
HAL Id: hal-01289585
https://hal.science/hal-01289585

Submitted on 17 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pitch Axis Control for a Guided Projectile in a Wind
Tunnel-based Hardware-in-The-Loop Setup

Guillaume Strub, Spilios Theodoulis, Vincent Gassmann, Simona Dobre,
Michel Basset

To cite this version:
Guillaume Strub, Spilios Theodoulis, Vincent Gassmann, Simona Dobre, Michel Basset. Pitch Axis
Control for a Guided Projectile in a Wind Tunnel-based Hardware-in-The-Loop Setup. AIAA Journal
of Spacecraft and Rockets, 2015, �10.2514/6.2015-0153�. �hal-01289585�

https://hal.science/hal-01289585
https://hal.archives-ouvertes.fr


Pitch Axis Control for a Guided Projectile in a Wind

Tunnel-based Hardware-In-the-Loop Setup

Guillaume Strub1,
French-German Research Institute of Saint-Louis (ISL), 68301 Saint-Louis, France and

Laboratoire MIPS EA2332, Université de Haute-Alsace, 68093 Mulhouse, France

Spilios Theodoulis2, Vincent Gassmann3, Simona Dobre4

French-German Research Institute of Saint-Louis (ISL), 68301 Saint-Louis, France

Michel Basset5

Laboratoire MIPS EA2332, Université de Haute-Alsace, 68093 Mulhouse, France

This article details the design of a pitch axis autopilot for an 80mm fin-stabilized, canard-guided

projectile and its validation on a Hardware-In-the-Loop test setup. This setup is built around an au-

tonomous projectile prototype, which is installed in the test section of a wind tunnel by the means of a

3-DoF gimbaled structure. The autopilot design is based on a family of linearized dynamic models of

the projectile, whose parameters were estimated from experimental data. Several control approaches

are considered. Using theH∞ robust control framework, a full-order disturbance rejection controller

is designed, taking into account the limited actuator dynamics. A fixed-order, fixed-structure con-

troller of lower complexity with the same performance objective is also designed, using a nonsmooth

H∞ technique. The tracking performance of these controllers is improved with the addition of a feed-

forward controller. A final approach considers the disturbance rejection and reference tracking as a

multi-objective problem, where the feedback and the feedforward controllers are designed in a single

step. The performance of these approaches is then assessed and compared using numerical simulation

as well as experimental results gathered from the Hardware-In-the-Loop setup.
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Nomenclature

Time-varying signals

αr, α Reference and measured angle of attack, deg

d Disturbance signal

δu, δm Reference and measured pitch control deflection, deg

p, q, r Body angular rates, deg/s

φ, θ, ψ Euler angles (roll, pitch and yaw), deg

Parameters

h Projectile altitude, m

Mαd, Mqd Body disturbance model parameters

kd, kδr Input scaling factors

kq Rate damping gain

Mqα, Mqq, Mqδ Body dynamic model parameters

ω0, ζ Reference model bandwidth, rad/s, and damping ratio

ρ Operating point

θ Parameter vector

V Airspeed, m/s

Models and subsystems

G Open-loop plant

GA, GS Actuator and sensor models

GB, HB Airframe dynamic and disturbance models

GP Rate-damped plant

KFB Feedback (disturbance rejection) controller

KFF, K′FF Feedforward (reference tracking) controller, filter and injection forms

Tref Reference model

Synthesis-related symbols
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ki,LF , ki,HF , ωi Weighting filter-related low- and high-frequency gains and −3dB bandwidth

P Augmented plant

r, e, eMM Reference input, tracking error and model-matching error

Si→e Closed-loop sensitivity function to disturbance channel i

Ti→ j Transfer fonction from channels i to j

u, v Controller output and input

Wi Weighting filter

wi, zi Exogenous inputs and performance outputs

Robustness analysis-related symbols

∆I Complex perturbation transfer function

`I Uncertainty radius

GP, ḠP Perturbed and nominal body pitch rate dynamics model

wI Multiplicative uncertainty weight

I. Introduction

An important trend in the field of guided ammunition research is the development of low-cost gun-

launched guided projectiles that aim at overcoming the limitations of traditional artillery ammunition (e.g.

in terms of accuracy, range, collateral damage and round expenditure). The development process for such

weapons is based on the traditional missile design procedure, which can be long and costly. As the design of

the control laws is usually done using model-based techniques, an accurate model of the projectile’s dynamic

behavior is crucial. The parameters of such models are traditionally quantified using various techniques

such as semi-empirical aerodynamic prediction codes, wind tunnel testing, Computational Fluid Dynamics

(CFD) predictions and/or free-flight tests. However, these techniques may lack precision for some airframe

configurations or flight conditions and are usually expensive in terms of time and cost.

Experimental validation and testing of the designed control laws is usually done through free-flight tests

or Hardware-In-the-Loop simulations on flight tables. The former technique requires a gun-hardened ready-

to-fly prototype and a sufficiently mature controller design, therefore it is unsuitable for initial testing. The
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latter technique consists in using a functional prototype with a 3-DoF actuation system and simulating the

aerodynamic environment using a model. Although they are much more flexible and less expensive than

free-flight tests, such simulations are limited in accuracy regarding the free-flight dynamic behavior.

The present paper proposes a novel, low-cost technique applicable to parameter estimation and control

algorithm validation for guided projectiles, trying to overcome the shortcomings associated with the above

two techniques. To this end, a fully functional guided projectile prototype based on low-cost, off-the-shelf

hardware is installed in the test section of a wind tunnel by the means of a 3-DoF gimbaled support struc-

ture, enabling rotation on the roll, pitch and yaw axes. This setup, illustrated in Figure 1 and referred to

as ACHILES (Automatic Control Hardware-In-the-Loop Experimental Setup), provides with realistic flight

conditions in a controlled experimental environment and enables rapid algorithm development and testing

through the use of industry-standard software.

