(t))

.

Lemma 3.7. — There exists an integer q ≥ 1 such that for any place v of L, there exists
ǫ > 0 such that P q

t (c0) belongs to the domain of convergence of ϕt for any |t|v < ǫ.

Proof. — Indeed P q
t (c0) is an adelic series at infinity having a pole of order log eq. On the

other hand, we have

G(t) := G(c(n(t)), a(n(t))) ≤ log max{|c(n(t))|, |a(n(t))|} +C

≤ n log |t|−1 +O(1)

by Proposition 2.1. By assumption we may take log eq to be as large as we want so
that log |P q

t (c0)|v − G(t) → ∞ for any fixed place v when |t|v → 0. We conclude by
Proposition 2.3.

Our objective is to estimate ϕt(P
q
t (c0)). Recall from Lemma 2.2 that

ϕc,a(z) = λ
(
z − c

2

)
+

∑

k≥1

ak(c, a)z
−k ,

with ak ∈ Z
[
λ, 12

]
[c, a] of degree ≤ k + 1. It follows that

ak := ak(c(n(t)), a(n(t))) ∈ t−n(k+1)OL,S [[t]] ,

so that one can define

ϕP(z) := ϕc(n(t)),a(n(t))(z) = λ

(
z − c(n(t))

2

)
+

∑

k≥1

akz
−k

as an element of the ring t−nzOL,S((t))[[(t
nz)−1]].

On the other hand, P q
c,a(c0) is a polynomial in c, a of degree ≤ 3q with coefficients in

Z
[
1
2 ,

1
3

]
hence, if

c0 := c0(n(t)) and Pq(z) := P q
c(n(t)),a(n(t))(z) ,

we have Pq(c0) ∈ t−3qnOL,S [[t]], so that

(7)
ak

(Pq(c0))k
∈ t3

qnk−n(k+1)OL,S [[t]] ⊂ tnk OL,S [[t]] .

It follows that Θ :=
∑

k≥1
ak

(Pq(c0))k
converges as a formal power series and belongs to

tnOL,S [[t]]. Observe that Lemma 3.7 shows that Θ is convergent at all places hence
defines an adelic power series.

Fix a place v of L and choose |t|v small enough. Then we get

ϕt(P
q
t (c0)) = λ

(
P q
t (0) −

c(n(t))

2

)
+Θ(t)(8)

= λ

(
P q
t (0)−

c(n(t))

2

)
+ o(1) .
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By (8), for |t|v small enough, one obtains

g0,v(t) =
1

3q
log |ϕt(P

q
t (0))|v

=
1

3q
log

∣∣∣∣λ
(
P q
t (0)−

1

2tn

)∣∣∣∣
v

+ o(1)

=
1

3q
log

∣∣∣∣∣∣
∑

0≤k≤n0

bk,0
tk

∣∣∣∣∣∣
v

+ o(1) =

=
n0

3q
log |t|−1

v + log

∣∣∣∣∣∣
∑

0≤k≤n0

bk,0t
n0−k

∣∣∣∣∣∣
v

+ o(1)

where bk,0 ∈ OL,S , and bn0,0 6= 0. And the proof is complete with a(c) := n0
3q , and

b(c) = bn0,0.

Proposition 3.8. — Fix any two positive integers s := (s0, s1), and for any place v define

(9) gs,v(c, a) := max{s0g0,v(c, a), s1g1,v(c, a)} .

Then there exists an integer q ≥ 1 such that

(10) gs,v(c, a) =
1

3q
max

{
s0 log

+ |P q
c,a(c0)|, s1 log+ |P q

c,a(c1)|
}

for all but finitely many places.

Proof. — During the proof S is a finite set of places on L that contains all Archimedean
places and all places of residual characteristic 2 and 3. Pick any v /∈ S, and recall from [FG,
Proposition 2.5] that Gv(c, a) = log+ max{|c|v , |a|v}.

Suppose first that gs,v(c, a) = 0. Then gc,a,v(c0) = gc,a,v(c1) = 0 and Gv(c, a) = 0 so
that 1

3q log
+ |P q

c,a(c0)|v = 1
3q log

+ |P q
c,a(c1)|v = 0 for all q, and (9) holds in that case.

Pick q large enough such that 3q > max{s1
s0
, s0s1}. Suppose now that 0 < gs,v(c, a) =

s0g0,v(c, a) so that s0g0,v(c, a) ≥ s1g1,v(c, a). Then

gc,a,v(P
q
c,a(c0)) = 3qg0,v(c, a) ≥

≥ 3q min

{
s1
s0

, 1

}
max{g0,v(c, a), g1,v(c, a)} > Gv(c, a) .

By (6), we get

gs,v(c, a) = s0g0,v(c, a) =
s0
3q

g0,v(P
q
c,a(c0)) =

s0
3q

log+ |P q
c,a(c0)|v .

Now observe that either P q
c,a(c1) falls into the domain of definition of ϕc,a i.e.

log |P q
c,a(c1)|v > Gv(c, a) and g1,v(c, a) =

1
3q log

+ |P q
c,a(c1)|v , so that

gs,v(c, a) = max{s0g0,v(c, a), s1g1,v(c, a)}

=
1

3q
max

{
s0 log

+ |P q
c,a(c0)|v , s1 log+ |P q

c,a(c1)|v
}

,

as required. Or we have
s1
3q

log+ |P q
c,a(c1)|v ≤ s1

3q
log+max{|a|v , |c|v} ≤ s0g0,v(c, a) ,

and again (9) holds.
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We complete the proof by arguing in the same way when gs,v(c, a) = s1g1,v(c, a).

3.5. Adelic semi-positive metrics on curves in Poly3

We fix a number field L and finitely many places S of this field that contains all
Archimedean places and all places of residual characteristic 2 and 3. We also assume that
Propositions 3.5, 3.6 and 3.8 are all valid for these choices.

Fix any pair of positive integers s0, s1 ∈ N∗. For each place v, introduce the function

gs,v(c, a) := max {s0 · g0,v(c, a), s1 · g1,v(c, a)} ,

as in the previous section.
Pick a branch at infinity c and choose parameterizations such that Proposition 3.6 is

valid for g0,v and g1,v. Observe that

Gv(t) = max{g0,v(t), g1,v(t)} → ∞

as t → 0 by Proposition 2.1 so that either g0,v or g1,v tends to infinity near t = 0. Since
n0 and n1 are both positive, we conclude to the existence of a(c) ∈ Q∗

+ and b(c) ∈ OL,S

such that

(11) gs,v(t) = a(c) log |t|−1
v + log |b(c)|v + o(1) .

We replace the integers s0, s1 by suitable multiples such that the constants a(c) become

integral (for all branch c), and we introduce the divisor D :=
∑

a(c) [c] on Ĉ where the
sum is taken over all branches at infinity of C.

Pick a place v, an open subset U ⊂ Ĉan,v and a section σ of the line bundle OĈ(D)
over U . By definition σ is a meromorphic function on U whose divisor of poles and zeroes
satisfy div(σ) + D ≥ 0. We set |σ|s,v := |σ|ve−gs,v .

By (11), | · |s,v defines a continuous metrization on the line bundle OĈ(D) at any place.
Since gs,v is subharmonic on Cv,an, the metrization is semi-positive in the sense of Zhang,
see [CL]. Finally this metrization is adelic thanks to Proposition 3.8 and [FG, §2.3].

Observe that the curvature form of this metrization (see [CL]) is given by ∆(gs,v ◦ n).
We have thus obtained

Theorem 3.9. — Pick any positive integers s0, s1 > 0. Then there exists a positive
integer t ≥ 1, and a non-zero effective and integral divisor D on Ĉ such that the collection
of subharmonic functions

gs,v(c, a) := max {ts0 · g0,v(c, a), ts1 · g1,v(c, a)} , (c, a) ∈ Cv,an

induces a semi-positive adelic metrization on the line bundle OĈ(D).

Remark. — The line bundle OĈ(D) is defined over the same number field as C.

Remark. — It is likely that gs,v defines a semi-positive adelic metrization on an ample
line bundle over a suitable compactification of Poly3, but this seems quite delicate to
prove.
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4. Green functions on special curves

This section is devoted to the proof of the following result. If K is a number field, and v
a place of K, recall the definition of τv = τ(Kv) from Proposition 2.3, and that τv = 0 if
the residual characteristic of K is larger than 5.

Theorem 4.1. — Let C be an irreducible curve in the space Poly3 of complex cubic poly-
nomials parameterized as in (1). Suppose that C contains infinitely many post-critically
finite parameters and that neither c0 nor c1 is persistently pre-periodic. Then the following
holds.

1. The curve C is defined over a number field K and there exist positive integers s0, s1
such that for any place v of K

s0 g0,v(c, a) = s1 g1,v(c, a) for all (c, a) ∈ Cv,an .

2. For any branch c of C at infinity, there exists an integer q ≥ 1 and a root of unity ζ
such that for any place v of K, one has

(12)
(
ϕc,a(P

q
c,a(c0))

)s0 = ζ ·
(
ϕc,a(P

q
c,a(c1))

)s1

on the connected component of {g0,v > τv/s0} = {g1,v > τv/s1} in Cv,an clustering
at c.

