N

N
N

HAL

open science

Asynchronous modeling in railway systems

Emmanuel Gaudin

» To cite this version:

Emmanuel Gaudin. Asynchronous modeling in railway systems. 8th European Congress on Embedded

Real Time Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. hal-01289462

HAL Id: hal-01289462
https://hal.science/hal-01289462v1
Submitted on 16 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01289462v1
https://hal.archives-ouvertes.fr

Asynchronous modeling in railway systems

Emmanuel Gaudin
PragmaDev, France

emmanuel.gaudin@pragmadev.com

Abstract: Models in the railway industry are often based on synchronous
technologies such as Matlab or Scade. This is due to technical reasons, but
because of its concepts the abstraction level of synchronous models are very
low and very close to the implementation level. A serious gap is observed
between the requirements described in natural textual language and the
model which is basically an implementation. The increasing level of system
complexity, combining communicating subsystems, calls for a more abstract
model. This paper will first discuss why synchronous technologies have been
used in this type of systems, then an experiment of using an asynchronous
technologies on a real ERTMS case coming from SNCF is described, and
finally the paper will conclude on how an asynchronous modeling
technologies could make the link between the informal textual requirements
and the implementation of the system.

Keywords: Modeling, Asynchronous, Synchronous, Matlab, Lustre, SDL,
TTCN-3, Railways, ERTMS

Introduction

When it comes to modeling two main questions have to be addressed. The first one is about positioning the
model in the development cycle ; defining if the model is a requirement, a specification, or a design. The
second one is about the modeling technology to use ; depending on what the model is aiming at. The lower
is the model level, the more specialized is the modeling technology, and the narrower is the scope of the
model.

In [1] the technologies usually applied to model train systems are listed such as the B method, Scade,
Simulink/Stateflow. In [2] and [3] the authors present how they have written a specific type of model in order
to verify specific safety properties. The models are usually dedicated to the targeted model checking
technology and can not be used for anything else.

In [4] is presented the work done by SNCF to verify safety rules using The Mathworks tools.

In [5] the author presents a tool that makes a link between a system level model written with Papyrus SysML
modeler and a design level model written with SCADE Suite.

In [6], following the ASSERT FP6 european project, the European Space Agency has been promoting the
TASTE (The ASSERT Set of Tools for Engineering) framework. Because each technology is best suited for
a part of the overall system, TASTE framework aims at gathering the different technologies in a consistent
framework. The top level model is an architecture model based on AADL and ASN.1. The different AADL
architecture blocks are further developed with a dedicated technology such as Scade or SDL. When all
models are validated a code generator automatically gathers the code generated by the different tools.

In the above references, the choice of the modeling language is often driven by the possible verification
associated to the technology. For that purpose models are based on low level modeling technologies that
are very close to the implementation details.

Attempts to raise up the modeling level have been done using a combination of languages. For that purpose
the synchronous or asynchronous approaches are put at the same level and a third language is used as an
overall model view (SysML or AADL). In this paper we are experimenting a different approach in which an
asynchronous SDL model is used as a bridge between the requirements and a low level synchronous
model. To demonstrate this, an existing Matlab model is taken as an example and translated to an SDL
model. Using an SDL simulator and solver the system functions are then analyzed. Finally there will be a
discussion on what the SDL model brings to a Matlab model.

A natural synchronous approach

In the old days, train systems were exchanging simple information such as “is the train present on that
portion of track” , “are the doors open or not”. These information can be detected with simple electrical
detectors along the tracks, on the platforms, or in the train itself. These detectors behave like electrical
switches and the information can be extracted from the fact that the circuit is open or closed. From a
software point of view, all this information can be represented by binary variables. The rationale is a logical
combination of the different information gathered. It would be something like “if the train is not stopped at the
platform, then the doors should be closed”. And this information would be verified every time some new
information was received from the sensors. Each clock tick, the information from the sensors is gathered
and given to a logical system that will compute all the entries and produce some outputs.