To the author’s knowledge, there are very few similar setups targeted at identification and control studies

for guided projectiles and similar systems. In Hann et al. [1], the parameters of a sounding rocket roll

dynamics model are estimated from experimental data gathered using an actual prototype in a vertical wind

tunnel. Fresconi [2] proposes a guided projectile prototype similar to our proposal, with an emphasis on

the use of low-cost, off-the-shelf components and their resistance to high accelerations. Using aerodynamic

data from PRODAS studies, a linear quadratic optimal roll controller is designed and tested on the projectile

prototype in a wind tunnel. In both cases, the experimental setups in these studies only allows motion on

the roll axis, whereas ACHILES allows the three angular degrees of freedom. In Patel et al. [3], a missile

flow-control-based yaw actuator is devised. A closed-loop controller modulates flow effectors to produce

a yawing moment by exploiting flow asymmetry around the missile forebody. Dynamic tests in a wind

tunnel demonstrated the ability of the device to generate and maintain a range of yawing moments during

high-incidence pitch sweeps.

Previous work by the authors [4] focused on the identification of ACHILES’ pitch axis dynamics. Using

flight mechanics principles, a nonlinear pitch axis model is constructed, then linearized around a family of

equilibrium points. The projectile is then stimulated around each operating point and the model parameters

are estimated using the collected data, resulting in a family of linear models. Results have shown that

parameters do not vary significantly along the flight envelope for a fixed airspeed, allowing a single-model
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Fig. 1 Overview of the ACHILES Hardware-In-the-Loop experimental setup, including the guided projectile pro-

totype, the 3-DoF support structure and the wind tunnel.

uncertain representation of the pitch dynamics.

In this paper, this knowledge is leveraged so as to design a pitch axis autopilot. The main purpose of this

control system is twofold: it has to ensure good tracking of the reference signal while minimizing the effects

of disturbances on the system output. TheH∞ framework has been used successfully for missile flight control

design [5–7], which share several characteristics with the ACHILES projectile prototype. These techniques

are well-suited to this task, as they take into account limiting factors, e.g. modeling uncertainty, operating

condition variations, external disturbances or limited actuator and sensor bandwidth, while guaranteeing sys-

tem stability and the desired performance. Moreover, recent advances in H∞ control, such as nonsmooth

H∞ synthesis [8] and multi-objective control [9, 10], enable the design of low-complexity, high-performance

autopilots. As it is desirable to have a low-order control system, three design approaches with decreasing

complexity are proposed and compared using numerical simulation as well as Hardware-In-the-Loop exper-

iments.

This paper is organized as follows: Section II presents the hardware and software components of the

ACHILES experimental setup. In Section III, an uncertain model of the body dynamics is built using es-

timated models, and the actuator model is presented. Section IV details the design of the pitch autopilot,

using three approaches with decreasing controller complexity. The robustness of the designed control laws

is assessed in Section V and in Section VI the proposed controllers are implemented and compared on the

projectile prototype.
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Tail fins Control canards

ActuatorsBattery Embedded computer

Fig. 2 Inside view of the ACHILES projectile prototype. The IMU, which is on the other side of the main electronics

boar, is not pictured here.

II. Experimental Setup

The ACHILES projectile prototype is based on a fin-stabilized 80mm caliber shell with four nose-located

canards, of which an inside view is given in Fig. 2. This missile-like structure has several advantages for

identification and control investigations: as the frame is stabilized with tail fins, the stability only depends

on the geometry of the aerodynamic surfaces, as opposed to a gyrostabilized projectile. Moreover, the cross-

axis coupling as well as the mechanical complexity are greatly reduced since there is no need for a high

spin rate. The projectile is installed in the test section of a subsonic wind tunnel by the means of a 3-DoF

gimbaled structure as shown in Fig. 1. This structure enables rotation along the roll, pitch and yaw axes

while restraining all linear motion.

The projectile is controlled using aerodynamic surfaces (canards), which provide good control authority.

The canards are independently driven by modified COTS R/C servomotors, which have been retrofitted with

a custom control board in order to improve their linearity and dynamic behavior. A Microstrain 3DM-GX3

Inertial Measurement Unit (IMU) provides the control algorithms with an estimate of the projectile’s angular

attitude and velocities, and is based on a set of three accelerometers, magnetometers and gyrometers and an

embedded sensor fusion algorithm.

In order to speed up algorithm development, a rapid prototyping environment based on MAT-

LAB/Simulink has been developed. The algorithms are designed as Simulink diagrams, using standard

blocks as well as custom blocks for interacting with the projectile’s actuators and sensors. These diagrams

are then converted to C code and compiled using the MATLAB Coder and Simulink Coder toolboxes. The

resulting software is executed onboard the projectile, which features a realtime Linux distribution running on
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Fig. 3 Open-Loop plant model G.

an ARM-based Gumstix embedded computer. A more detailed review of the hardware components and the

software stack is given in Ref. [4].

III. Modeling

The open-loop pitch dynamics G of the ACHILES prototype can be represented as a series interconnec-

tion of the actuator model, the body model and the sensors model, as highlighted in Fig. 3. These models are

detailed in the following paragraphs.

A. Actuators

The ACHILES actuators are based on Hobbyking HK47010 metal-geared servomotors, where the stock

control board has been replaced with a custom microcontroller-based control board and an AS5045 12-bit

magnetic absolute position sensor. The servos are linked to the control fins using a belt drive with reduction

ratio kb = 16/18 ; the belt dynamics are not considered here for simplicity. As a complete control study has

been conducted on the actuators, a model of their dynamic behavior can be built using this knowledge [11].

To this end, the complete servo model is represented as a block diagram in Fig. 4 and the corresponding

transfer function is

GA =
kposK(kps + ki)

τs3 + (1 + Kkp)s2 + K(ki + kposkp)s + Kkposki
(1)

where the parameter values are given in Table 3 (see Appendix).

The open-loop servo dynamics are represented with a first-order model K/(1 + τs), where τ captures

the mechanical time constant of the motor and the gear train. The implemented control system consists in

a cascade of a proportional position controller kpos and a proportional-integral velocity controller kp + ki/s.

These parameters have been tuned using a nonsmooth H∞ mixed-sensitivity design procedure [8], which
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Fig. 5 Normalized actuator step responses for a set of reference angles.

matches the closed-loop response to a second-order system TA
ref with bandwidth ω0 = 50 rad/s and an optimal

damping ζ = 0.78. As an additional constraint, the motor control voltage must remain under the supply

voltage at all times, for any reference step up to ±60◦ in order to avoid saturation.

This controller is implemented on the custom servo control boards with the addition of a simple anti-

windup scheme, which consists in limiting the integral error to the supply voltage. This simple modification

avoids controller overshoot in the event of output saturation. Figure 5 shows the normalized actuator step

response for various amplitudes, which presents a 5% response time of 100 ms. Note that for a step larger

than the design value of 60◦, the response is no longer linear but does not present overshoot. Thanks to

the chosen position sensor, the output fin position is accurate to ±0.44◦, with 0.078◦ resolution and 0.027◦

repeatability. The difference in time response among all four actuators is less than 10 ms, which is negligible

with respect to the airframe dynamics.