A remark is in order about the second assertion of the theorem.

Remark. — We shall prove that for any parameter on the connected component {g0,v >
τv/s0} = {g1,v > τv/s1} in Cv,an clustering at c, the two points P q

c,a(c0) and P q
c,a(c1)

belongs to the domain of definition of the Böttcher coordinate ϕc,a for q large so that (12)
is consistent. We also insist on the fact that (12) holds as an equality of adelic series at
infinity.

4.1. Green functions are proportional

Recall first that the set of post-critically finite polynomials is a countable union of varieties

Vn,m := {Pn0+m0
c,a (c0) = Pn0

c,a(c0)} ∩ {Pn1+m1
c,a (c1) = Pn1

c,a(c1)}
with n0, n1 ∈ N and m0,m1 ∈ N∗, and each of which is cut out by two polynomial
equations with coefficients in Z

[
1
2 ,

1
3

]
. Since Vn,m(C) are all contained in a fixed compact

set by e.g. [DF, Proposition 6.2], it is a finite set, hence all its solutions are defined over
a number field.

It follows that C is an irreducible curve containing infinitely many algebraic points
(cn, an). Let Q ∈ C[c, a] be a defining equation for C with at least one coefficient equal to
1 and pick σ an element of the Galois group of C over the algebraic closure of Q. Then
Q ◦ σ vanishes also on {(cn, an)} hence everywhere on C, and therefore Q ◦ σ = λQ for
some λ ∈ C∗. Since one coefficient of Q is 1, we get λ = 1 and Q ∈ K[c, a] for a number
field K.

Recall that we denote by n : Ĉ → C̄ the normalization of the completion C̄ of C in Poly3.
Pick any pair of positive integers s = (s0, s1) and scale them such that apply Theorem 3.9.

This gives us a non-zero effective divisor Ds supported on Ĉ \ n−1(C). Replacing s by
a suitable multiple, we may suppose that it is very ample and pick a rational function
φ on Ĉ whose whose divisor of poles and zeroes is greater or equal to −Ds. Observe in
particular that φ is a regular function on n−1(C) that vanishes at finitely many points.
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Consider the height hs induced by the semi-positive adelic metrics given by gs,v, see
Theorem 3.9. If (c, a) is a point in n−1(C) that is defined over a finite extension K, denote
by O(c, a) its orbit under the action of the absolute Galois group of K, and by deg(c, a)
the cardinality of this orbit. Fix a rational function φ as above that is not vanishing at
c, a (this exists since −Ds is very ample). Let MK be the set of places of K. By [CL,
§3.1.3], since φ(c, a) 6= 0 we have

hs(c, a) =
1

deg(c, a)

∑

O(c,a)

∑

v∈MK

− log |φ|v(c′, a′)

=
1

deg(c, a)

∑

O(c,a)

∑

v∈MK

(gs,v − log |φ|v)(c′, a′)

=
1

deg(c, a)

∑

O(c,a)

∑

v∈MK

gs,v(c
′, a′) ≥ 0

where the last equality follows from the product formula.

We now estimate the total height of the curve Ĉ using freely [CL]. Choose any two
meromorphic functions φ0, φ1 such that div(φ0) + Ds and div(φ1) + Ds are both effective
with disjoint support included in n−1(C). Let σ0 and σ1 be the associated sections of
OĈ(Ds). Let

∑
ni[ci, ai] be the divisor of zeroes of σ0, and

∑
n′
j [c

′
j , a

′
j ] be the divisor of

zeroes of σ1. Then

hs(Ĉ) =
∑

v∈MK

(d̂iv(σ0) · d̂iv(σ1)|Ĉ)v

=
∑

i

nihs(ci, ai)−
∑

v∈MK

log |σ0|s,v ∆gs,v

=
∑

i

nihs(ci, ai)−
∑

j

n′
jhs(c

′
j , a

′
j) +

∑

v∈MK

gs,v ∆gs,v

≥
∑

i

nihs(ci, ai)−
∑

j

n′
jhs(c

′
j , a

′
j) .

Reversing the order of the two sections, we get hs(Ĉ) ≥ 0.

The formula for the height of a closed point implies that for all post-critically finite
polynomials Pcn,an we have hs(cn, an) = 0. By the arithmetic Hilbert-Samuel theorem

(see [Z, Theorem 5.2]), we get hs(Ĉ) = 0 hence we may apply Thuillier-Yuan’s theorem
(see [T, Y]). It follows that the sequence of probability measures µn,v that are equidis-

tributed on O(cn, an) in Ĉv,an converges to a probability measure µ∞,v that is proportional
to ∆gs,v. We may thus write µ∞,v = w(s)∆gs,v where w(s) ∈ R∗

+ is equal to the inverse
of the mass of ∆gs,v, i.e. to deg(Ds)

−1.
We now observe that gs,v is 1-homogeneous in s, and continuous with respect to this

parameter. It follows that w(s) is also continuous on (R∗
+)

2, and µ∞,v = w(s)∆gs,v for all
s ∈ (R∗

+)
2.

From now on we fix an Archimedean place v. We shall treat the non-Archimedean
case latter. We work in n−1(Cv,an) which is the complement of finitely many points in

the analytification of the smooth projective curve Ĉv,an. To simplify notation we write
g0,v, g1,v instead of g0,v ◦ n, g1,v ◦ n. Recall that by [DF, Theorem 2.5] (see also [McM1,
Theorem 2.2] or [De2, Theorem 1.1]) the equality g0,v = 0 on n−1(Cv,an) implies c0 to be
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persistently pre-periodic. We may thus assume that both c0 and c1 are not persistently
pre-periodic so that g0,v and g1,v are not identically zero on n−1(Cv,an).

Recall also that g0,v is harmonic where it is positive and that the support of ∆g0,v is
exactly the boundary of {g0,v = 0} (see e.g. [DF, Proposition 6.7]). In particular ∆g0,v is
a non-zero positive measure, and its mass is finite by Proposition 3.6. Observe now that
gs,v → g0,v uniformly on compact sets when s tends to (1, 0), hence ∆gs,v → ∆g0,v and
∆g0,v = t0µ∞,v for some positive t0. In the same way, we get ∆gs,v → ∆g1,v as s → (0, 1)
which implies that the three positive measures µ∞,v, ∆g0,v and ∆g1,v are proportional.
We may thus find s0, s1 > 0 such that the function Hv := s0g0,v − s1g1,v is harmonic on
n−1(Cv,an).

Recall from [McM2] that the bifurcation locus of the family Pc,a parameterized by
(c, a) ∈ n−1(Cv,an) is defined as the set where either c0 or c1 is unstable (or active in the
terminology of [DF]). It follows from [DF] that the bifurcation locus is equal to the union
of the support of ∆g0,v and ∆g1,v, hence to the support of µ∞,v.

Suppose now that Hv is not identically zero. Then this support is included in the locus
{Hv = 0} which is real-analytic. This is impossible by McMullen’s universality theorem,
since the Hausdorff dimension of the bifurcation locus of any one-dimensional analytic
family is equal to 2, see [McM3, Corollary 1.6].

We have proved that s0g0,v = s1g1,v on n−1(Cv,an) hence on Cv,an for some positive real
numbers s0, s1 > 0.

Since g0,v and g1,v are proportional, and Gv = max{g0,v, g1,v} is proper on Cv,an, it
follows that g0,v is unbounded near any branch at infinity. By Proposition 3.6, g0,v admits
an expansion of the form g0,v(t) = a(c) log |t|−1 + O(1) with a(c) ∈ Q∗

+ on the branch c

hence is locally superharmonic on that branch.
It follows that ∆g0,v is a signed measure in Ĉan,v whose negative part is a divisor D0

with rational coefficients supported on Ĉ \ n−1(C). The same being true for ∆g1,v, we
conclude to the equality of divisors s0D0 = s1D1. This implies that s0/s1 is rational, and
we can assume s0 and s1 to be integers. This ends the proof of the first statement in the
case the place is Archimedean.

Assume now that v is non-Archimedean. One cannot copy the proof we gave in the
Archimedean setting since we used arguments that specifically relied on the Archimedean
assumption at two places.

Instead we apply Proposition 3.6. For each s′ = (s′0, s
′
1) the function gs′,v extends near

any branch c at infinity as an upper-semicontinuous function ĝs′,v whose Laplacian puts
some non-positive mass at c. When s′0, s

′
1 6= 0 then gs′,v defines a positive continuous metric

on OĈ(Ds) hence ∆ĝs′,v{c} = − ordc(Ds) < 0. This mass is in particular independent on
the place. We get that

−∆ĝ0,v{c} ≥ lim
s→(1,0)

−∆ĝs,v{c} = ordc(D0) > 0 .

We infer that the mass of ∆g0,v is equal to the degree of D0 hence is non-zero.
We may now argue as in the Archimedean case, and prove that ∆g0,v and ∆g1,v are

proportional. The coefficient of proportionality is the only t > 0 such that D0 = tD1 hence
t = s0/s1. Then Hv := s0g0,v − s1g1,v is harmonic on C and bounded near any branch at

infinity by Proposition 3.6, hence defines a harmonic function on the compact curve Ĉan,v.
It follows Hv is a constant (in the non-Archimedean case by [T, Proposition 2.3.2]) which
is necessarily zero since it is zero at all post-critically finite parameters.