That is the basic principle of a synchronous approach. All the entries are valid at the same time, some
logical operators combine the inputs taking into consideration the previous values of the inputs, and
produces some outputs. Each clock tick, the whole information is computed again and again. The fact that
the system re-computes everything at every clock tick actually reduces the possible number of cases that
might occur in the system. It is therefore much easier to verify properties at each clock tick and make sure
the system behaves properly whatever happens, whatever the information read by the sensors.

New approach for upcoming systems

Train management systems are evolving, and in particular the European Rail Traffic Management System
(ERTMS [7]), which was initiated in the 90’s by the European Union, aims at harmonizing and expanding the
capabilities of train control systems over Europe so that a train crossing borders does not need a specific
controller for each country it crosses. This standard covers specification of on board equipments, on the
trackside equipments, as well as communication information systems. The information exchanged includes
speed, acceleration and so on. It is more and more complex and is getting quite far from the original binary
information. Furthermore all the equipments are not mechanically or electrically connected, they are now
completely desynchronized from one another. The information is not that simple any more, it is complex and
unpredictable. Using synchronous technologies might work on a local level but will definitely not be sufficient
to describe new features that combine a lot of communication. In fact the higher is the level of the view, the
less a synchronous description will fit. This is a known issue in systems where complexity is increasing. It
has been theorized and discussed in several publication as the GALS (Globally Asynchronous Locally
Synchronous [10]) theory of system description since the 80s. At that time, asynchronous descriptions were
transformed to synchronous descriptions based on the theory that asynchronous models could be
deconstructed to synchronous models and reconstructed back [11]. The point was to be able to use the
existing and mature synchronous validation and verification technologies on the market at that time [12].
This works as long as the model is close to the implementation. This is not satisfying any more in complex
communicating systems as the first thing to do when developing a new feature in a system is to verify its

functionality before trying to implement it. That raises the need for asynchronous descriptions and
verification techniques.

An asynchronous description of existing models

On one side the higher the abstraction level is, the more asynchronous are the relations among the
elements in the system. On the other side in order to produce a relevant and verifiable dynamic description,
the model needs to be executable. That means it should be statically and dynamically unambiguous from a
semantic point of view.

SDL [6] international standard that was initially designed to describe telecommunication protocols is a good
candidate for this type of description. It is by nature asynchronous, it combines graphical views for
architecture and state machines, and includes an action language with simple data types to describe a
detailed behavior whenever needed in the description.

cEnv bLocal
[closeDoor, lcard,
openboor, key]
displayMessage] [accepted,
administrator,
employee,
intruder,
refused]
cInternal
[checkCardandCode,
addUser,
deleteUser,
cancelAdmin]
bCentral

Figure 1: A basic SDL architecture

Figure 1 shows an SDL architecture with two blocks. Each block can be further decomposed in sub-blocks.
At the lower level of the architecture one or several finite state machines describe the behavior of its
container. The flow of information between the blocks is message based. Each state machine has its own
implicit FIFO message queue.There is no clock based inputs in an SDL system. Only the sequence of

events matters.

addUser{userCardNCode) < deleteUser{userCardNCode]<
registeredUserList{userNumber}:=userCardNCede, counter:=0:
userNumber:=userNumber+1,

userCardNCode!cardInfo := 8,

userCardNCode!codeInfo := INITIAL_CODE_INFO;
: @'IIIHI'
accepted TO SENDER

Figure 2: A simple SDL state machine

Figure 2 shows a simple SDL state machine. In the administration state, the state machine will read its
message queue. If addUser message is received the instructions below the addUser input symbol are
executed, an accepted message is sent to the sender of the addUser message, and the transition ends
back in the idle state. If message deleteUser is received, the counter internal variable is set to 0, and the
transition ends also in the idle state.

The different state machines in an SDL model run in parallel. The main issue with this type of description is
verification. Because of its asynchronous nature, events can occur at any time, independently from each
other, and this creates a huge number of possible scenarios. Model checking tools can explore the possible
combinations, but the number of cases is sometimes very difficult to handle making verification of properties
on this type of system a real challenge.