B. Body Dynamics

The projectile dynamics are subject to the flight mechanics principles [12], which lead to a nonlinear

parameter-dependent model. In the present case, this model is simplified thanks to the absence of linear

motion and the following assumed hypotheses for the study of the pitch axis: the airspeed V is held constant

and the other axes are locked at zero, therefore p = 0, r = 0, φ = 0 and ψ = 0, where ω = [p q r]>
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Fig. 6 Projectile side view and parameters.

is the body rate vector and φ and ψ denote respectively the body roll and yaw angles. Furthermore, in this

experimental setup the altitude h is constant (ground level). Figure 6 presents the projectile in a pitching

motion and the remaining parameters, which are the angle of attack α, which is equal to the pitch angle θ,

the pitch rate q and the control fin deflection δm.

The pitch axis nonlinear model is linearized around a familiy of equilibrium (or trim) points, resulting in

a second-order quasi-LPV model. In order to account for aerodynamic disturbances and measurement noise,

a second-order disturbance model is appended to the projectile quasi-LPV model with the same poles. For

any given operating point ρ = [ᾱ V̄]>, this model can be written as:

ẋδ(t) = A(ρ)xδ(t) + BG(ρ)δm,δ(t) + BH(ρ)d(t)

yδ(t) = C(ρ)xδ(t) + DG(ρ)δm,δ(t) + DH(ρ)d(t)
(2)

For simplicity, the δ subscript will be omitted for the rest of the article. The system matrices are:


A BG BH

C DG DH

 =



0 1 0 Mαd

Mqα Mqq Mqδ Mqd

1 0 0 0

0 1 0 Mαd


(3)

In the above matrices, the parameters Mqα, Mqq and Mqδ describe the dynamic behavior of the projectile

and are related to the derivatives of the pitch aerodynamic coefficient Cm at the considered operating point.

Parameters Mαd and Mqd describe the noise model and are scaled for a unity variance white noise signal

d(t). These parameters have been estimated for different values of the trim angle of attack ᾱ from collected

experimental data, using an estimation procedure based on numerical optimization [13] [14]. The estimated

values of the parameters, and the corresponding uncertainty, are given in the appendix (Table 4).

9



Although the values of the dynamic model parameters (Mqα, Mqq and Mqδ) are dependent on the trim

angle of attack ᾱ, the maximum variation does not exceed 45 % in the worst case. Furthermore, the cor-

responding second-order transfer function parameters (gain, corner frequency and damping) are shown in

Table 5. The highest variation is on the damping ζ, which varies from 0.21 at ᾱ = 0◦ to 0.13 at ᾱ = 7◦

(±21.6% variation wrt the mean value), while the gain k and corner frequency ω0 remain almost constant

(less than 10% variation). Therefore, an adaptive or gain-scheduled controller may not be required for the

constant speed case. The proposed approach consists in designing the autopilot for a nominal model, built

using the mean estimated parameter values

θ̄ =

[
Mqα Mqq Mqδ Mαd Mqd

]>
=

[
−53.0712 −2.4470 38.8179 0.0399 2.3232

]> (4)

and in representing the deviations from this nominal model as uncertainty.

C. Sensors

The sensor model takes into account the bandwidth and noise contribution of the Inertial Measurement

Unit. In this study, both effects are negligible and the IMU can be modeled by the unit transfer function: in

terms of dynamics, the bandwidth of the sensors is much higher (over 200 Hz) than the system open-loop

bandwidth (less than 2 Hz). The noise level has been assessed experimentally by comparing the variance

of the pitch signal over a period of 10 seconds for two cases. In the first case, the projectile is at rest (zero

airspeed), while in the second case the airspeed is raised to V = 25 m/s. As the variance in the latter case

(4.10−2) is two orders of magnitude higher than the former (3.10−4), the noise contribution of the IMU can

safely be neglected. Finally, a separate IMU model is neither necessary nor desirable since the body model

is estimated from recorded IMU measurement, taking them into account the sensor dynamics.

IV. Autopilot Design

This section details the design of an angle of attack autopilot using the nominal model postulated in

Section III, which is used throughout the pitch flight envelope and at a constant airspeed. The design goal is

to obtain a low-order fixed-structure controller in order to simplify implementation as well as to prepare the

ground for a future airspeed scheduling, while maintaining high performance levels.
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Fig. 7 Rate feedback loop, forming the damped open-loop plant GP.

A. Objectives and Limitations

The pitch axis autopilot aims at fulfilling several complementary objectives. The main goals are to aug-

ment the dynamic stability of the system and to track the reference AoA signal issued by guidance algorithms,

while rejecting external disturbances such as wind gusts. The autopilot must also guarantee robust stability

in the presence of uncertainty, such as neglected or unmodelled dynamics, or uncertainty on aerodynamic

coefficients. Some of these goals are conflicting and lead the designer to a compromise, since improving

performance degrades stability margins, and vice versa.

There are several limitations that must be taken care of during the design procedure. The resulting

autopilot is to be implemented in Hardware-In-the-Loop experiments, where the control algorithms are exe-

cuted on the embedded computer at an update rate Fs = 100 Hz, and where the target software introduces a

one-cycle controller delay [4]. The actuators have limited bandwidth and a limited saturation-free operating

range as detailed in Section III. All these considerations limit the achievable closed-loop bandwidth and

require the designer to keep a sufficient delay margin in the closed-loop autopilot system.

In the present case, the objective is to attenuate the effects of disturbances on the output α and pro-

vide accurate reference angle of attack tracking. The closed-loop system should behave like a second-order

low-pass reference model Tref with bandwidth ω0 = 6 rad/s and damping ζ = 0.78. These performance re-

quirements must not compromize stability, therefore the autopilot should comply with gain margin (GM) and

phase margin (PM) requirements, where typical values in the aircraft and missile community are GM > 6 dB

and PM > 45◦.

B. Rate Damping Controller

One of the first functions of the autopilot is to improve the pitch plane dynamic stability of the projectile.