We mention here the following result that follows from the previous argument.
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Corollary 4.2. — Let C be an irreducible curve in Poly3 defined over a number field K
that contains infinitely many post-critically finite parameters and that neither c0 nor c1 is
persistently pre-periodic. Pick an Archimedean place v.

Pick any sequence Xn ⊂ C(K̄) of Galois-invariant finite sets of postcritically finite
parameters such that Xn 6= Xm for m 6= n. Let µn be the measure equidistributed on
Xn ⊂ Cv,an.

Then the sequence µn converges weakly to (a multiple of) Tbif ∧ [C] as n → ∞.

Recall that Tbif is defined as the ddc of the plurisubharmonic function g0 + g1, and [C]
is the current of integration over the analytic curve Cv,an.

Proof. — Let s0, s1 > 0 be given by Theorem 4.1. As seen above, the sequence µn con-
verges weakly towards ddc max{s0 · g0, s1 · g1} = s0 · ddcg0 on Cv,an. It thus only remains
to prove that ddc(g0|Cv,an) = κ · Tbif ∧ [C] for some κ > 0. Recall that Tbif = ddc(g0 + g1).
By Theorem 4.1, on C,

g0 + g1 = g0 +
s1
s0

· g0 =
(
1 +

s0
s1

)
g0.

Let κ := 1 + s0
s1
. We thus have ddc(g0|Cv,an) = κ−1 · ddc((g0 + g1)|Cv,an). Finally, since

g0 + g1 is continuous, we have Tbif ∧ [C] = ddc((g0 + g1)|Cv,an), which ends the proof.

4.2. Values of the Böttcher coordinates at critical points are proportional near
infinity

Let us fix a branch at infinity c of an irreducible curve C containing infinitely many
PCF polynomials, and an isomorphism of complete local rings OĈ,c ≃ L[[t]], such that

c(n(t)) = t−n, and a(n(t)) ∈ OL,S((t)) is an adelic series. Write Pt = Pc(n(t)),a(n(t)) , and
ϕt = ϕPt .

By Lemma 3.7 there exists an integer q ≥ 1 large enough such that P q
t (c0) and P q

t (c1)
both lie in the domain of convergence of the Böttcher coordinate ϕt for t small enough,
and (8) holds, i.e.

ϕt(P
q
t (cε)) = λ

(
P q
t (cε)−

c(n(t))

2

)
+Θ(t)

where Θ is an adelic series vanishing at 0.
We now fix a place v and compute using Proposition 2.3 for |t|v ≪ 1. We get

|ϕt (P
q
0 (t)) |s0v

|ϕt (P
q
1 (t)) |s1v

=
exp

(
s0 · gc(n(t)),a(n(t))(P q

0 (t))
)

exp
(
s1 · gc(n(t)),a(n(t))(P q

1 (t))
)

=
exp (3qs0 · g0,v(c(n(t)), a(n(t))))
exp (3qs1 · g1,v(c(n(t)), a(n(t))

= 1 . (⋆)

Applying (⋆) in the case of an Archimedean place, we see that the complex analytic map

t 7−→ (ϕt (P
q
0 (t)))

s0

(ϕt (P
q
1 (t)))

s1

has a modulus constant equal to 1, hence is a constant, say ζ. Since both power series
ϕt(P

q
0 (t)) and ϕt(P

q
1 (t)) have their coefficients in OL,S , we conclude that ζ ∈ OL,S . But

|ζ|v = 1 for all place v over L by (⋆) hence it is a root of unity.
Note also that the equality ϕt (P

q
0 (t))

s0 = ζ ϕt (P
q
1 (t))

s1 holds as equality between adelic
series, so that it is also true for analytic functions at any place.
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To conclude the proof of Theorem 4.1, pick a place v of L and consider the connected
component U of {g0,v > τv/s0} = {g1,v > τv/s1} in Cv,an clustering at c. We need to argue
that P q

c,a(c0) and P q
c,a(c1) belongs to the domain of convergence of the Böttcher coordinate

ϕv,c,a for any c, a ∈ U .
Recall that s0g0,v(c, a) = s1g1,v(c, a) for some positive integers s0, s1. It follows that

min{gc,a(P q
c,a(c0)), gc,a(P

q
c,a(c1))} = 3q min{gc,a(c0), gc,a(c1)} >

3q min

{
s0
s1

,
s1
s0

}
max{gc,a(c0), gc,a(c1)} >

G(c, a) + max{s0gc,a(c0), s1gc,a(c1)} > G(c, a) + τv

for q large enough and we conclude by Proposition 2.3.

5. Special curves having a periodic orbit with a constant multiplier

In this section, we prove Theorem B.
Pick an integer m ≥ 1 and a complex number λ ∈ C, and consider the set of polynomials

Pc,a that admits a periodic orbits of period m and multiplier λ. It follows from [Si, p. 225]
that this set is an algebraic curve in Poly3 (see also [Mi1, Appendix D], [BB2, Theorem
2.1] or [FG, §6.2]). Let us be more precise:

Theorem 5.1 (Silverman). — For any integer m ≥ 1, there exists a polynomial pn ∈
Q[c, a, λ] with the following properties.

1. For any λ ∈ C \ {1}, pm(c, a, λ) = 0 if and only if Pc,a has a cycle of exact period m
and multiplier λ.

2. When λ = 1, then pm(c, a, 1) = 0 if and only if there exists an integer k dividing m
such that Pc,a has a cycle of exact period k whose multiplier is a primitive m/k-th
root of unity.

We now come to the proof of Theorem B.

One implication is easy. For any integer m ≥ 1, the curve Perm(0) is contained in the
union of the two curves {(c, a) ∈ C2 ; Pm

c,a(c0) = c0} and {(c, a) ∈ C2 ; Pm
c,a(c1) = c1}.

According to lemma 5.2 below, it contains infinitely many post-critically finite parameters.

Lemma 5.2. — Pick n ≥ 0, k > 0 and i ∈ {0, 1}. Any irreducible component C of the
set {(c, a), Pn+k

c,a (ci) = Pn
c,a(ci)} contains infinitely many post-critically finite parameters.

Proof. — We argue over the complex numbers, and use the terminology and results
from [DF]. In particular, a critical point ci, i = 0, 1 is said to be active at a parame-
ter (c, a) if the family of analytic functions Pn

c,a(ci) is normal in a neighborhood of (c, a).

Suppose that C is an irreducible component of the set

{(c, a), Pn+k
c,a (ci) = Pn

c,a(ci)}
where n ≥ 0, k > 0 and i ∈ {0, 1}. To fix notation we suppose i = 0. Observe that
gc,a(c0) = 0 on C, and since G(c, a) = max{gc,a(c0), gc,a(c1)} is a proper function on Poly3
(see Proposition 2.1) it follows that gc,a(c1) is also proper on C. In particular, c1 has
an unbounded orbit when c, a ∈ C is close enough to infinity in Poly3. It follows from
e.g. [DF, Theorem 2.5] (which builds on [McM1, Theorem 2.2]) that c1 is active at at
least one point (c0, a0) on C. The arguments of [DF, Lemma 2.3] based on Montel’s
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theorem show that (c0, a0) is accumulated by parameters for which c1 is pre-periodic to
a repelling cycle, hence by post-critically finite polynomials. In particular, it contains
infinitely many post-critically finite parameters.

For the converse implication, we proceed by contradiction and suppose that we can find
a complex number λ 6= 0, an integer m ≥ 1, and an irreducible component C of Perm(λ)
containing infinitely many post-critically finite polynomials.

Observe that, whenever 0 < |λ| ≤ 1, any parameter (c, a) ∈ C ⊂ Perm(λ) has a non-
repelling cycle which is not super-attracting. In particular, at least one of its critical
points has an infinite forward orbit (see e.g.[Mi2]). It follows that Perm(λ) contains no
post-critically finite parameter when 0 < |λ| ≤ 1. This argument is however not sufficient
to conclude in general. But we shall see that a combination of this argument applied at
a place of residual characteristic 3 together with the study of the explosion of multipliers
on a branch at infinity of C gives a contradiction.

Proposition 5.3. — Suppose C is an irreducible component of Perm(λ) with λ ∈ C∗ and
m ≥ 1 containing infinitely many post-critically finite polynomials. Then one of the two
critical points is persistently periodic on C and λ is equal to the multiplier of a repelling
periodic orbit of a quadratic polynomial whose critical point is periodic.

We may thus assume that the curve C is included in Perm(0). Observe that the equation
Pm
c,a(c0) = c0 (resp. Pm

c,a(c1) = c1) is equivalent to the vanishing of a polynomial of the

form
√
3
1−3m

a3
m

+ l.o.t (resp.
√
3
1−3m

(a3 − c3

6 )
3m + l.o.t). It follows that the closure of

C in Poly3 intersects the line at infinity in a set included in {[1 : 0 : 0], [ζ : 1 : 0]} with
ζ3 = 6 (see also [BB2, Theorem 4.2]).