Since this type of description is well suited for a high level description it is naturally close to a functional
description or a high level requirement. It is therefore quite interesting to analyze how the requirements
could be translated into an asynchronous model and a synchronous model, and see if one could be
translated to the other. This is what was done on a Radio Block Center from the ERTMS][7]. Figure 3 and 2
show the architecture level using Matlab and using SDL. Even though both model contain the same blocks
the main difference is the communication semantic. Information exchange is synchronous in Matlab and
message based in SDL.

envei_msg24_p4z)

Messages sessian communication
boolean it &5} bodlean
mode Hessages sedon envei_msg24_ps -
{17} jf dgsrode cemmunication Msg24pasT

Déconnecter le train selon le mode bodlean 3 5
envoi_ms24_pE 2

T .
T R essages (@B onnerion
cte_cconnaion
{17} -
bosiean
Logical Operator envoi_msg32|

Informations train WMsgaz

boclean

nusi_msg

587} Msg25
= Messages REC Adjacents

5 Messages RBC Adjacents

REi bein etat_connexion_train

lerum_etst_connexion

Etat de Ia connexion du train

Crdre de dé sortie de Comnexion et déconnexion du train

{1673}
ry

MA précédent
- REE]
1A précédent

Déconnecter le train
en sortie de RBC

Figure 3: Architecture described with Matlab

cIntl

[DcnxRg]

[
|

pConnexion_deconnexion_train :

[DcnxRg]

cInt2

€l (f pDeconnexion_selon_mode W

[(Mode FS, Mode 05, | Ju

Mode_ SR, Mode_SH,

Mode_UMN, Mode_SL,

Mode_SB, Mode TR,

Mode_PT, Mode_SF,

Mode IS, Mode NL,

Mode_SE, Mode_SN,

Mode RV, Mode Spare]

c3
Imsg24 p4z, [msgl55,msgl56,msgl59,msgls0,msg_rbc_204]
msg24_p57,
msg24 p58,
msg32,
msg38]
c2 rJ pDeconnecter_le_train_sortie_REC W

[1 [information_train] k J [1

Figure 4 - Architecture in SDL with three state machines

Matlab diagram in Figure 5 indicates the description of the block is done with a state machine. It lists all the
inputs and outputs of the state machine. This is not necessary in SDL as a process behavior is always
described with a state machine.

inta2
<Nid_msg_155-

intz2
<Nid_meg_156=

: 5{5} 5{5]
Messages sestioh *
communication

inta2
<Nid_msg_15%=

int32
<Nid_msg_150=

boolean

boolean
msg155_recu

Compare To Nid message null

~=0 msg156_recu

boolean
Compare To Nid message nullt

boolean

~=0 msg159_recu

Compare To Nid message null2

Compare To Nid message nuli3

boolean
msg150_recu

G

ordre_deconnexion

ery | Wint2

D)

Messages RBC Adjacenis

{587} i =<NID_NRBCMESSAGE=

P ordre_d

=)
-]

boolean

~=0 msg_rbc_204_recu

e

envoi_msg24_pd 2

envoi_msg24_p57]

D envoi_msg24_p5g
D envoi_msg32

envoi_msg39

etat_connexion_trair

boolean -

envoi_msg24_p42

boolean

envoi_msg24_p57
boolean
D
envol_msg24_p58

boolean

(D)

envoi_msg32

boolean -5

envoi_msg39

enum_etat_cnnnsé t

o

Compare To Nid message nulld

Automate - Connexion et déconnexion du train

efat_connexion_train

Figure 5 : Connect and disconnect block is made of one synchronous state machine

The Matlab state machine is described in Figure 6 and the SDL equivalent state machine is described in

Figure 7.