In the field of missile and aircraft control design, this is accomplished by virtually increasing the aerodynamic

damping derivative Mqq through the use of a rate feedback loop [12], as presented in Fig. 7.
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Fig. 8 Pole loci for the open-loop plant GP. Black crosses mark the location of open-loop G plant poles. Bold blue

crosses mark the location of rate damped plant poles.

In the present case, the open-loop nominal plant is largely underdamped with a damping ratio ζG =

0.17. Using a pole placement approach, the feedback gain kq is selected such that the closed-loop damping

approaches 0.7, while keeping the natural frequency of the actuator and body poles separated by a factor of

at least three, as shown on Fig. 8. The virtual control input δr and disturbance input d are then respectively

scaled by the gains kδr and kd such that the DC gain between these inputs and the angle of attack output is

equal to unity. The resulting plant will be further referenced to as the damped open-loop plant GP and the

variable to be controlled is the angle of attack α. The obtained gain values for the rate damping controller

are kδr = 1.538, kd = 19.49 and kq = 0.1914.

Figure 9 presents simulated and experimental responses of the closed loop against the open-loop re-

sponse. Obviously, the rate damping controller can not constitute a tracking autopilot on its own, as any

plant gain uncertainty will lead to a static error, and the system output is very sensitive to disturbances.

Nevertheless, the system damping is vastly improved and there is an overall good agreement between the

simulated and the experimentally observed responses. The difference between these two responses is caused

by aerodynamic disturbances on the real system, which are not present in the simulation.

C. Angle of Attack Autopilot

The proposed angle of attack autopilot structure detailed throughout this section is illustrated in Fig. 10.

It is composed of two separate controller blocks, resulting in a two-degrees of freedom control structure.

The disturbance rejection feedback controller KFB acts on the tracking error signal e = α f − α and produces
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Fig. 10 Angle of attack autopilot structure.

the virtual control input δr. The main role of KFB is to maintain closed-loop system stability and minimize

the effects of the disturbance d on the system outputs α and q. Proper reference tracking is ensured by the

feedforward controller KFF, which shapes the reference signal αr such that the achieved angle of attack α

follows the response of a reference model Tref .

In the following paragraphs, the feedback controller is designed using two H∞ approaches, leading

respectively to a full-order controller and a fixed-order fixed-structure controller for comparison purposes.

The feedforward controller is obtained first by closed-loop system inversion followed by a reduction step,

and in a final step the design of both feedforward and feedback controllers is done simultaneously using a

multi-objective approach.

1. Disturbance Rejection Controller

In the autopilot structure presented in Fig. 10, the feedback controller KFB is entirely responsible for

rejection of external disturbances, as the feedforward controller KFF does not act on the tracking error. This

paragraph focuses on the design of KFB, using modern robust H∞ control techniques in a S/KS mixed-
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sensitivity setup [15].

The H∞ design problem is represented in the standard form interconnection, illustrated in Fig. 11. To

this end, the design objectives and constraints are included in the augmented plant P, of which the inputs are

the exogenous signal w = d (disturbance) and the control input u = δr. The outputs of P are the performance

signals z = [z1 z2]>, which are to be minimized, and the measured variable v = α. TheH∞ control problem

then consists in finding KFB, such that the system is nominally stable and

||Tw→z||∞ < γ, γ > 0 (5)

where Tw→z is the transfer function from w to z, which is obtained by the lower linear fractional transforma-

tion (LFT) Tw→z = Fl(P, KFB).

The S/KS mixed-sensitivity problem consists in shaping the closed-loop system sensitivity function

Sd→e, which is the transfer function between the disturbance d and the regulation error e, and KFBSd→e,

which is the transfer function between the disturbance d and the control input u and corresponds to the

control effort.

The body disturbance model HB acts as a low-pass filter on the disturbance signal d, which will be effec-

tively rejected if the sensitivity function Sd→e presents small gain at low frequencies. Another requirement

is to limit the controller effort, as the actuators have limited bandwidth and are prone to saturation in case of

high-amplitude input signals. Therefore, the controller should limit both the amplitude and the bandwidth of

the control signal u. These requirements are implemented using the weighting filters W1 and W2, which are

here chosen as first-order systems of the form:
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Wi =
s + ωi

ki,HFs + ki,LFωi
(6)

The inverse of these weighting filters roughly correspond to the desired shape of the closed-loop transfer

functions, and therefore the parameters specify the shape of the inversed filter, where ki,HF is its gain at high

frequencies, ki,LF is its gain at low frequencies and ωi its -3dB bandwidth frequency.

The parameters of the filter W1 acting on Sd→e are selected such that its inverse exhibits a high-pass

behavior. More specifically, the low-frequency gain k1,LF must be low to reduce steady-state error but must

be greater than zero in order to avoid numerical issues in the resolution of the H∞ problem. The high-

frequency gain k1,HF and the bandwidth ω1 define the tolerated disturbance amplitude and bandwidth. The

weighting filter W2 acts as a roll-off filter to limit the control gain after a certain frequency, which should

be lower than the actuators bandwidth. The low-frequency gain k2,LF must be greater than one, to allow

controller action in the low frequencies, and the high-frequency gain k2,HF is subject to the same numerical

requirements as k1,LF. The selection of the weighting filter parameters is a process subject to trial-and-error,

where the designer has to make a trade-off between effectiveness of disturbance rejection, control signal

energy and open-loop stability margins. The finally selected filter parameters are summarized in Table 1, and

the resulting performance transfer function Tw→z is:

Tw→z =


Sd→e ·W1

KFB · S d→e ·W2

 (7)

As a first approach, theH∞ problem of Eq. (5) is first solved using classical techniques (solving a Riccati

equation[16] or an LMI formulation[17]), resulting in a full-order controller structure. The high-frequency

modes are subsequently eliminated using model reduction techniques, and the controller is adjusted so that
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the lowest frequency pole is moved to zero, thereby eliminating steady-state error. In the end, a fifth-order

controller KFB,FO is obtained. However, full-order controllers are usually not suitable for implementation on

low-power control electronics, and are difficult to integrate in a future gain-scheduling scheme. Here, this

controller serves as a performance standard for comparison against reduced-complexity controllers.