Consider the curve of unicritical polynomials c0 = c1, which is defined by the equation
c = 0. It intersects the line at infinity at [0 : 1 : 0], so that Bezout’ theorem implies the
existence of one parameter (c, a) ∈ C which is unicritical.

We conjugate Pc,a by a suitable affine map to a polynomial Q(z) = z3 + t. This
unicritical polynomial has a periodic critical orbit. By the previous proposition, it also
has a periodic orbit whose multiplier is equal to the multiplier of a repelling orbit of
a quadratic polynomial having a periodic critical point. The next two lemmas yield a
contradiction, and the proof of Theorem B is complete.

Lemma 5.4. — Suppose that the unicritical polynomial Q(z) = z3 + t is postcritically
finite and admits a periodic cycle with a multiplier λ 6= 0.

Then λ belongs to a number field K, and we have |λ|v < 1 for any place v of K of
residual characteristic 3.

Lemma 5.5. — Suppose λ 6= 0 is equal to the multiplier of a periodic orbit of a quadratic
polynomial having a periodic critical point.

Then λ belongs to a number field K, and |λ|v = 1 for any non-Archimedean place v of
K of residual characteristic 6= 2.

Proof of Lemma 5.4. — Since Q is post-critcally finite, t satisfies a polynomial equation
with integral coefficients hence belongs to a number field. Its periodic point are solutions
of a polynomial of the form Qn(z)−z so that the periodic points of Q and their multipliers
also belongs to a number field.

We may thus fix a number field containing t, and λ, and fix a place v of K of residual
characteristic 3. Observe that the completion of its algebraic closure of the completion



22 CHARLES FAVRE & THOMAS GAUTHIER

of K with respect to the norm induced by v is a complete algebraically closed normed
field isometric to the 3-adic field C3. We consider the action of Q on the Berkovich
analytification of the affine plane over that field. To simplify notation we denote by | · |
the norm on C3.

Suppose that |t| > 1. Then we have |Q(0)| = |t| > 1, and thus |Qn(0)| = |Qn−1(0)|3 =
|t|3n → ∞ by an immediate induction. This would imply the critical point to have an
infinite orbit contradicting our assumption that Q is post-critically finite.

We thus have |t| ≤ 1. This implies that any point having a bounded orbit lies in the
closed unit ball {z, |z| ≤ 1}. Indeed the same induction as before yields |Q(z)| = |z|3 and
|Qn(z)| = |Qn−1(z)|3 = |z|3n → ∞ for any |z| > 1.

Pick any periodic point w of period k with multiplier λ = (Qk)′(w). Observe that
Q′(z) = 3z2, and |Qj(w)| ≤ 1 for all j ≥ 0 by what precedes. We thus have

|λ| =
k−1∏

j=0

|Q′(Qj(w))| =
k−1∏

j=0

|3(Qj(z))|2 ≤ 3−k < 1 ,

which concludes the proof.

Proof of Lemma 5.5. — Suppose z0 is a periodic point of period k of a quadratic polyno-
mial Pc(z) = z2 + c such that the critical point 0 is periodic of period l.

When 0 is fixed, we have c = 0 and Pn
c (z) = z2

n

, hence the multiplier of z0 is a power
of 2 (or equal to 0) so that the lemma holds in this case. From now on we assume c 6= 0.

Observe that c satisfies the polynomial equation with integer coefficients P l
c(0) = 0

hence is an algebraic number. The polynomial P k(z) − z has also algebraic coefficients
hence z0 is algebraic too. Let K be a number field containing both z0 and c.

Choose any non-Archimedean place v on K. We claim that |c|v ≤ 1. Indeed, when

|c|v > 1 one has |Pc(0)| = |c| > 1, so that |Pn
c (0)| = |c|3n−1 → ∞ by an immediate

induction, and this contradicts our assumption that 0 is periodic.
It follows that |z0|v ≤ 1 since otherwise |Pn

c (z0)| = |z0|3
n → ∞.

Since 0 is periodic of exact period l, we may write P l
c(z) =

∑2l

i=0 aiz
i with a0 = a1 = 0.

The bound |c|v ≤ 1 forces |ai|v ≤ 1 for all i. It follows that |P ln
c (z)|v ≤ |P l(n−1)

c (z)|2v → 0
as soon as |zv| < 1. This implies that the orbit of z0 is included in the annulus {|z|v = 1}.

Finally let us estimate the multiplier λ of z0. By what precedes, we have

|λ|v =
l−1∏

i=0

|P ′(P i(z0))|v =
l−1∏

i=0

|2P i(z0)|v = |2|lv = 1

where the last equality holds when v has residual characteristic 6= 2.

Proof of Proposition 5.3. — Since C contains infinitely many post-critically finite poly-
nomials we may assume it is defined over a number field K. Let Ĉ be the normalization of
the completion of C in Poly3. Pick any branch c of C at infinity (i.e. a point in Ĉ which
projects to the line at infinity in Poly3). By Proposition 3.5 we may choose an isomor-

phism of complete local rings ÔĈ,c ≃ L[[t]] such that c(n(t)), a(n(t)) are adelic series, i.e.

formal Laurent series with coefficients in OL,S((t)) that are analytic at all places.
In the remaining of the proof, we fix an Archimedean place, and embed L into the field

of complex numbers (endowed with its standard norm). We may suppose c(n(t)), a(n(t))
are holomorphic in 0 < |t| < ǫ for some ǫ, and meromorphic at 0. We get a one-parameter
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family of cubic polynomials Pt := Pc(n(t)),a(n(t)) parameterized by the punctured disk D∗
ǫ =

{0 < |t| < ǫ}.
Consider the subvariety Z := {(z, t), Pm

t (z) = z} ⊂ C × D∗
ǫ . The projection map

Z → D∗
ǫ is a finite cover which is unramified if ǫ is chosen small enough. By reducing ǫ if

necessary, and replacing t by tN , we may thus assume that Z → D∗
ǫ is a trivial cover. In

other words, there exists a meromorphic function t 7→ p(t) such that Pm
t (p(t)) = p(t) and

(Pm
t )′(p(t)) = λ.

As in Section 3, we denote by P(z) ∈ C((t))[z] the cubic polynomial induced by the

family Pt. It induces a continuous map on the analytification A1,an
C((t)), for which the point

p ∈ A1(C((t))) corresponding to p(t) is periodic of period m with multiplier (Pm)′(p) =
λ. Observe that P has two critical points c0 and c1 corresponding to the meromorphic
functions 0 and c(n(t)) respectively.

Lemma 5.6. — If c0 is not pre-periodic for P, then |Pq(c0)|t tends to infinity when q →
∞.

Proof. — Observe that our assumption is equivalent to the fact that c0 is not persistently
pre-periodic on C.

We claim that g0(t) := gPt(c0) tends to infinity when t → 0.
Suppose first that c1 is persistently pre-periodic on C. Then the function g1 is identically

zero on C, so that G|C = max{g0, g1}|C = g0. Since G is proper by Proposition 2.1, and
(c(n(t)), a(n(t))) tends to infinity in Poly3 when t → 0, we conclude that g0(t) → ∞.

When c1 is not persistently pre-periodic on C, the two functions g0(t) and g1(t) :=
gPt(c1) are proportional on c by Theorem 4.1 (1). As before max{g0, g1} → ∞ as t → 0
so that again g0(t) → ∞.

By Proposition 3.6, we can find a > 0 such that g0(Pt) = a log |t|−1 + O(1).

And [DF, Lemma 6.4] implies(3) the existence of a constant C > 0 such that
gPt(z) ≤ logmax{|z|, |c(n(t))|, |a(n(t))|} + C for all t. Since gPt ◦ Pt = 3gPt , we con-
clude that for all q ≥ 1

logmax{|P q
t (c0)|, |c(n(t))|, |a(n(t))|} ≥ 3qgt(0)− C = 3qa log |t|−1 +O(1) .

This implies |P q
t (c0)|t ≥ 3qa|t|t → ∞ when q → ∞ as required.

We continue the proof of Proposition 5.3. Suppose neither c0 nor c1 is persistently
pre-periodic so that the previous lemma applies to both critical points. Translating its
conclusion over the non-Archimedean field C((t)), we get that Pq(c0) and Pq(c1) both tend
to infinity when q → ∞. We may thus apply [K, Theorem 1.1 (ii)], and [K, Corollary 1.4]
(which is directly inspired from a result of Bezivin). We conclude that all periodic cycles
of P are repelling so that |(Pm)′(p)|t > 1. This contradicts |λ|t = 1.

Suppose next that c0 is persistently strictly pre-periodic (which implies c1 not to be
persistently pre-periodic). Then c0 is strictly pre-periodic whereas c1 escapes to infinity
by the previous lemma, and we may now apply [K, Theorem 1.1 (iii)(a)] to P. As before
[K, Corollary 1.4] implies that all cycles of P are repelling which gives a contradiction.

We are thus reduced to the case c0 is persistently periodic on C, say of (exact) period
n. We shall prove that λ is equal to the multiplier of a (repelling) periodic orbit of some
complex quadratic polynomial having a periodic critical orbit.