(Pas_de_train ™y
rAétat initial®

entry

etat_connexion_train = enum_etat_connexion.Init;

I*état de connexion inconnu®/

envoi_msg24_p42 = false;

envoi_msg39 = false;

envoi_msga2 = false;

envoi_msg24_p57 = false;

envoi_msg24_p58 = false;
L A

[Msg155_recu == frue]

Connexion_demandee_train

Fréception du message 1554

entry

etat_connexion_train = enum_etat_connexion. Connexion_en_cours;
[/*en cours de connexion, message 32 émis*

envoi_msg32 = true;

during
enwi_msg32 = false;
exit:

envoi_msg32 = false;

[msgl56 recu == tue]

Deconnexion_demandee_train

{*réception du message 156%

entry
etat_connexion_train = enum_stat_connexion. Deconnacte;
envoi_msg3g = true;

[msg159_recu == trug]

Session_etablie

Fréception du message 159

entry

etat_connexion_train = enum_stat_connexion Etablie;
"train connecté, envoi des paquets 57 et 587
enwi_msg24. p57 = true; envoi_msg24_p58 = true;

during.
envoi_msg24_pha7 = false;
envoi_msg24_p58 = false;
exit

envoi_msg24_p57 = false;
envoi_msg24_p58 = false;
N

[msg155 recu == true]

[Msg156_recu == trug]

Ftrain déconnecté, message 39 émis®!

during
envoi_msg39 = false;
axit:

envoi_msg3a = false;
L

[msg156_recu ==t

Deconnexion_demandee RBC

[*ordre de déconnexion demandé/
entry:
etat_connexion_train = enum_etat_connexion Deconnexion_en_cours;

[ordre_deconnexion == true | msg150_recu == true ..
|| msg rbc_204_recu == truel

emvoi_msg24 pd2 = true;
I*en cours de déconnexion, message 24 paquet 42 émis®

during:
emvoi_msg24 pd?2 = false;
exit:
envoi_msg24 pd2 = false;

Figure 6 : Matlab synchronous state machine

DecnxRg.msg_rbc_204,msgl5e
R g Eailany

msg24 pd2

Figure 7 : SDL asynchronous state machine

In the example described in Figure 6 & 7 the inputs are very similar. For example reception of msg155 event
is done setting the boolean variable msg155_recu to true in Matlab, while it uses the message input symbol
in SDL. The Matlab representation forces the modeler to make sure msg155_recu is set to false after being
received because if not it might be taken into consideration again in another transition. Similarly to output
some information from the state machine, the Matlab model sets boolean values to true or false. For
example in the Session_etablie state, envoi_msg32 is set to true when entering the state, then set to false
while in the state, and again set to false when exiting the state. In an event based language such as SDL,
there is only one msg32 output when msg155 is received and that’s it. In that sense it makes things much

clearer.

The other example below, Deconnecter_selon_mode in Figure 8 & 9, shows how to disconnect the train
depending on the mode in which it is.

(Modes_SL_SB_sans_debut_mission

. (i
Todes_UN_SF_IS_NL_SH_RV i z
(5L ou SB) et mode précédent différent de spare* = se déconnecter”/

= entry: deconnecter =1

= se déconnectert L 7 | minit: pas de demande de déconnexion®/
o entry: deconnecter = 0
entry: deconnecter =1

1*SL et mode précédent vaut spare*/
1"SB et mode précédent vaut spare®/

(Mode_5B_avec_debut_mission 3

(Mode_SL_avec_d iss
1*Ie train fait un début de mission*/ Mods 5L, aven debut_iacn

; 1| e pas déconnecter le train®t
Fne pas déconnecter ke train’/ S
entry: deconnecter = 0 =)

* début de mission (SB) depuis SLY

Figure 8 - “Disconnect depending on the mode” Matlab state machine

[) Spare :
Modes_Interdit

| 1
Mode_UN,Mode_SF,
= = Mode_ 5L ,Mode_SB,Mode_SR,Mode_0S,
(Spare) Mode_SB < Mode_SL Mode IS, Mode NL. < Mode F5 . Mode PT. Mode TR = <