In the second approach, a fixed-order, fixed-structure technique is employed, resulting in a reduced

controller order and hence a much simpler structure, which can be imposed by the designer. In guided

projectile control design, PI-type structures have been used successfully in stabilizing and reference tracking

controllers [18]. The PID controller provides additional damping through the derivative term, however the

derivative must be approximated using a low-pass filter such that the controller is proper and so as to limit

the high-frequency gain. The fixed-structure controller KFB,FS to be synthesized here is then of the form:

KFB,FS = kp + ki
1
s

+
kd s

T f s + 1
(8)

with parameters kp, ki, kd, and T f to be determined. The H∞ problem is then non-convex, and the

nonsmooth H∞ synthesis method of Apkarian and Noll [8] is employed to compute the fixed-order, fixed-

structure controller KFB,FS.

2. Reference Tracking Controller

The above designed feedback controllers are focused on disturbance rejection. Even if the closed-loop

system has no steady-state error, the time response does not conform to the specified requirements because

the complete system should behave like the reference model Tref . A straightforward approach for designing

the feedforward filter KFF consists in connecting the reference model and the inverse of the closed-loop

transfer function Tα f→α in series [15]:

KFF = TrefT−1
α f→α

(9)

Obviously, the resulting system is non-proper and cannot be directly implemented on the real system.

The approach employed to circumvent this limitation consists in approximating the magnitude frequency

response of the ideal feedforward on a specific frequency band with a fixed-order transfer function. As the

ideal feedforward filter behaves as a derivative filter at high frequencies, it is desirable to use a strictly proper
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Fig. 13 Multi-objective two-degrees of freedom synthesis diagram in standard form.

transfer function (i.e. that has more poles than zeros), so as not to excite high-frequency dynamics of the

closed-loop system. The frequency band must also be chosen with care as the high-frequency dynamics of

the ideal feedforward filter may not be relevant and usually impose a higher-order transfer function and high

gains. The selection of these parameters therefore results in a trade-off between model-matching accuracy

(minimizing the difference between the reference model and the closed-loop behavior) and controller/actuator

effort. However, this inverse-based design procedure may result in a too high model-matching error for

low-order systems, and the designer’s actions are quite limited. Moreover, while the disturbance rejection

controller satisfies the constraints on the actuator control signal, the closed-loop system with feedforward

may violate these specifications. It is more desirable to design the feedback and the feedforward controllers

in a single step, resulting in a 2-DoF controller such that all constraints are applied during synthesis, as

presented in the next subsection.

3. Multi-objective Synthesis

A naive approach to the design of the 2-DoF controller would be to add the feedforward controller and

associated model-matching and controller effort constraints to the mixed-sensitivity problem of Fig. 11. The

exogenous input vector w then consists in the reference input r as well as the disturbance input v. However,

it is not possible to define the weighting filters Wi for individual transfers, as all inputs are used during
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synthesis. For example, the performance signal relative to the model-matching error would include transfers

from both inputs, when only the reference is relevant. This limits the designer’s actions and leads to an

unsatisfactory result.

As the simultaneous feedback and feedforward design problem addresses different objectives, a better

formulation lies in multi-objective methods [10, 19]. In these frameworks, the different requirements are

specified in multiple w j → z j channels for performance assessment, where the exogenous inputs w j and

performance outputs z j are vectors. The resulting Tw j→z j transfers specify these requirements independently

of each other, as opposed to the case discussed previously. The synthesis procedure then consists in finding

K such that the nominal system is stable and all requirements are satisfied simultaneously:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Tw1→z1

Tw2→z2

. . .

Tw j→z j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∞

< γ, γ > 0 (10)

In the present case, two w j → z j channels are considered. The first channel, w1 → z1, deals with the

disturbance rejection requirements, which were specified in Section IV C 1. The reference tracking require-

ments, namely a model-matching constraint with respect to Tref and a high-frequency roll-off constraint on

KFBSr→e, which limits the injection of high-frequency dynamics in the plant from the reference input, are

specified in the second channel w2 → z2, where w2 = r. These requirements are enforced by the means of

the respective weighting filters W21 and W22. The model-matching filter W21 is a constant gain and acts on

the model-matching error eMM = r(Tref −Tr→α). The gain of W21 defines the maximum allowable difference

between the target system and the closed-loop transfer function, which is the highest at medium frequencies.

The roll-off filter W22 acts on the transfer Tr→u and is specified in the same way as in the disturbance rejec-

tion case. However, the high-frequency limitation mostly impacts the feedforward filter and its bandwidth

may be much larger than in the disturbance rejection case, as it will not compromize stability. The numerical

values of the parameters of W21 and W22 are summarized in Table 1, and the performance transfer function
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Fig. 15 Open-loop gain and phase margins for the disturbance rejection controllers (blue: full-order controller

KFB,FO, red: fixed-structure controller KFB,FS, green:fixed-structure controller KFB,MO in the multi-objective case).

Tw→z is:

Tw→z =



Sd→e ·W11 0

KFB · S d→e ·W12 0

0 (Tref − Tr→α) ·W21

0 KFB · S r→e ·W22


(11)

The multi-objective synthesis problem of Eq. (10) is expressed in the standard form in Fig. 13 for the
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Table 1 Parameters of the weighting filters Wi j used in 1-DoF and 2-DoF controller synthesis

W1 = W11 W2 = W12

k11,LF 0.001 k12,LF 1

k11,HF 0.6 k12,HF 0.001

ω11 3 rad/s ω12 15 rad/s

W21 W22

k21 20 k22,LF 1

k22,HF 0.001

ω22 150 rad/s

Table 2 Feedback controller synthesis results

Full-order Fixed-structure Multi-objective

γ 1.26 1.38 1.36

Gain margina 14.40 dB 13.08 dB 13.69 dB

Phase margina 79.50◦ 83.08◦ 81.22◦

Gain marginb 11.88 dB 12.93 dB 12.22 dB

Phase marginb 49.01◦ 44.60◦ 45.79◦

aat the outer loop
bat the actuator input

two-channel case. The 2-DoF controller to be synthesized is composed of the feedback controller KFB,MO and

the feedforward controller K′FF,MO, where the structure of KFB,MO is defined in Eq. (8). In the first approach,

the feedforward controller KFF,MO is designed in filter-form, as in Fig. 10. However, an injection-form

feedforward, as illustrated in Fig. 14, appears to achieve a similar level of performance with a lower-order

structure and the design procedure behaves better numerically. In the end, the best performing structure is

the first-order lead filter

K′FF,MO = kFF,MO
s + zFF,MO

s + pFF,MO
(12)

of which an equivalent series form is given by:

KFF,MO = 1 + K′FF,MOK−1
FB,MO (13)
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(d) Closed-loop response to a unit disturbance step

Fig. 16 Closed-loop transfer functions and unit step response for the disturbance rejection controllers (blue: full-

order controller KFB,FO, red: fixed-structure controller KFB,FS, green:fixed-structure controller KFB,MO in the multi-

objective case).