(3)observe that the statement of the lemma is incorrectly stated in [DF], and the constant C is actually
independent on P .
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By [K, Theorem 1.1 (iii)(a)], the periodic critical point c0(= 0) is contained in a unique
closed ball B = {z ∈ C((t)), |z|t ≤ r} for some positive r > 0 that is also periodic of some
period m dividing n. Since B is fixed by the polynomial Pn =

∑
j≥2 bjz

j with coefficients

bj ∈ C((t)), the radius r satisfies an equation of the form |bj |rj = r for some j hence r = |t|lt
for some l ∈ Z. To simplify the discussion to follow we conjugate P by the automorphism
z 7→ t−lz so that B becomes the closed unit ball. Observe that 0 remains a critical point
of P after this conjugacy.

Recall that the closed unit ball B defines the Gauss point xg ∈ A1,an
C((t)) for which we have

|Q(z)(xg)| := sup
z∈B

|Q(z)|t = max |qi| for all Q =
∑

qiz
i ∈ C((t))[z] .

Since B is fixed by Pm, it follows that xg is also fixed by Pm. This is equivalent to say

that Pm can be written as Pm(z) =
∑3m

i=1 aiz
i where max |ai| = 1.

For any z ∈ C((t)) of norm 1, denote by z̃ the unique complex number such that
|z− z̃|t < 1.

Lemma 5.7. — We have a1 = 0, |a0| ≤ |a2| = 1, and |ai| < 1 for all i ≥ 3; and the

complex quadratic polynomial P̃ (z) := ã2z
2 + ã0 has a periodic critical orbit.

Lemma 5.8. — The orbit of the periodic point p intersects the ball B.

Replacing p by its image by a suitable iterate of P we may suppose that it belongs to
B, i.e. |p|t ≤ 1. In fact we have |Pi(p)|t = 1 for all i ≥ 0 since any point in the open unit
ball converges to the fixed critical point 0 under Pn. Also the period of p is necessarily a
multiple of m, say mk with k ≥ 1.

To render the computation of the multiplier of p easier, we conjugate Pm by z 7→ a2z.
Since |a2| = 1, we still have |p|t = 1, and the equality a2 = 1 is now satisfied.

By Lemma 5.7, we get supB |Q| < 1 with Q := Pm − P̃ , so that

(Pmk)′(p) =

k−1∏

i=0

(Pm)′(Pmi(p)) = (P̃ k)′(p̃) .

But the multiplier of p is equal to λ ∈ C. Hence it is equal to the multiplier of a repelling
periodic orbit of some quadratic polynomial (namely P̃ ) having a periodic critical orbit,
as was to be shown.

Proof of Lemma 5.7. — The point 0 is critical for P hence a1 = 0.
Since the Gauss point is fixed by Pm, we have maxi≥2 |ai| = 1. Let d ≥ 2 be the

maximum over all integers i such that |ai| = 1. The number of critical points of Pn lying
in the closed unit ball (counted with multiplicity) is precisely equal to d−1. But the exact
period of 0 is n, and no points Pi(0), 1 ≤ i ≤ n−1 can collide with the other critical point
since the latter escapes to infinity. It follows that d = 2, and |a2| = 1 > maxi≥3 |ai|.

Finally 0 is fixed by Pn where n is a multiple of m, hence the complex quadratic

polynomial P̃n has a periodic critical orbit of period m/n.

Proof of Lemma 5.8. — Since the multiplier of p is λ ∈ C, its t-adic norm is 1, hence
a small ball U centered at p of positive radius is included in the filled-in Julia set of P.
By [K, Corollary 4.8], U is eventually mapped into B, hence the claim.
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6. A polynomial on a special curve admits a symmetry

We fix K a number field, and s0, s1 three positive integers such that s0 and s1 are coprime.
We shall say that a cubic polynomial P := Pc,a with c, a in a finite extension L of K
satisfies the condition (P) if the following holds:

(P1) For any place v of L, we have s0gP,v(c0) = s1gP,v(c1).
(P2) Given any place v of L, if min{gP,v(Pn(c0)), gP,v(P

n(c1))} > Gv(P ) + τv for some
integer n ≥ 1, then

ϕP,v(P
n(c0))

s0

ϕP,v(Pn(c1))s1

is a root of unity lying in K.

Recall the definition of the constant τv := τ(Lv) from Proposition 2.3.
Observe that if the condition in (P2) never occurs, then the normalized heights by P of

both sequence of points Pn(c0) and Pn(c1) are bounded, hence P is post-critically finite.
We prove here the following

Theorem 6.1. — Suppose P = Pc,a is a cubic polynomial defined over a number
field L satisfying the assumptions (P) which is not post-critically finite and such that
min{gP,v(P q(c0)), gP,v(P

q(c1))} > Gv(P ) + τv for some integer q and some place v of L.
Then there exists a root of unity ζ ∈ K, an integer q′ ≤ C(K, q), and an integer m ≥ 0

such that the polynomial Q(z) := ζPm(z) + (1 − ζ) c2 commutes with all iterates P k such

that ζ3
k

= ζ, and either Q(P q′(c0)) = P q′(c1), or Q(P q′(c1)) = P q′(c0).

Remark. — We shall prove along the way that there exists an integer k ≥ 1 with ζ3
k

= ζ
so that the commutativity statement is non empty.

6.1. Algebraization of adelic branches at infinity

The material of this section is taken from [X]. Let K be a number field. For any place v
on K, denote by Kv the completion of K w.r.t. the v-adic norm.

We cover the line at infinity H∞ of the compactification of the affine space A2
K =

SpecK[x, y] by P2
K by charts Uα = SpecK[xα, yα] centered at α ∈ H∞(K) such that

α = {(xα, yα) = (0, 0)}, H∞ ∩Uα = {xα = 0}, and xα = 1/x, yα = y/x+ c for some c ∈ K
(or xα = 1/y, yα = x/y).

Fix S a finite set of places of K. By definition, an adelic branch s at infinity defined
over the ring OK,S is a formal branch based at a point α ∈ H∞(K) given in coordinates
xα, yα as above by a formal Puiseux series

yα =
∑

j≥1

ajx
j/m
α ∈ OK,S[[x

1/m
α ]]

such that
∑

j≥1 ajx
j is an adelic series.

Observe that for any place v 6∈ S, then the radius of convergence is a least 1. In the
sequel, we set rZ,α,v to be the minimum between 1 and the radius of convergence over Kv

of this Puiseux series. Any adelic branch s based at α at infinity thus defines an analytic
curve in an (unbounded) open subset of A2,an

v :

Zv(s) :=



(xα, yα) ∈ Uα(Kv) ; ymα =

∑

j≥1

ajx
j
α , 0 < |xα|v < min{rZ,α,v, 1}



 .
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Theorem 6.2 (Xie). — Suppose s1, . . . , sl are adelic branches at infinity, and let
{Bv}v∈MK

be a set of positive real numbers such that Bv = 1 for all but finitely many
places.

Assume that there exists a sequence of distinct points pn = (xn, yn) ∈ A2(K) such
that for all n and for each place v ∈ MK then either we have max{|xn|v, |yn|v} ≤ Bv or
pn ∈ ∪l

i=1Z
v(si).

Then there exists an irreducible algebraic curve Z defined over K such that any branch
of Z at infinity is contained in the set {s1, . . . , sl} and pn belongs to Z(K) for all n large
enough.

6.2. Construction of an invariant correspondence

Our aim is to prove the following statement.

Theorem 6.3. — Suppose P = Pc,a is a cubic polynomial satisfying the assumptions (P).
Then there exists a (possibly reducible) algebraic curve ZP ⊂ A1 × A1 such that:

1. φ(ZP ) = ZP with φ(x, y) := (P (x), P (y));
2. for all n large enough, we have (Pn(c0), P

n(c1)) ∈ ZP ;
3. any branch at infinity of ZP is given by an equation ϕP (x)

s0 = ζ · ϕP (y)
s1 for some

root of unity ζ ∈ K.

Proof. — The proof is a direct application of Xie’s theorem. Recall that the set UK of
roots of unity that is contained in the number field K is finite.

Recall that for each place v over L, we let gP,v := limn
1
3n log+ |Pn|v be the Green

function of P , and write Gv(P ) = max{gP,v(c0), gP,v(c1)}.

Lemma 6.4. — For any ζ ∈ U , there exists an adelic branch cζ based at a point q ∈
H∞(L) such that for any place v the analytic curve Zv(cζ) is defined by the equation
{ϕP,v(x)

s0 = ζ · ϕP,v(y)
s1} in the range min{|x|v , |y|v} > exp(Gv(P ) + τv).

Define (xn, yn) := (Pn(c0), P
n(c1)) ∈ A2(L), and consider the family of all adelic curves

cζ given by Lemma 6.4 for all ζ ∈ UK. We shall first check that all hypothesis of Xie’s
theorem are satisfied.

To do so pick any integer n and any place v on L. Suppose first that gP,v(c0) = 0. Since

gP,v(P
n(c0)) = 3ngP,v(c0) = 0, we get |xn|v ≤ eCv =: Bv by Lemma 2.4. The same upper

bound applies to |yn|v since gP,v(c1) = 0 by (P1) so that max{|xn|v, |yn|v} ≤ Bv in this
case.