Mode SH,Mode RV

(Mode_SBE_debut_mission) (Mode_SL_debut_mission) (Modes_Interdit)
(Mode_SB_debut_mission)

|]
Mode UN,Mode SF,Mode IS,
flades SLERads S < Mode L, Mode SH, Mode RV <

Mode_ SB

Mode SL_SE

(Mode_5L_debut_mission)
T Mode_SL_SB

Modes Interdit

Mode_SB Mode_SL < * < | |
l Mode_SL,Mode_SB < ¥ <

(Mode_SB_debut_missien) (=)

Figure 9 - “Disconnect depending on the mode” SDL state machine

In that example the main difference is on the inputs of the state machine. The Matlab model uses logical
operators AND and OR to identify which input was received; the SDL model is just a list of inputs, and the
star means any other input.

In both examples the model is equivalent from a functional point of view, depending on the reader’s
technical background one or the other might be easier to read and understand.

Model verification

The experiment included some simulation of the SDL model with small prototyping graphical user interface
in order to verify the behavior was correct. Once the model was considered correct, PragmaDev symbolic
resolution tool, result of PragmalList [8][9] common lab, has been experimented on the model. This
technology combines the transitions from a symbolic point of view, and tries to solve each possible
combination like it would do with an equation. If there is a solution to the equation the path is possible. The
first objective with that technology was to automatically generate the minimum number of test cases with a
maximum coverage. After a few trials the tool could not reach two transitions in the model. A manual
analysis rapidly concluded this use case did not allow one of the generic functions in the model to return the
values required to reach these two transitions. Once this was settled test generation out of the model was

successfully experimented and 17 test cases covering all transitions were
automatically generated.

Five properties have been written to be verified on the model. As for the experiment,
the properties were actual pieces of the state machine written with another
language. For example the first property verifies that when in state
Connexion_en_cours, when receiving msg159 the state machine goes to state
Etablie and not any other.

The symbolic resolution tool has been ran on the model with its properties for a few
hours reaching a substantial depth of search, meaning a substantial number of
transition combination. As a result, within this exploration perimeter the properties
were satisfied.

Connexion_en_cours

msglso

msg2d4 p57

msg2d4 pSE

How to link asynchronous models to synchronous
models

During the experiment it has been established the SDL model was further away from the implementation
than the Matlab one. Because of its asynchronous principles it was more of a functional view of the behavior
and therefore closer to the requirements. This clearly validated the idea of having a high level asynchronous
executable functional model to make sure the requirements are properly understood. The question was how
to link this asynchronous approach to a synchronous one. It turned out an asynchronous model, including a
test case, can easily be connected to a synchronous one. For example a synchronous input can be
evaluated at each tick and when the value of the input changes it generates an asynchronous message
(Figure 10). On the other way around an asynchronous message output can be converted to a clock based

value.
asynchronous
output

synchronous
trigger

clock

tirme

Figure 10: An synchronous change of value can be transformed to an asynchronous send

This shows that it would be possible to generate code out of the asynchronous model and connect to a
synchronous target, or to generate test cases out of the asynchronous model and run them against a
synchronous implementation in order to check it is conform to the model.

Conclusion & Future work

The experiment on this real use case in the railway domain has demonstrated that an SDL executable
asynchronous model could be functionally equivalent to a Matlab synchronous model. Because of its

asynchronous nature the SDL model is closer to the requirements, where a Matlab model is closer to the
implementation. An SDL model could therefore be used by stakeholders early in the development process to
formalize requirements and to verify them from a functional point of view. A Matlab model would still be used
later on for the implementation. And the SDL model would be the reference to verify functional properties, or
to generate test cases to verify the final implementation is functionally conform to the initial requirements.

Bibliography

[1] Elammini, F., “Railway Safety, Reliability, and Security: Technologies and Systems Engineering”, 1GI
Global, May 31, 2012 - Technology & Engineering - 487 pages.

