Julien Delange
email: jdelange@sei.cmu.edu

Peter Feiler

Neil Ernst
email: nernst@sei.cmu.edu

Incremental Life Cycle Assurance of Safety-Critical Systems

Finding problems and optimal designs in the requirements phase is more efficient than later phases. However, over-constraining the solution is also sub-optimal since not all information is necessarily available upfront. 'Build-then-test' approaches which insist on developing first requirements, then architecture, then implementation are not suitable for building systems that must be rapidly fielded and respond to ever-changing demands. Our approach, ALISA, is working on integrating four pillars for incrementally building systems which can be shown to satisfy the relevant requirements. Our four key pillars for assuring requirements satisfaction are requirements specifications, architecture models, verification techniques, and assurance case traceability between the first three. In this paper we introduce our approach, and highlight how we are integrating these pillars using an XText-driven DSL and tool meta-model leveraging existing tools and languages. Our current focus is on understanding exactly which requirements are responsible for the majority of design constraints. Identifying this subset promises to reduce architecture design space exploration and verification overhead, increasing delivery cadence.

I. INTRODUCTION

Safety-critical systems function where an error can be mission-or life-threatening. They are carefully specified and designed according to a rigorous process, usually by different collaborating teams. Through the development process, system stakeholders define their goals, engineers define system requirements from them, and architects design the architecture, breaking the system into several layers and parts. Each part/layer is implemented by potentially different teams, tested separately and then integrated. One major issue of this actual process is the late discovery of errors: 80% of implementation errors are found at system integration but studies have shown that such issues (70% actually, shown in Fig. 1) are likely introduced earlier, when defining the system requirements. Thus, these errors could be discovered and fixed earlier, by improving requirements specification and design.

In this paper, we introduce our approach for improving requirements specification and design, called Architecture-Led Incremental System Assurance, ALISA. Our approach is traceable and testable from end to end, that is, from system requirements and stakeholders, down to software and verification outputs. This new method connects requirements to other system artifacts (specifications, models, code, etc.), enabling requirements traceability and validation along the development To improve the quality of requirements we focus on coverage of system specifications, quality attributes, and hazards, as well as management of uncertainty in the requirements. To improve the quality of evidence we use compositional verification, and multi-valued logic to automate the planning, execution of verification plans, and management, reporting of assurance evidence. In order to so we work with three different flavors of incrementality:

1) incrementality by refinement, working with one architecture layer or module at a time 2) incrementality by criticality, focusing on critical requirements/quality attributes first, and then the full set 3) incrementality by change impact, to manage the impact of changes on requirements, architecture design, and verification evidence.

II. RELATED WORK Moving from requirements to architecture is a key problem in software engineering. Current standards [START_REF]Iso 15288 systems engineering-system life cycle processes[END_REF], [START_REF] Singh | International standard iso/iec 12207 software life cycle processes[END_REF] describe the life-cycle process to follow in order to develop software but consistency between development phases is often not synchronized, performed using a manual, labor-intensive process and consistency between each phase is not automated, and becomes out of date as products evolve.

One important issue has been to identify architecturallysignificant requirements from a requirements specification; that is, those requirements which will have the most impact on how the system is implemented. For example, a well-developed methodology for this is the Quality Attribute Workshop [START_REF] Barbacci | Quality attribute workshops (QAW)[END_REF] and design approaches such as the Architecture-Driven Design (ADD) approach. Seminal work includes moving from goals to agent-oriented software, with Tropos [START_REF] Giorgini | TROPOS: An Agent-Oriented Software Development Methodology[END_REF]; moving from KAOS specifications to software in [START_REF] Van Lamsweerde | From system goals to software architecture[END_REF]; and work by Dewayne Perry and his students [START_REF] Brandozzi | From goal-oriented requirements to architectural prescriptions: The Preskriptor process[END_REF]. One key advance is that there now exist many mature languages for both requirements (e.g., KAOS [START_REF] Dardenne | Goal-directed requirements acquisition[END_REF] and the URN standard [START_REF]International Telecommunication Union. User requirements notation (urn)[END_REF]) and architectures (e.g., AADL [START_REF] Aerospace | Architecture Analysis and Design Language[END_REF] and SysML [START_REF] Omg | Systems Modeling Language[END_REF]). This allows us to leverage well-known formalisms for the translation. Furthermore, while there were hints in earlier work towards refinement, there was no explicit step for driving evidence-based changes in the requirements, as we propose in ALISA.