D. Controller Synthesis and Simulation Results

1. Disturbance Rejection Controller

The results of the feedback controller synthesis, using the three presented methods, are summarized in

Table 2. In all cases, the minimum γ is less than 1.4, and the gain and phase margin requirements are met.

The open-loop margins, shown in Fig. 15, have been computed for two loop opening sites: in the outer loop,

at the output of KFB and in the inner rate damping loop, at the actuator input δu.

The sensitivity transfer functions with respect to the disturbance input, as well as the controller Bode

diagram and the closed-loop system response to a unit disturbance step are illustrated in Fig. 16. In these

plots, the solid red and blue lines correspond respectively to the 1-DoF full-order and fixed-structure con-

trollers KFB,FO and KFB,FS, and the green line corresponds to the feedback controller KFB,MO computed using

the multi-objective procedure. In Fig. 16a and 16b, the dashed black line corresponds to the inverse of the

weighting filters.

As specified in Section IV C, all feedback controllers were synthesized against the same requirements.
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The full-order controller KFB,FO corresponds to the best achievable result, as there are no constraints on

its structure. Nevertheless, it can be seen that both fixed-structure controllers exhibit similar performance,

despite a less complex structure. As expected, the low-frequency error sensitivity Sd→e tends to zero at low

frequencies and does not exceed the upper limit specified in W11, and the control sensitivity KFBSd→e tends

to unity at low frequencies and zero at high frequencies. However, the controllers do not roll-off at high

frequencies as the effect of the disturbance d is already filtered out by the disturbance model HB. Therefore,

the spectral content of reference signal r must be limited in order to limit the injection of high-frequency

content in the feedback loop. This is guaranteed by the roll-off action of the feedforward controller.

Finally, Fig. 16d presents the closed-loop system response to a unity disturbance step against the open-

loop damped system, of which the response is represented by a black dashed line. The maximum deviation

due to the disturbance is less than 0.45◦, and the system reaches steady-state after about 1 second, with no

static error.

2. Reference Tracking

The closed-loop transfer functions relative to the reference tracking objective, as well as the feedforward

controller Bode diagrams and the autopilot step response, are illustrated in Fig. 17. These plots correspond

to the before three considered controller structures: first the 1-DoF full-order and fixed-structure feedback

controllers KFB,FO and KFB,FS with inverse-based feedforward controllers KFF,FO and KFF,FS, respectively in

solid blue and red, and second the fixed-structure feedback and feedforward controllers KFB,MO and KFF,MO

computed using 2-DoF multi-objective synthesis in solid green.

In Fig. 17a and Fig. 17b, the model-matching error eMM = Tref − Tr→α and control sensitivity transfer

Tr→u are compared to the respective design constraints 1/W21 and 1/W22. In these figures, both inverse-based

feedforward controllers violate the model-matching constraint but meet the control sensitivity requirement

within a good margin. It must however be noted that these constraints are only effective during multi-

objective synthesis, and the results obtained using inverse-based feedforward controllers are here presented

only for comparison.

Figure 17c presents the Bode diagrams for the three feedforward controllers against the ideal, inverse-

based filters of Eq. (9), which are represented by dashed lines. In this figure, the equivalent series form of the
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(d) Response to a unit reference step

Fig. 17 Closed-loop transfer functions and unit step response for the complete pitch axis autopilots (blue: full-

order controller KFB,FO with inverse-based feedforward KFF,FO, red: fixed-structure controller KFB,FS with inverse-

based feedforward KFF,FS, green:fixed-structure controller KFB,MO and equivalent series feedforward controller

KFF,MO designed using multi-objective synthesis).

injection feedforward controller K′FF,MO is used for comparison. As expected, all ideal inverse-based feedfor-

ward controllers have a similar shape, except in the high frequencies. The controllers obtained through ap-

proximation exhibit an identical response, while the multi-objective feedforward controller rolls off at higher

frequencies, which is the best trade-off between the model-matching and the control sensitivity constraints

respectively enforced with W21 and W22.

Finally, the time-domain performance is assessed in Fig. 17d by comparing the system response to a

unit reference step against the response of the reference model Tref . Of the three designed autopilots, only

the multi-objective controller follows the reference model specification, with a response time of 0.64 ms.

The two controllers obtained using the two-step approach achieve respective response times of 0.91 ms and

0.96 s for the full-order and the reduced-order controllers. In all three cases, the closed-loop response does

not present steady-state error.

The inverse-based feedforward controllers KFF,FO and KFF,FS were designed according to Section IV C 2,
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using 2-pole, 1-zero transfer functions to approximate Eq. (9) for frequencies ranging from 0.1 rad/s to

10 rad/s. As observed in Fig. 17c, the obtained filters fit the ideal inverse-based feedforward in the specified

frequency band. These specifications were found using trial-and-error and result in a trade-off between

controller complexity, model-matching error and controller effort. If a better conformance to the design

constraints is required, the inverse-based design method is not as effective as multi-objective 2-DoF design,

as in the latter case the requirements are taken into account during the synthesis of both controllers, while in

the former case they are verified a posteriori.

V. Robustness Analysis

An important part of the H∞ robust design process is to check whether the design specifications are

respected even in the presence of uncertainty. This uncertainty in the plant may arise from many sources, such

as neglected or unmodelled dynamics, uncertain parameters estimates or changes in operating conditions. To

this end, the first step consists in modeling the uncertainty in the plant. In this section, the uncertain plant

model is constructed using a multiplicative unstructured uncertainty representation, based on the difference

between the nominal model and the family of observed models, as presented in Section III B. In a second

step, the robust stability of the autopilot is assessed: the system must remain stable for all perturbations in

the uncertainty set.

A. Uncertainty Modeling

The controllers were designed using a nominal "virtual" dynamics model based on mean estimated

parameter values, as proposed in Section III B. In this paragraph, the proposed uncertain model takes into

account the operating point variations as well as the uncertainty on estimated parameters.