[2] Liu, Jiang (et al.), “A Calculus for Hybrid CSP”, Programming Languages and Systems

8th Asian Symposium, APLAS 2010, Shanghai, China, November 28 - December 1. 2010 Proceedings.
Springer LNCS 6461.

[3] Cimatti, Alessandro (et al.), “Formal Verification and Validation of ERTMS Industrial Railway Train
Spacing System”, Computer Aided Verification, 24th International Conference, CAV 2012, Berkeley, CA,
USA. July 7-13, 2012 Proceedings. Springer LNCS 7358.

[4] Callet, S., el Fassi, S., Fedeler, H., Ledoux, D. and Navarro, T. (2014) The Use of a “Model-Based
Design” Approach on an ERTMS Level 2 Ground System, in Formal Methods Applied to Industrial Complex
Systems (ed J.-L. Boulanger), John Wiley & Sons, Inc., Hoboken, NJ, USA.

[5] Le Sergent T., “SCADE A comprehensive framework for critical system and software engineering”, SDL
Forum 2011, Springer LNCS 7083.

[6] International Telecommunication Union: Recommendation Z.100 (12/11) Specification and Description
Language (SDL). http://www.itu.int/rec/T-REC-Z.100

[7] European Rail Traffic Management System ERTMS,
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/home.aspx

[8] Gaudin E., Deltour J., Faivre A., Lapitre A., “Model-Based Testing: An Approach with SDL/RTDS and
DIVERSITY”. System Analysis and Modeling: Models and Reusability. 8th International Conference, SAM
2014, Valencia, Spain, September 29-30, 2014. Proceedings. Editors: Amyot, Daniel, Fonseca i Casas, Pau,
Mussbacher, Gunter (Eds.). Springer LNCS 8769.

[9] www.pragmalist.org

[10] “Globally asynchronous locally synchronous”,Wikipedia,
http://en.wikipedia.org/wiki/Globally_asynchronous_locally_synchronous

[11] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In J. C. M. Baeten and
S. Mauw, editors, Proceedings of CONCUR'99, volume 1664 of LNCS, pages 162-177. Springer, 1999.
[12] M. Mousavi , P. L. Guernic, J.-P. Talpin, S. Shukla and T. Basten "Modeling and validating globally
asynchronous design in synchronous frameworks", Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, pp.384 -389.