In the iterative context, requirements are ideally 'conversation starters' for design elaboration. For example, one takes the provided user story and queries the product owner about any uncertainties. And in an iterative context, particularly with iterations of 2-4 week duration, one can fairly easily refine these requirements. This approach does not work in all contexts, however, and may be guilty of finding local optima (e.g., under-designing), particularly in more complex systems [START_REF] Ernst | Case Studies in Just-In-Time Requirements Analysis[END_REF].

The most similar approach to ALISA in integrating architecture and requirements is by AutoFocus 3 [START_REF] Aravantinos | Autofocus 3: Tooling concepts for seamless, model-based development of embedded systems[END_REF] and Whalen et al. [START_REF] Whalen | Your "what" is my "how": Iteration and hierarchy in system design[END_REF]. Whalen et al. describe how SysML can be used with requirements models to accommodate the essential hierarchical nature of system engineering: a flow from more abstract (system requirements) to less (software requirements, then architecture models and code). It is key to recognize that there may be existing architectures and implementations that flow 'upward' to constrain requirements. This paper illustrated that it is often component interaction that provides most system failures, which can be traced to improper requirements decomposition and refinement. AutoFocus 3 [START_REF] Aravantinos | Autofocus 3: Tooling concepts for seamless, model-based development of embedded systems[END_REF], from the Fortiss Research Group, is a model-based engineering platform that, like ALISA, supports Eclipse-based end-to-end system development, starting with requirements and finishing with architecture. The two projects have a lot in common; key differences include the languages underpinning the architecture models (AADL in the case of ALISA, a custom language in for AutoFocus), and the verification mechanisms supported (nuSMV model checking in the case of AutoFocus; any AADL compatible verification approach in the ALISA case).

The concept of 'virtual integration' tries to leverage the promise of these model-centric approaches to reduce cost/cycle-time and risk (i.e., rework) by using early, and frequent, virtual integration, illustrated in the System Architecture Virtual Integration (SAVI) initiative ([START_REF] Redman | Virtual integration for improved system design: The AVSI system architecture virtual integration (SAVI) program[END_REF], [START_REF] Feiler | System architecture virtual integration: An industrial case study[END_REF]). For simplicity, a related paper [START_REF] Rungta | Helping system engineers bridge the peaks[END_REF] suggests doing requirements modeling directly in the architecture-modeling tool (in this case, Simulink). Although adoption and ease-of-use goals are important, our experience suggests this is not ideal for complex requirements models and higher layers of abstraction. For architecture-centric approaches the specific details of the 'architecture' is ambiguous. There are at least four types of architecture we have identified:

• Functional architectures capture functional requirements but with little or no information about how those functions will be encapsulated in components. • Conceptual architectures specify how a system is decomposed into software and hardware components and the interfaces between them. Conceptual architectures are used during architecture trade studies and acquisition planning. • Design architectures specify detailed performance characteristics of individual components, including internal design detail to the level required to support the analyses desired.

• Implementation architectures specify details needed to integrate and verify an overall system; for example, data that can be used to automatically generate configuration files or perform model-based testing. This overlapping of abstractions makes it very difficult to properly separate solution context from problem context. Our intent is to provide separate languages (and vocabularies) for discussing these abstractions (for example, requirements specification tools for "functional architectures"), linked with shared identifiers.

In architecture-centric approaches, there is no explicit notation for capturing requirements (as part of a single process). For instance, the values for rate of change of speed thresholds are defined external to the modeling approach. This makes it unclear where and why these values are derived. For example, if the car we are building is a sports car, high acceleration may be desirable. If the car is a minivan (where small children may be more likely), high acceleration may be undesirable. To add traceability and rationale from requirements to architecture, we focus on linking stakeholder goals, system requirements, and an assurance case model for mapping verification strategies to goals. The compositional reasoning from [START_REF] Whalen | Your "what" is my "how": Iteration and hierarchy in system design[END_REF] could be integrated as another technique for modeling architecture components and verification strategies.