In the body dynamics model of Eqs (2)-(3), the pitch rate q is the derivative of the angle of attack α. As

the uncertain parameters only affect q, this model can be rewritten as a SISO uncertain pitch rate dynamics
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second-order weight wI satisfying Eq. (16).

model Gq, followed by an integrator, as illustrated in Fig. 18. A commonly used uncertainty representation

is the multiplicative input uncertainty [15], where the perturbed plant form is:

Gq(s) = Ḡq(s) [1 + wI(s)∆I(s)] |∆I( jω)| ≤ 1, ∀ω (14)

where Ḡq is the nominal pitch rate dynamics model, ∆I is any stable transfer function which is less than 1 in

magnitude at each frequency. The multiplicative uncertainty weight wI is a minimum-phase rational transfer

function that bounds the relative difference between the nominal plant and the set of all observed realizations.

This set contains models estimated from experimental data as well as bootstrapped models, which were

used to compute parameter uncertainties in Table 4. For each operating point, the bootstrapped models are

estimated from fictive data, built from the nominal response and a random permutation of the model residues

[20]. In the end, the set of observed models contains the 8 measured models and 30 bootstrapped models for

each operating points, for a total of 248 models. At each frequency, the uncertainty radius `I(ω) is:

`I = max
Gq(s)

∣∣∣∣∣∣Gq(s) − Ḡq(s)
Gq(s)

∣∣∣∣∣∣ (15)

and the uncertainty weight wI satisfies

|wI( jω)| ≥ `I(ω), ∀ω (16)

In the present case, wI is selected as a second-order transfer function, i.e. the same order as the system.

Figure 19 presents the obtained multiplicative weight against the relative error and uncertainty radius as per

Eq. (15).
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B. Robust Stability

This subsection focuses on the stability of the proposed autopilots in the presence of uncertainty. To

this end, the closed-loop plant is rewritten using the uncertain dynamics model given in Section V A. As

the actual autopilots are to be implemented as a discrete-time control system, an additional 20 ms delay is

inserted before the actuator input to account for the control computation delay and the zero-order hold, which

arise from the discretization of the controllers.

In order to assess robust stability, the closed-loop system with uncertainty can be represented in the

generic M − ∆ structure of Fig. 20, where M is the transfer function from the output to the input of the

perturbation ∆I .

As the nominal system M(s) and the perturbation ∆I(s) are stable, the robust stability condition is, in the

SISO case [15]

|M( jω)| < 1, ∀ω (17)

which is a necessary and sufficient stability condition. The complete autopilot in M − ∆ form is represented

in Fig. 21, and the transfer function M(s) for each feedback controller designed in Section IV is represented

in Fig. 22. Note that the feedforward controller as well as the disturbance model are not included, as they

are not part of any feedback loop. In all three cases, the closed-loop system is robustly stable to model

uncertainty since the magnitude of the M transfers remain under 1 at all frequencies. The overall autopilot

is robustly stable even if the feedback controllers were designed without taking the actual control delay into

account.

VI. Experimental Results

This section deals with the validation of the multi-objective autopilot proposed in Section IV on the

ACHILES test setup. The two other controllers will not be considered in the following paragraphs, as they
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Fig. 22 Magnitude of the robust stability-related transfers M. Blue line: full-order controller KFB,FO, red line:

fixed-structure controller KFB,FS, green line: fixed-structure controller KFB,MO designed using multi-objective syn-

thesis. Black dashed line: stability bound on M.

exhibit higher complexity and lower performance than the multi-objective autopilot. The constraints related

to the implementation on the embedded computer are first discussed, then the obtained experimental results

are related to numerical simulation results and discussed.

A. Hardware-In-the-Loop Implementation

As presented in Section II, the ACHILES test setup constitutes a novel means of testing projectile control

laws using real hardware in a restricted, controlled environment. In this setup, the projectile attitude and

angular rates are measured by means of an IMU and the control algorithms are implemented on the embedded

computer, both of which being discrete-time systems. In order to implement the above mentioned control

laws, it is first necessary to convert them in an equivalent discrete-time representation.

The general form of the discrete-time autopilot is given in Fig. 23, where the controlled process G is a
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Fig. 24 Bode diagrams for comparison of discrete equivalents of KFB with T = 10 ms. Blue line: using zero-order

hold. Red line: using the bilinear transformation. Dashed black line: continuous-time controller

continuous-time system and the controller is executed in discrete timesteps. In the herein followed design

by emulation method, the controller is first designed in the continuous domain, then discretized using an

appropriate transform [21].

In the present case, the sampling period T = 10 ms, and Fig. 24 compares the discrete equivalents of KFB

obtained with a zero-order hold on the input and using the bilinear transformation. The best discretization is

obtained by the bilinear transformation, as the former method is suited for a piecewise-constant input over

a sampling period, which is not the case in a feedback control setup. The discretized controllers KFB, KFF

as well as the rate damping gain kq are then implemented in the Simulink diagram of Fig. 25, using the

ACHILES custom blocks for interacting with the actuators and sensors.

B. Results

In Section IV, the three proposed autopilot structures have been designed using a "virtual" nominal

model, based on the mean value of the estimated parameters. In this section, these autopilots have been

implemented on the ACHILES test setup, as well as in the nonlinear simulator illustrated in Fig. 25c. This

simulator is based on the nonlinear pitch axis model presented in Ref. [4] and which led to the q-LPV model

of Eqs. (2)-(3). The dependency of the model parameters on the angle of attack is modeled using lookup
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Fig. 25 Simulink diagrams used for autopilot validation. The "Open-loop plant" block in (a) references to diagram

(b) for HIL experiments and to diagram (c) for numerical nonlinear simulations.

tables with the estimated parameter values of Table 4.

During the HIL experiments, the airspeed was set to the same value as for the system identification data

collection experiments, i.e. V = 25 m/s.

1. Disturbance Rejection Performance

In the autopilot synthesis model, the disturbance d is entering the open-loop system G, where it is filtered

by the disturbance model HB. However, this disturbance signal cannot be influenced or measured directly

in the case of HIL testing. As a result, in order to assess the disturbance rejection performance, an artificial

disturbance step of known amplitude is injected at the plant input, i.e. at the kq summation point in Fig. 10,
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Fig. 26 Disturbance rejection performance results, obtained with 4◦ disturbance steps injected during steady-state.

Dashed blue line: nonlinear simulation. Solid red line: experimental results

for a constant reference angle of attack.

Figure 26 presents disturbance rejection results, where the 4◦ disturbance step is injected while the

system is at steady state. This is repeated for three different values of the reference angle of attack, so as to

assess the effect of an operating point variation on the disturbance rejection performance.