Suppose now that gP,v(c0) > 0 so that gP,v(c1) > 0 by (P1). Fix N large enough such
that gP,v(P

N (c0)) > Gv(P )+τv and gP,v(P
N (c1)) > Gv(P )+τv . Then PN (c0) and PN (c1)

lie in the domain of definition of the Böttcher coordinate by Proposition 2.3. Since

gP,v(P
n(c0)) = 3n−NgP,v(P

N (c0)) ≥ gP,v(P
N (c0)) > Gv(P ) ,

we may also evaluate ϕP at xn for all n ≥ N . The same holds for yn and we get

ϕP (xn)
s0

ϕP (yn)s1

is a root of unity ζ ∈ K by (P2) hence (xn, yn) belongs to Zv(cζ) for all n ≥ N .

Xie’s theorem thus applies to the sequence {(xn, yn)}n≥N , and we get an irreducible
curve Z ⊂ A1 ×A1 that contains infinitely many points (xn, yn) and such that each of its
branch at infinity is equal to cζ for some ζ ∈ UK.
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Recall that φ(x, y) = (P (x), P (y)), and pick any integer n ≥ 1. Then φn(Z) is an
irreducible curve defined over L whose branches at infinity are the images under φn of the
branches at infinity of Z.

Fix ζ ∈ UK and pick (x, y) ∈ Zv(cζ). Then (x′, y′) = (P (x), P (y)) satisfies

ϕP (x
′)s0

ϕP (y′)s1
=

ϕP (x)
3s0

ϕP (y)3s1
= ζ3 ,

hence φ(cζ) = cζ3 . We conclude that any branch at infinity of φn(Z) is of the form cζ
for some ζ ∈ UK. Since two irreducible curves having a branch at infinity in common are
equal, we see that Z is pre-periodic for the morphism φ so that φl+k(Z) = φk(Z) for some

l, k > 0. Setting ZP := ∪l+k−1
j=k φj(Z), we obtain a (possibily reducible) curve defined over

L such that φ(ZP ) = ZP and (xn, yn) ∈ ZP for all n ≥ k. This concludes the proof of the
theorem.

Proof of Lemma 6.4. — Recall from Lemma 2.2 that

ϕP (z) = λ
(
z − c

2

)
+

∑

k≥1

ak
zk

,

is an adelic series at infinity in the sense of §3.1 , and therefore

ϕ−1
P (z) =

1

λ
z +

c

2
+

∑

k≥1

bk
zk

,

too by Lemma 3.1. We may assume that ak, bk ∈ OK,S. Recall from Proposition 2.3 that
ϕP,v induces an analytic isomorphism between {z, gP,v(z) > Gv(P ) + τv} and {z′, |z′|v >

exp(Gv(P ) + τv)}. By Lemma 3.1 the formal map ϕ−1
P defines an adelic series at infinity

in the terminology of §3.1. For each place v, this series coincides with the inverse map of
ϕP on the complement of the closed disk of radius exp(Gv(P ) + τv) hence its domain of
convergence is exactly {z′, |z′|v > exp(Gv(P ) + τv)}.

It follows that
Zv := {(x, y), ϕP (x)

s0 = ζ ϕP (y)
s1}

defines an analytic curve in the domain min{gP,v(x), gP,v(y)} > Gv(P ) + τv, whose image
under the isomorphism (x′, y′) := (ϕP,v(x), ϕP,v(y)) is given by

Z ′
v := {(x′, y′), (x′)s0 = ζ (y′)s1}

where min{|x′|v, |y′|v} > exp(Gv(P ) + τv).
Pick any ξ ∈ Q̄ such that ξs1ζ = 1. Let cζ be the adelic branch at infinity defined by the

formal Laurent series (ϕ−1
P (t−s1), ϕ−1

P (ξ t−s0)). For any place v, the analytic curve Zv(cζ)
is included in Zv. Since s0 and s1 are coprime, for any pair (x′, y′) with (x′)s0 = ζ (y′)s1

and min{|x′|v, |y′|v} > exp(Gv(P ) + τv), there exists 0 < |t|v < exp
(
− Gv(P )+τv

min{s0,s1}

)
such

that x′ = t−s1 and y′ = ξt−s0 .

This proves that Zv(cζ) = Zv for all place as required.

6.3. Invariant correspondences are graphs

Let Z0, . . . , Zp−1 be the irreducible components of ZP such that φ(Zi) = Zi+1 (the index
computed modulo p). Apply [MS, Theorem 6.24] (or [P, Theorem 4.9]) to the component
Z0 of ZP that is φp-invariant. It implies that after exchanging x and y if necessary, the
curve Z0 is the graph of a polynomial map, i.e. Z0 = {(Q(t), t)} for some Q ∈ L[t] such
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that Q ◦P p = P p ◦Q. Observe that by [J] the two polynomials P and Q share a common
iterate since we assumed P not to be post-critically finite.

We now work at an Archimedean place. Recall that the branch at infinity of Z0 is of
the form ϕP (x)

s0 = ζϕP (y)
s1 for some ζ ∈ UK. Since s0 and s1 are coprime, it follows

that s0 = 1 and s1 = deg(Q), and therefore s1 is a power of 3, say s1 = 3m. We get

(13) ϕP (Q(t)) = ζϕP (t)
3m = ζϕP (P

m(t)) .

for all t of large enough norm. By Lemma 2.2, we get that ϕP (t) = λ
(
t− c

2

)
+ o(1) so

that

(14) λ
(
Q(t)− c

2

)
= λζ

(
Pm(t)− c

2

)
+ o(1)

which implies Q(t) := ζPm(t) + (1 − ζ) c2 since a polynomial which tends to 0 at infinity
is identically zero.

At this point, recall our assumption that min{gP,v(P q(c0)), gP,v(P
q(c1))} > Gv(P ) + τv

for some integer q and some place v of L. Then by (P2) ϕP (P
q(c0))

s0 = ξϕP (P
q(c1))

s1 ,
for some root of unity ξ ∈ K which implies ϕP (P

q+n(c0)) = ξ3
n

ϕP (P
q+n(c1))

3m . Since for
some n large enough the point (P q+n(c0), P

q+n(c1)) belongs to Z0, we get ξ3
n

= ζ. Now
observe that the least integer n such that ξ3

n

= ζ is less that the cardinality of UK. We
get the existence of q′ ≤ C(K, q) such that ϕP (P

q′(c0)) = ζϕP (P
q′(c1))

3m . Since ϕP is

injective, the equation (13) shows that P q′(c0) = Q(P q′(c1)).

Observe that ζ3
p

= ζ. Indeed, since Z0 is φp-invariant and since φ(cζ) = cζ3 , we get

cζ3p = cζ , hence ζ3
p

= ζ.

We now pick any integer k ≥ 1 such that ζ3
k

= ζ. Then for all t large enough, we have

ϕP (Q ◦ P k(t)) = ζϕP (P
k(t))3

m

= ζϕ3m+k

P (t)

whereas

ϕP (P
k ◦Q(t)) = ϕP (Q(t))3

k

= ζ3
k

ϕ3k+m

P (t) .

Since ϕP is injective on a neighborhood of ∞, and since ζ3
k

= ζ by assumption, we
conclude that Q ◦ P k = P k ◦Q.

This concludes the proof of Theorem 6.3.

7. Classification of special curves

In this section, we prove Theorems C and A.

Before starting the proofs, let us introduce some notation. Pick q,m ≥ 0 and ζ a root of
unity. We let Z(q,m, ζ) be the algebraic set of those (c, a) ∈ A2 such that the polynomial

Qc,a := ζPm
c,a + (1 − ζ) c2 commutes with all iterates P k

c,a of Pc,a such that ζ3
k

= ζ, and

either Qc,a(P
q
c,a(c0)) = P q

c,a(c1), or Qc,a(P
q
c,a(c1)) = P q

c,a(c0).
Observe that, when m ≥ 1, Q has degree 3m and when (c, a) belongs to a fixed normed

field K then the Green function gQ := limn
1

3nm log+ |Qn| is equal to gc,a. Indeed since Q

and P k commute they have the same filled-in Julia set, hence coincide with the filled-in
Julia set KP of P . And gQ (resp. gP ) is the unique continuous sub-harmonic function

g on A1,an
K that is zero on KP , harmonic outside with a logarithmic growth at infinity

gP (z) = log |z|+O(1) (resp. gQ(z) = log |z|+O(1)). As KP = KQ, this gives gP = gQ.
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7.1. Proof of Theorem C

The implication (1) ⇒ (3) is exactly point 1. of Theorem 4.1.

The implication (3) ⇒ (4) follows from Corollary 4.2 when s0 and s1 are both nonzero.
When s1 = 0, then g0,v ≡ 0 on C at all places. By [DF, Theorem 2.5] there exists
n > 0 and k ≥ 0 such that C is an irreducible component of {(c, a) ∈ A2 ; Pn+k

c,a (c0) =

P k
c,a(c0)}. By Theorem 3.9 (applied to arbitrary weights) the family of functions {g1,v}v∈MK

induces a semi-positive adelic metric on some ample line bundle on the normalization of
the completion of C so that Thuillier-Yuan’s theorem applies. This gives (4) by observing
that g0 + g1 = g1. The case s0 = 0 is treated similarly.