III. LANGUAGES

Defining and verifying requirements rely on several concepts, that are addressed today by separate tools that are not integrated. Each tool covers one or several concepts but does not address the whole process from requirement definition to system validation. As shown in Table I, we distinguish the following concepts, which we call the four pillars of system integration [START_REF] Feiler | Four pillars for improving the quality of safety-critical software-reliant systems[END_REF]:

• Requirements and Goal Definitions: defines the stakeholders, system objectives and requirements. Requirements engineering frameworks offer a formal specification of system requirements, avoiding textual specification. There are several tools to capture and model requirements, such as KAOS [START_REF] Dardenne | Goal-directed requirements acquisition[END_REF] or RDAL [START_REF] Blouin | Defining an annex language to the architecture analysis and design language for requirements engineering activities support[END_REF]. • Architecture Specification: capture the system architecture structure. This is currently managed by languages such as SysML [START_REF] Omg | Systems Modeling Language[END_REF] or AADL [START_REF]AS5506 -Architecture Analysis and Design Language[END_REF].

• Verification: analyze system artifacts (i.e. model, code, specification), to check requirements. However, these activities are not directly related to the system requirements specifications. This is currently handled by model analysis tools, such as Resolute [START_REF] Gacek | Resolute: an assurance case language for architecture models[END_REF]. • Claims, Arguments, Assurance: show how the system enforce the requirements and provides confidence about system quality. This is currently handled by linking verification to requirements and architecture using Structured Assurance Cases (SACM) [START_REF]Object Management Group. Structured assurance case metamodel (SACM)[END_REF]. One (or several) pillars are supported by existing tools, but, as the sparseness of Table I shows, the artifacts are independent and loosely coupled, and thus, do not cover the entire development process, from requirements specification to system validation. In addition, some tools support the same pillars but with a different (and potentially inconsistent) approach.

For that reason, we propose to unify these concepts. Leveraging existing approaches, we address each pillar with a separate language, and connect them with tool support. Using such an approach, users can then specify their requirements, attach them to the architecture and ultimately, validate them, demonstrating system compliance with the requirements.

We defined the following languages:

• ReqSpec: stakeholder goals and system requirements.

The language borrows concepts from RDAL [START_REF] Blouin | Defining an annex language to the architecture analysis and design language for requirements engineering activities support[END_REF] and KAOS [START_REF] Dardenne | Goal-directed requirements acquisition[END_REF]. • Verify: for verification activities, verification plans, methods (i.e. how to analyze and process system artifact to verify a property). This language is based on concepts from SVM [START_REF] Aldrich | Managing verification activities using SVM[END_REF], JUnit [START_REF] Massol | JUnit in action[END_REF] and Resolute [START_REF] Gacek | Resolute: an assurance case language for architecture models[END_REF]. • Alisa: for defining assurance work areas, tasks This language borrows concepts from Mylyn [START_REF] Kersten | Mylar: A degree-of-interest model for IDEs[END_REF]. • Assure: for assurance case instances. This language reuses concepts from JUnit [START_REF] Massol | JUnit in action[END_REF], Resolute [START_REF] Gacek | Resolute: an assurance case language for architecture models[END_REF], SACM [START_REF]Object Management Group. Structured assurance case metamodel (SACM)[END_REF] These languages have been implemented within Eclipse using the Xtext [START_REF] Bettini | Implementing Domain-Specific Languages with Xtext and Xtend[END_REF] framework. Our tool supports requirements/goals specification, validation methods and activities to check requirements enforcement in the architecture/implementation and automatic assurance case generation using the Goal Structuring Notation (GSN) 1 The tools check for requirements coverage (what architecture elements is missing a requirement, and vice versa), consistency (is there conflict between requirements) and auto-generate assurance cases using the GSN notation and tooling from [START_REF] Matsuno | An implementation of GSN community standard[END_REF] to show how requirements are validated and enforced within the architecture.