In Fig. 26a, the observed response follows the simulation closely, and the disturbance is attenuated by

more than 40% and rejected in less than 0.9 s. This is coherent with the results presented in Section IV and

Fig. 17c. Figure 26b presents the control signal δu, where the peaks due to the injection of the disturbance are

clearly visible. The steady-state difference between the simulated and the observed control signals is mainly

due to uncertainty on the estimated DC gain, which does not impact performance thanks to the integrator in

the feedback controller. As a final comment, both experimental signals exhibit visible superimposed oscilla-

tions. The exact source of these oscillations may emerge from an unmodeled nonlinearity (e.g. backlash in

the servo-canard linkage), a flexible mode of the support system, interaction of the horizontal support rods

and the tail fins, and/or to aerodynamic unsteadiness around the control surfaces and tail fins.

2. Reference Tracking Performance

The performance of the multi-objective autopilot is finally assessed and compared to the simulation

using the nonlinear model, as well as the target reference model Tref . In the present case, the input signal is
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(b) Control signal δu, without feedforward. The vertical scale has been

limited to ± 100◦ for readability.
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(c) Angle of Attack time response, with feedforward. Dashed-dotted

green line is the response of the reference model Tref
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(d) Control signal δu, with feedforward

Fig. 27 Full flight envelope reference tracking results. Dashed blue line: nonlinear simulation. Solid red line:

experimental results.

a series of steps with different amplitudes, so as to exploit the whole projectile flight envelope.

Figure 27 presents the results of two reference tracking experiments using the multi-objective feedback

controller with no feedforward controller in the first case (Figs. 27a and 27b), and with the associated

feedforward filter in the second case (Figs. 27c and 27d).

In the latter case, the experimental and simulated responses are compared to the reference response using

Tref , represented as a green dashed-dotted line in Fig. 27c. The three responses are almost undistinguishable,
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and the same level of performance as stated in Section IV is found. Figure 27d presents the corresponding

control signal δu, which shows initial peaking on reference step, but with an amplitude not higher than the

steady-state value.

In the absence of the feedforward filter, as highlighted by the former case, the reference signal no longer

rolls off at high frequencies and the injection of these dynamics create visible overshooting and oscillations in

the angle of attack output, as shown in Fig. 27a. Correspondingly, the control input δu exhibits considerable

peaking, as illustrated in Fig. 27b. The amplitude and "sharpness" of these peaks exceed the actuator design

constraints, resulting in actuator output saturation. Although not necessary for pure disturbance rejection,

the feedforward controller is mandatory for respecting the reference tracking specifications.

VII. Conclusion

In this article, a complete pitch axis autopilot design is carried out for the ACHILES projectile prototype.

The ACHILES experimental setup is a novel benchmark for projectile control studies, where a projectile

prototype is installed in a wind tunnel by the means of a 3-DoF gimbal. First, a plant model was built

upon prior system identification studies, which yielded a family of linear models. The nominal synthesis

model was then built using the mean values of estimated model parameters, and the difference modeled as

multiplicative uncertainty.

In a second step, two autopilot design approaches have been considered. The considered autopilot struc-

ture consists in a feedback disturbance rejection controller and a feedforward reference tracking controller.

In the first approach, these two controllers have been designed in separate steps, where the feedback con-

troller was obtained using H∞ synthesis techniques and the feedforward controller was designed using an

inverse-based approximation. The second approach is based on recent multi-objective H∞ synthesis meth-

ods, where both controllers are tuned in a single step. Compared to the first two-step approach, this latter

technique yields fixed-structure controllers with slightly better performance and good conformance to the

design specification, which greatly eases the designer’s task.

As a robust control approach was followed for the autopilot design, the third step consisted in verifying

the robust stability of the designed controllers. Using multiplicative unstructured uncertainty and an M − ∆

representation, the three controllers were proved to be robustly stable against parameter uncertainty for the
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whole flight envelope.

The fourth and final step consisted in the validation of the multi-objective controller on the experimental

setup and comparison against non-linear simulations, in order to assess the disturbance rejection and refer-

ence tracking performance. There is a very good agreement between the experimental and the simulation

results, and both conform to the design specifications.

In future developments, the approaches proposed herein will be extended to integrate the projectile’s

yaw axis, in order to develop a coupled pitch-yaw autopilot.

Appendix

Table 3 Actuator model parameter values

Parameter Value Unit

K 326.2 ◦/s/V

τ 0.0182 s

kpos 29.4 -

ki 0.3065 -

kp 0.04 -

Table 4 Estimated parameters and associated uncertainty for values of ᾱ from 0◦ to 7◦ in 1◦ steps for a constant

airspeed V = 25 m/s.

ᾱ Mqα ∆Mqα Mqq ∆Mqq Mqδ ∆Mqδ Mαd ∆Mαd Mqd ∆Mqd Fit

0◦ −50.3 6% −2.94 15% 38.8 6% 0.0511 2% 3.16 3% 74%

1◦ −53 9% −2.72 20% 34.3 10% 0.0421 2% 3.19 3% 75%

2◦ −54.6 7% −2.78 16% 36.2 7% 0.0394 2% 2.87 5% 82%

3◦ −56.1 2% −2.6 8% 40.8 3% 0.0591 2% 2.14 5% 86%

4◦ −52.5 4% −2.37 12% 40.5 4% 0.0431 2% 2.29 5% 89%

5◦ −51.5 5% −2.23 15% 40.3 5% 0.0387 2% 2.38 3% 89%

6◦ −52.7 3% −2.09 17% 41.5 4% 0.0416 2% 2.52 3% 89%

7◦ −54.4 3% −1.99 8% 38.5 3% 0.0528 1% 2.35 5% 86%
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Table 5 Airframe model gain k, corner frequency ω0 and damping ratio ζ for values of ᾱ from 0◦ to 7◦ in 1◦ steps

for a constant airspeed V = 25 m/s.

Trim α 0◦ 1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 7◦ Variation

k 0.77 0.65 0.66 0.73 0.77 0.78 0.79 0.71 ±9.58 %

ω0 (rad/s) 7.09 7.28 7.39 7.49 7.25 7.17 7.26 7.37 ±2.74 %

ζ 0.21 0.19 0.19 0.17 0.16 0.16 0.14 0.13 ±21.58 %
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