The implication (4) ⇒ (1) follows from the fact that the positive closed (1, 1) current
Tbif is the dd

c of a continuous function (namely g0+g1) hence the measure Tbif∧ [C] cannot
charge any point. Since µk is a sequence of positive measures supported on the set of PCF
polynomials lying in C that converges to Tbif ∧ [C], the curve C is necessarily special.

To prove (2) ⇒ (1), we observe that if c0 is not persistently pre-periodic on C then it
is active at at least one parameter by [DF, Theorem 2.5] and that the set of parameters
for which it is pre-periodic is infinite by e.g. [DF, Lemma 2.3].

We now prove (3) ⇒ (2). We suppose c0 is not persistently pre-periodic on C. Pick
some parameter (c, a) ∈ C and suppose c0 is pre-periodic. We need to show that Pc,a is
post-critically finite.

Since c0 is not persistently pre-periodic on C we have s1 6= 0 (again by [DF, Theorem
2.5] applied at any Archimedean place). In the case s0 = 0 then c1 is persistently pre-
periodic and Pc,a is clearly post-critically finite. We may thus assume that s0 and s1 are
both non-zero and the functions g0,v , g1,v vanish on the same set in Cv,an for any place v
of K. Observe that c0 being pre-periodic implies (c, a) to be defined over a number field.
It follows that for all the Galois-conjugates (c′, a′) of (c, a) (over the defining field K of the
curve C) we have Gv(c

′, a′) := max{g0,v(c′, a′), g1,v(c′, a′)} = 0. It follows from [I] or [FG,
Theorem 3.2] that Pc,a is post-critically finite.

Let us now prove (3) ⇒ (5). We suppose C is special. If either c0 or c1 is persistently
pre-periodic in C, the assertion (5) holds true with ζ = 1 and i = j by [DF, Theorem 2.5].

Assume from now on that we are not in this case. Replacing K by a finite extension
we may assume that all roots of unity ζ appearing in Theorem 6.1 2. belongs to K, since
there are at most the number of branches at infinity of C of such roots of unity.

Let B be the set of all (c, a) ∈ C(L) where L is a finite extension of K such that Pc,a

is not post-critically finite. Given a place v of K we also define the subset Bv of B of
parameters c, a such that g0,v(c, a) > 0. This set is infinite since post-critically finite
polynomials form a bounded set in Cv,an.

Lemma 7.1. — For any (c, a) ∈ B, the polynomial Pc,a satisfies (P1) and (P2).

Pick q large enough such that 3q > max{s0/s1, s1/s0}, and fix a place v of residual
characteristic ≥ 5. Now choose any (c, a) ∈ Bv. Then g1,v(c, a) is also positive and
min{gc,a,v(P q(c0)), gc,a,v(P

q(c1))} > Gv(c, a) so that Theorem 6.1 applies by the previous
lemma. We get a positive integer q′ (bounded from above by a constant C depending only
on K and q), a root of unity ζ ∈ K and an integer m ≥ 0 such that (c, a) ∈ Z(q′,m, ζ).

Since gQ = gP , and Q(P q′(c0)) = P q′(c1) we have

3mgP,v(P
q′(c0)) = gP,v(Q(P q′(c0))) = gP,v(P

q′(c1))
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so that 3m = s0
s1
. We conclude that the algebraic set consisting of the union of the curves

Z(q′,m, ζ) with 3m = s0
s1
, q′ ≤ C and ζ ranging over all roots of unity lying in K contains

Bv.
It follows that C is an irreducible component of one of these curves.

To end the proof of the theorem, we are left with proving (5) ⇒ (3). Suppose that C is
an irreducible component of Z(m, q, ζ) for some m ≥ 0 and q ≥ 0 and some root of unity
ζ. Observe that Z(q,m, ζ) hence C are defined over a number field say K.

When m ≥ 1, then for all place v of that number field we have gQc,a,v = gPc,a,v for
all (c, a) ∈ C(L) for some finite extension L of K. In particular Qc,a(P

q
c,a(ci)) = P q

c,a(cj)
implies 3mgi,v(c, a) = gj,v(c, a) which proves (3) (with s0 = 0 or s1 = 0 if i = j). When
m = 0 and ζ 6= 1 and C 6= {c = 0}, then Qc,a(c0) = (1− ζ)c/2 6= 0 hence i 6= j. It follows
that gPc,a,v ◦ Qc,a = gPc,a,v hence g0,v = g1,v. When C = {c = 0}, then c0 = c1 so that
again g0,v = g1,v. Finally when m = 0 and ζ = 1, then i 6= j and P q

c,a(c0) = P q
c,a(c1) hence

g0,v = g1,v at all places.

Proof of Lemma 7.1. — Pick (c, a) ∈ B. By Theorem 4.1 1., Pc,a satisfies (P1). To check
(P2), we need to introduce a few sets. Fix any place v of K, and for any integer n ≥ 0,
define the open subset of Cv,an

Ωn,v := {(c′, a′), min{gc′,a′,v(Pn
c′,a′(c0)), gc′,a′,v(P

n
c′,a′(c1))} > Gv(c

′, a′) + τv} .

On Ωn,v one can define the analytic map

Mn(c
′, a′) :=

ϕc′,a′(P
n
c′,a′(c0))

s0

ϕc′,a′(P
n
c′,a′(c1))

s1
.

Observe that Ωn+1,v ⊂ Ωn,v, and Mk+l(c
′, a′) = Mk(c

′, a′)3
l

on Ωk,v for all integers k, l ≥ 0.
We also define the increasing sequence of open sets

Un,v :=

{
(c′, a′), Gv(c

′, a′) >
τv

3n − 1

}
⊂ Cv,an .

Since Gv is subharmonic and proper on Cv,an, the set Un,v contains no bounded component
by the maximum principle.

Lemma 7.2. — Suppose 3r ≥ max{s0/s1, s1/s0}. Then we have Ωn,v ⊂ Un,v and Un,v ⊂
Ωn+r,v.

By Theorem 4.1 2., one can find two integers q ≥ 1 and N ≥ 1 such that Mq is
well-defined and constant equal to a root of unity lying in K in each component of UN,v.

Let V be the connected component of Ωn,v containing (c, a). This open set might or
might not be bounded. By the previous lemma, if n ≥ max{r+N, q}, then Un−r,v ⊂ Ωn,v

so that Mn is well-defined on Un−r,v. Since all components of Un−r,v are unbounded, and

Mn = M3n−q

q in UN,r, we conclude that Mn is locally constant in Un−r,v (hence on V )
equal to a root of unity lying in K.

When n ≤ n0 = max{r + N, q}, then (Mn)
3n0−n

= Mn0 which we know is constant in
V equal to a root of unity lying in K. We conclude that Mn is constant on V equal to a
root of unity lying in a fixed extension K′ of K that only depends on the constants r,N
and q. Since these constants are in turn independent of the place v, we conclude the proof
of the lemma replacing K by K′.
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Proof of Lemma 7.2. — Pick (c′, a′) ∈ Ωn,v. We may suppose that Gv(c
′, a′) = gc′,a′,v(c0)

so that Gv(c
′, a′) = gc′,a′,v(c0) = 1

3n gc′,a′,v(P
n
c′,a′(c0)) > 1

3n (Gv(c
′, a′) + τv) which implies

(c′, a′) ∈ Un,v.
Conversely suppose (c′, a′) ∈ Un,v. As before we may suppose that Gv(c

′, a′) =
gc′,a′,v(c0) so that

gc′,a′,v(P
n+r(c0)) ≥ gc′,a′,v(P

n(c0)) = 3ngc′,a′,v(c0) =

3nGv(c
′, a′) = Gv(c

′, a′) + (3n − 1)Gv(c
′, a′) > Gv(c

′, a′) + τv .

Similarly we have

gc′,a′,v(P
n+r(c1)) = 3n+r s0

s1
gc′,a′,v(c1) ≥ 3ngc′,a′,v(c0) > Gv(c

′, a′) + τv

hence (c′, a′) ∈ Ωn+r,v.

7.2. Proof of Theorem A

According to the implication (1) ⇒ (5) of Theorem C, any irreducible algebraic curve C of
Poly3 containing infinitely many post-critically finite polynomials is a component of some
Z(q,m, ζ) so that Theorem A reduces to the following.

Proposition 7.3. —

1. The set Z(q,m, 1) is equal to the union {Pm+q
c,a (c1) = P q

c,a(c0)} ∪ {Pm+q
c,a (c0) =

P q
c,a(c1)}, hence contains an algebraic curve. Moreover, one has Z(1, 0, 1) =

Z(0, 0, 1).
2. The set Z(q,m,−1) is infinite if and only if m = 0, and we have Z(q, 0,−1) =

{12a3 − c3 − 6c = 0} for any q ≥ 0.
3. if ζ2 6= 1, the set Z(q,m, ζ) is finite.