Note that we are not committed to a requirements → architecture mapping; indeed, in most cases we expect to have an existing architecture and requirements models, so the tracing can be either direction. We call this approach "architecture-led requirements specification" to capture the notion that the architectural model is the central hub of our model-driven engineering approach, with the spokes being the requirements, verification plans, and other artifacts. This does 1 http://www.goalstructuringnotation.info not demand that an architecture exist before requirements, but it does acknowledge that a strictly linear process is not realistic.

IV. THE LIGHTBULB EXAMPLE

We show how to use ALISA languages and concepts on a simple system: a light-bulb being powered by a battery. The objective is that the battery has enough capacity to power the bulb.

The architecture of this system is shown in Figure 2 (the AADL textual representation is shown in Listing 1). It consists of two devices: one battery and one bulb. Both components are connected through a power socket. The goal of our example is to show that the battery has enough capacity to power the bulb.

While the graphical representation does not include AADL properties (that specify power capacity and budgets), the textual representation (listing 1) includes such information to capture the power capacity and budget. To specify the system requirements, the first step is to specify the stakeholders of the system, as shown in listing 2. For this example, we will keep the number of stakeholders to one, the system electrician. The next step consists in defining the stakeholders requirements, also known as goals (i.e. what the system is supposed to be and what constraints it is supposed to comply with). Goals definition are written using the ReqSpec language, as illustrated in listing 3. A goal is bound to a component (in the present example, the global system), a description and is associated with a stakeholder (the electrician defined before). Once goals are defined, one should define the system requirements. The ReqSpec language is also used to define system requirements, as shown in listing 4. A system requirement is associated with a component, defines a description and is ultimately associated with a goal so that the tool is able to trace goals coverage (what goals are being linked to system requirements) but also architecture validation (what components have requirements). Then, verification plans are defined with the Verify language, that specifies how requirements are verified. The assurance plan is separated by claim being validated using analysis tools. Listing 5 shows that the system requirements previously defined are supported by a claim c1 that checks that the system has enough power. This claim is verified by a verification activity (mylibrary.electric_requirements, defined in a general verification library) that will analyze the AADL model and ultimately, check the property values, making sure that the power provided by the battery is more than the power required by the bulb. Ultimately, the overall assurance plan is defined using the Alisa language that defines verification plans are executed (ordering of tests). This is shown in Listing 6, which shows a definition of a basic assurance plan that executes the verification plan defined before (myplan). a l i s a myplan assurance plan power f o r s i m p l e a l i s a p o w e r : : i n t e g r a t i o n . i [assert myplan] Listing 6. Assurance Plan Workflow (ALISA lang.)

We have also added a function to automatically export the result of the verification process into an assurance case using the Goal Structuring Notation (GSN) [START_REF] Matsuno | An implementation of GSN community standard[END_REF]. The objective is to formalize the validation activities into a standardized notation. Our tool export these results into a GSN format that can be processed by the D-case assurance case tool [START_REF] Matsuno | A dependability case editor with pattern library[END_REF]. The GSN diagram of the bulb example is shown in Fig. 3. It details how the goal is decomposed and validated: the stakeholder goal (Power requirements are met) is decomposed into an evidence (The bulb has enough power) which are ultimately validated in the model (justification Analyze Power Across The System). Automating the production of the assurance case would avoid the labor costs associated with the production of such document, but also make them accurate with respect to the actual validation activities done on the model.

V. LARGER-SCALE EXAMPLE -THE SYSTEM ARCHITECTURE VIRTUAL INTEGRATION CASE

In 2009 the SAVI initiative published a white-paper [START_REF] Feiler | System architecture virtual integration: An industrial case study[END_REF] describing a case study outlining how the notion of virtual integration -the use of an annotated architecture model as the single source for architecture analysis -can dramatically reduce rework and verification costs in safety-critical systems development. We have begun to implement that example in the ALISA tool-chain in order to demonstrate ALISA's suitability to realistic problems. In the 2009 report we modeled the sample problem -a Tier 1 airplane system -in AADL, one of the components of the ALISA tool-chain. We have completed this analysis using the ReqSpec tools, reverse engineering the requirements both from the existing architectural documents and pre-existing natural language requirements.

Figure 4 shows the SAVI Tier 1 model components, and figure 5 shows a portion of the Tier 2 model of the Integrated Modular Avionics subsystem. Note that AADL has a robust behavioral specification language, shown in Figure 6.