https://books.google.fr/books?id=JqqeBQAAQBAJ&pg=PA51&lpg=PA51&dq=modeling+railway+controllers+software+ertms&source=bl&ots=4Z4UaR8-g0&sig=uyoOIEBQ-BRs5GCmTADyF9uiodo&hl=en&sa=X&ei=kCI2Vb2bC4GzPOaIgIgD&ved=0CFUQ6AEwCA#v=onepage&q=modeling%20railway%20controllers%20software%20ertms&f=false
https://books.google.fr/books?id=JqqeBQAAQBAJ&pg=PA51&lpg=PA51&dq=modeling+railway+controllers+software+ertms&source=bl&ots=4Z4UaR8-g0&sig=uyoOIEBQ-BRs5GCmTADyF9uiodo&hl=en&sa=X&ei=kCI2Vb2bC4GzPOaIgIgD&ved=0CFUQ6AEwCA#v=onepage&q=modeling%20railway%20controllers%20software%20ertms&f=false
https://books.google.fr/books?id=FVu7BQAAQBAJ&pg=PA1&lpg=PA1&dq=modeling+railway+controllers+software+rbc&source=bl&ots=2PzAEYutVH&sig=CCf-SjFohZ4-TPPgdEfyM7KgOh4&hl=en&sa=X&ei=3yE2VZbnDcTbPL_KgegL&ved=0CCIQ6AEwATgK#v=onepage&q=modeling%20railway%20controllers%20software%20rbc&f=false
https://books.google.fr/books?id=FVu7BQAAQBAJ&pg=PA1&lpg=PA1&dq=modeling+railway+controllers+software+rbc&source=bl&ots=2PzAEYutVH&sig=CCf-SjFohZ4-TPPgdEfyM7KgOh4&hl=en&sa=X&ei=3yE2VZbnDcTbPL_KgegL&ved=0CCIQ6AEwATgK#v=onepage&q=modeling%20railway%20controllers%20software%20rbc&f=false
https://books.google.fr/books?id=FVu7BQAAQBAJ&pg=PA1&lpg=PA1&dq=modeling+railway+controllers+software+rbc&source=bl&ots=2PzAEYutVH&sig=CCf-SjFohZ4-TPPgdEfyM7KgOh4&hl=en&sa=X&ei=3yE2VZbnDcTbPL_KgegL&ved=0CCIQ6AEwATgK#v=onepage&q=modeling%20railway%20controllers%20software%20rbc&f=false
https://books.google.fr/books?id=z0m5BQAAQBAJ&pg=PA379&lpg=PA379&dq=modeling+railway+controllers+software+ertms&source=bl&ots=rfk6xTkkwW&sig=5RMModAMrrpzO5HogyUGy64_7YA&hl=en&sa=X&ei=kCI2Vb2bC4GzPOaIgIgD&ved=0CFMQ6AEwBw#v=onepage&q=modeling%20railway%20controllers%20software%20ertms&f=false
https://books.google.fr/books?id=z0m5BQAAQBAJ&pg=PA379&lpg=PA379&dq=modeling+railway+controllers+software+ertms&source=bl&ots=rfk6xTkkwW&sig=5RMModAMrrpzO5HogyUGy64_7YA&hl=en&sa=X&ei=kCI2Vb2bC4GzPOaIgIgD&ved=0CFMQ6AEwBw#v=onepage&q=modeling%20railway%20controllers%20software%20ertms&f=false
https://books.google.fr/books?id=z0m5BQAAQBAJ&pg=PA379&lpg=PA379&dq=modeling+railway+controllers+software+ertms&source=bl&ots=rfk6xTkkwW&sig=5RMModAMrrpzO5HogyUGy64_7YA&hl=en&sa=X&ei=kCI2Vb2bC4GzPOaIgIgD&ved=0CFMQ6AEwBw#v=onepage&q=modeling%20railway%20controllers%20software%20ertms&f=false
http://onlinelibrary.wiley.com/doi/10.1002/9781119004707.ch7/summary
http://onlinelibrary.wiley.com/doi/10.1002/9781119004707.ch7/summary
http://onlinelibrary.wiley.com/doi/10.1002/9781119004707.ch7/summary
https://books.google.fr/books?id=plHtSqY9W98C&pg=PA2&lpg=PA2&dq=SCADE:+A+Comprehensive+Framework+for+Critical+System+and+Software+Engineering+sergent&source=bl&ots=UHBCpPxdQZ&sig=s25VrzTl9RXoixVzIpeLwugN5SY&hl=en&sa=X&ei=oR02VaHaF8HKOZCKgbAB&ved=0CDUQ6AEwAw#v=onepage&q=SCADE%3A%20A%20Comprehensive%20Framework%20for%20Critical%20System%20and%20Software%20Engineering%20sergent&f=false
https://books.google.fr/books?id=plHtSqY9W98C&pg=PA2&lpg=PA2&dq=SCADE:+A+Comprehensive+Framework+for+Critical+System+and+Software+Engineering+sergent&source=bl&ots=UHBCpPxdQZ&sig=s25VrzTl9RXoixVzIpeLwugN5SY&hl=en&sa=X&ei=oR02VaHaF8HKOZCKgbAB&ved=0CDUQ6AEwAw#v=onepage&q=SCADE%3A%20A%20Comprehensive%20Framework%20for%20Critical%20System%20and%20Software%20Engineering%20sergent&f=false
http://www.itu.int/rec/T-REC-Z.100
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/home.aspx
http://www.pragmalist.org/
http://en.wikipedia.org/wiki/Globally_asynchronous_locally_synchronous