We shall rely on the following observation. Denote by Crit(P ) the set of critical points
of the polynomial P .

Lemma 7.4. — Pick any (c, a) ∈ Z(q,m, ζ), and suppose that

Qc,a = ζPm
c,a + (1− ζ)

c

2

is a polynomial that commutes with P k
c,a and ζ is a (3k − 1)-root of unity. Then we have

Qc,a(Crit(P
k+m
c,a )) = Qc,a(Crit(P

m
c,a)) ∪ Crit(P k

c,a) .

Proof. — Write P = Pc,a and Q = Qc,a. Differentiate the equality P k ◦Q = Q◦P k. Since
Q′ = ζ · (Pm)′, we get

Crit(Q ◦ P k) = P−k(Crit(Q)) ∪ Crit(P k) =

P−k(Crit(Pm)) ∪Crit(P k) = Crit(P k+m) ,

and therefore

Crit(P k+m) = Crit(P k ◦Q) = Crit(Pm) ∪Q−1(Crit(P k)) ,

and we conclude taking the image of both sides by Q.

We now come to the proof of the Proposition.
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Proof of Proposition 7.3. — We may and shall assume that all objects are defined over
the field of complex numbers.

1. Suppose Z(q, 0, ζ) contains an irreducible curve C. We shall prove that either ζ = ±1,
or C = {c = 0}.

Observe that for any (c, a) ∈ Z(q, 0, ζ), the polynomial Qc,a is an affine map which

commutes with P k
c,a, hence gc,a(Qc,a(z)) = gc,a(z) for all z ∈ C. Without loss of generality,

we may suppose that Qc,a(P
q
c,a(c0)) = P q

c,a(c1), hence G(c, a) = g0(c, a) = g1(c, a).
Suppose that Z(q, 0, ζ) contains an irreducible curve C. If g0 vanishes identically on C

then g1 also, and this implies both critical points to be persistently preperiodic so that
all polynomials in C are post-critically finite. This cannot happen, so that we can find an
open set U in C such that G(c, a) > 0 for all (c, a) ∈ U .

Pick any parameter (c, a) in U . We have Qc,a(Crit(P
k
c,a)) = Crit(P k

c,a) by Lemma 7.4,

so that Qc,a(c0), Qc,a(c1) ∈ Crit(P k
c,a). Since

Crit(P k
c,a) =

⋃

0≤j≤k−1

P−j
c,a (Crit(Pc,a))

we get gc,a(α) = 3−jgc,a(c0) < gc,a(c0) = G(c, a) for any α lying in Crit(P k
c,a) but

not in Crit(Pc,a). However gc,a(Qc,a(c0)) = gc,a(Qc,a(c0)) = G(c, a), therefore we have
Qc,a(c0), Qc,a(c1) ∈ Crit(Pc,a) = {c0, c1}.

This implies either (1 − ζ)c = 0, or (1 + ζ)c = 0, hence ζ = ±1 or C = {c = 0} as
required.

2. Suppose now that C is an irreducible curve included in Z(q,m, ζ) with m > 0. We
claim that either ζ = 1, or C = {c = 0} as above.

We proceed similarly as in the previous case. We suppose that Z(q,m, ζ) is infinite.
For any (c, a) ∈ Z(q,m, ζ), the polynomial Qc,a commutes with P k

c,a for some k, and has
degree 3m > 1. In particular we have equality of Green functions gQc,a = gc,a. Without
loss of generality we may (and shall) assume Qc,a(P

q
c,a(c0)) = P q

c,a(c1), which implies
g0(c, a) = 3mg1(c, a).

Assume now by contradiction that ζ 6= 1. Proceeding as in the previous case, we can
find an open set U ⊂ C such that G(c, a) = g0(c, a) > 0 for all (c, a) ∈ U . Pick now
(c, a) ∈ U .

Lemma 7.5. — For any α ∈ P−m
c,a {c0}, we have Qc,a(α) ∈ {c0, Qc,a(c1)}.

Observe that

Qc,a(α) = ζPm
c,a(α) + (1− ζ)

c

2
= ζc0 + (1− ζ)

c

2
= (1− ζ)

c

2
.

The equality Qc,a(c1) = Qc,a(α) therefore gives Qc,a(c1) = ζPm
c,a(c1)+ (1− ζ) c2 = (1− ζ) c2 ,

and we find Pm
c,a(c1) = 0 = c0 so that C is a component of Z(1,m, 1).

The equality c0 = Qc,a(α), implies (1 − ζ) c2 = 0 so that either ζ = 1, or C equals
{c = 0}.
3. We have Z(q, 0,−1) = Z(0, 0,−1) for all q ≥ 0.

Fix q ≥ 0, and pick any (c, a) ∈ Z(q, 0,−1). Observe that (−1)3 = −1 hence Qc,a(z) =
−z + c commutes with Pc,a by definition. A direct computation shows that this happens
if and only if (c, a) belongs to the curve D1 := {12a3 − c3 − 6c = 0}.

One can also check that Qc,a(c0) = c1 for any parameter on D1, and this implies
(Qc,a ◦ P q

c,a)(c0) = P q
c,a(Qc,a(c0)) = P q

c,a(c1) for any q ≥ 0. This implies the claim.
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4. The irreducible curve D0 = {c = 0} is included in Z(q,m, ζ) if and only if m = 0 and
ζ = 1.

Observe that any polynomial P := P0,a in D0 is unicritical with a single critical point
at 0, so that D0 is included in Z(q, 0, 1) for all q ≥ 0. Observe also that g0 = g1 > 0 on a
non-empty open subset of D0.

Suppose that D0 is included in Z(q,m, ζ) for some positive integer m > 0. Then the
Green function of Q := Q0,a is equal to gP and the equation Q(P q(c0)) = P q(c1) implies
gP (c0) = 3mgP (c1) > gP (c1) at least when P is close enough to infinity. This is absurd.

Suppose now that D0 is included in Z(q, 0, ζ) with ζ 6= 1 so that Q(z) = ζz. One checks
by induction that for any integer k ≥ 1 one has

P k(z) = qkz
3k + ska

3z3
k−3 + l.o.t

with qk, sk ∈ Q∗
+. Choose k minimal such that ζ3

k

= ζ. We get

Q−1 ◦ P k ◦Q(z) = qkz
3k + ska

3ζ3
k−4z3

k−3 + l.o.t 6= P k

which yields a contradiction, and concludes the proof of our claim.

5. We may now prove the proposition. The first statement follows from the definition of
Z(q,m, 1), since in that case we have Q = Pm which always commutes with P . Moreover,
the curve Z(1, 0, 1) is given by the equation

0 = Pc,a(c0)− Pc,a(c1) = a3 −
(
a3 − c3

6

)
= c

c3

6
,

whence Z(1, 0, 1) = {c = 0} = Z(0, 0, 1).
For the second statement, suppose first that Z(q,m,−1) is infinite. By the second step,

we have m = 0, or D0 = {c = 0} is included in Z(q,m,−1). The fourth step rules out
the latter possibility so that m = 0. Conversely if m = 0 we may apply the third step to
conclude that Z(q, 0,−1) is a curve equal to D1 = {12a3 − c3 − 6c = 0}.

For the third statement, pick ζ 6= ±1 and suppose by contradiction that Z(q,m, ζ) is
infinite. The first and second step imply that Z(q,m, ζ) contains D0 which is impossible
by Step 4.

This concludes the proof of the proposition.

Proof of Lemma 7.5. — Take α ∈ P−m
c,a {c0}, and observe that α ∈ Crit(P k+m

c,a ). Accord-
ing to Lemma 7.4, we have

Qc,a(α) ∈ Crit(P k
c,a) ∪Qc,a(Crit(P

m
c,a))

and gc,a(Qc,a(α)) = 3mgc,a(α) = 3m · 3−mgc,a(c0) = gc,a(c0) = G(c, a) > 0.

Pick any point z ∈ Crit(P k
c,a) ∪ Qc,a(Crit(P

m
c,a)), and suppose it is equal to neither c0

nor Qc,a(c1). Then we are in one of the following (excluding) cases:

1. z is a preimage of c0 under P j
c,a for some 1 ≤ j ≤ k − 1, and gc,a(z) < gP (c0);

2. z is a preimage of c1 under P j
c,a for some 0 ≤ j ≤ k − 1, in which case gc,a(z) ≤

gc,a(c1) < gc,a(c0);
3. z ∈ Qc,a(Crit(P

m
c,a)), so that gc,a(z) = 3mgc,a(w) for some point w ∈ Crit(Pm

c,a) =⋃
0≤j≤m−1 P

−j
c,a (Crit(Pc,a)).

In the last case two sub-cases arise. When w is a preimage of c0, we find

gc,a(z) = 3mgc,a(w) ≥ 3m
1

3m−1
gc,a(c0) > gc,a(c0) .
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Otherwise w is a preimage of c1 distinct from c1 since z 6= Qc,a(c1). And we find gc,a(z) =
3mgc,a(w) ≤ 3m−1gc,a(c1) < gc,a(c0).

Since gc,a(Qc,a(α)) = gc,a(c0) we conclude that z 6= Qc,a(α) as required.
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