From these architectural models we focused on the flight guidance subsystem, creating appropriate requirements and verification specifications for these systems. The Verify language asserts that a given claim in the requirements (ReqSpec) is met. Listing 8 shows the verification plan for the requirements defined in listing 7. The Plugins.ResourceAnalysis verification activity (listing 8) calls a separate, standalone verification tool to check the associated requirement and ultimately returns one of {True, False, Unknown}. The automatic traceability support in our tool propagates the truth-value of each claim to mark requirements as satisfied (claims are True) or unsatisfied (claims are Unknown or False). The result will then be saved and used later to build the associated GSN (as the one shown in figure 3 for the lightbulb example).

We are currently researching better support for more complex propagation of verification outputs. For example, we may use semantics that provide for another verification activity if the first attempt is either Unknown (e.g. a model checker times out) or False (which we are calling fail-then semantics).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented ALISA, our vision for integrating four pillars for incrementally building systems: requirements specifications, architecture models, verification techniques, and assurance case traceability between the first three. We explained how we created DSL-based tooling to build these pillars, using a simple example. We then presented our example from an avionics domain to support our claim that the ALISA approach promises to reduce architecture design space exploration and verification overhead.

Our current and future work is to work with industry partners to add functional and safety requirements to an existing safety-critical system. We will apply the ALISA tools to perform compositional verification to provide assurance evidence. We are currently translating existing requirements from a DOORS and Excel environment to an ALISA-based requirements and safety hazards specification. We hope to demonstrate measurable improvement in requirements coverage and consistency. This will show the value of ALISA in early project phases. Our ultimate aim is to show measurable reduction in system rework costs by earlier defect detection. The certification process for safety-critical systems is one place where demonstrating compliance can produce large savings, so we are working with a collaborator to to produce additional evidence and certification artifacts to complement their testing evidence. Future work also includes integrating an assessment of requirements uncertainties (such as described by [START_REF] Nolan | Managing requirements uncertainty in engine control systems development[END_REF]), in order to further circumscribe the set of requirements that need to be checked. For example, in a car we may already be comfortable with our level of knowledge in the anti-lock braking subsystem, but less sure about the new fuel injector. We have also created import and export mechanisms with the OMG's Requirements Interchange Format (ReqIF) 2 in order to facilitate interchange.

Fig. 1 .

 1 Fig. 1. The Double-V model, showing sources of errors

Fig. 2 .:

 2 Fig. 2. AADL model of the bulb example

 organization mycompany stakeholder e l e c t r i c i a n [f u l l name " John Doe "] Listing 2. Stakeholders definition

 stakeholder goals mygoals f o r s i m p l e a l i s a p o w e r : : i n t e g r a t i o n [goal g1 : " Power OK" [d e s c ri p t i o n "We should be a b l e t o power t h e b u l b " r a t i o n a l e " W i t h o u t l i g h t , we cannot see " stakeholder mycompany . e l e c t r i c i a n]] Listing 3. Stakeholders Goals (REQSPEC lang.)

requirement s p e c i f i c a t i o n myrequirements f o r

 s i m p l e a l i s a p o w e r : : i n t e g r a t i o n [requirement enough power : " The b a t t e r y should have \ enough power " [compute a c t u a l b u d g e t d e s c ri p t i o n t h i s " should have a b a t t e r y w i t h enough \ power f o r t h e b u l b " see goal mygoals . g1]] Listing 4. System Requirements (ReqSpec language)

 plan myplan f o r s i m p l e a l i s a p o w e r : : i n t e g r a t i o n . i [claim c1 f o r myrequirements . enough power [assert a l l [m y l i b r a r y . e l e c t r i c r e q u i r e m e n t s] argument " The b u l b has enough power "]] Listing 5. Validation Plan (VERIFY lang.)

Fig. 3 .

 3 Fig. 3. GSN export example

Fig. 4 .

 4 Fig. 4. Tier 1 (system view) of SAVI proof of concept

Fig. 5 .

 5 Fig. 5. Tier 2 AADL model of SAVI PoC

ACKNOWLEDGMENTS Copyright 2015

 2015 Fig. 6. Behavioral (flow) modeling in AADL