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Structuralism and theories in 
mathematics education

Pedro Nicolás
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We present the structuralist conception of scientific the-
ories as a Deus ex Machina which allows to resolve the 
entanglements of theories in Mathematics Education. 
We illustrate with examples how this conception, 
which forms a solid and solvent body of knowledge in 
Philosophy of Science, provides us with tools to perform 
a careful analysis of a theory, both by itself and  in con-
nection with other theories.
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RECONSTRUCTION OF SCIENTIFIC THEORIES

As it is the case in many other disciplines, in 
Mathematics Education there are several theories liv-
ing together: Theory of Didactic Situations (Brousseau, 
1997), Anthropological Theory of the Didactic or 
ATD (Chevallard, 1999; Bosch et al., 2011), APOS1 the-
ory (Dubinsky & McDonald, 2002), Onto-Semiotic 
Approach (Godino, Batanero, & Font, 2007), Theory 
of Abstraction in Context (Dreyfus, Hershkowitz, & 
Schwarz, 2001), Theory of Knowledge Objectification 
(Radford, 2003)… Whereas the cohabitation of the-
ories is perfectly normal, efforts aiming to connect 
some of them, especially from the CERME working 
team “Theoretical perspectives and approaches in 
mathematics education research” (CERME8, 2013), are 
also very natural and desirable. 

We defend in this work that, for a better understand-
ing of the possibility of connection of two theories, 
we must reconstruct them by using the same lan-
guage. The reconstruction of a theory can be carried 
out from different conceptions. When we speak of 

‘conceptions’ we mean ways of giving an account of 
what a scientific theory is, and not of how a scientific 
theory (in particular, a scientific law) is constructed. 
Thus, a priori these conceptions do not pay attention 
to methodological aspects. 

The one favoured here is the so-called structuralist 
conception (Balzer, Moulines, & Sneed, 1987). This is 
an elaboration of the semantical conception (initiated 
by Suppes and Adams in the 1970s), and it seems to 
reconcile the most important aspects of the syntac-
tical conception (advocated by Reichenbach, Ramsey, 
Bridgman, Campbell, Carnap in several works from 
the 1920s to the 1950s) and the historicist conception 
(advocated by Kuhn, Lakatos, Laudan in several works 
in the 1960s), while it avoids their problems (Diez & 
Moulines, 1997).

Now we will give a brief explanation of the main 
points of the structuralist conception. For a more 
extensive treatment, see (Balzer et al., 1987). 

According to the structuralist conception, a scientific 
theory is a net of many nodes (which will be called 
elements of the theory or theory-elements) connected 
in several via specialization, see Definition 2 below. 
Of course, such a net does not appear out of the blue, 
but it is developed little by little along the time. This 
is how the structuralist captures the diachronic char-
acter of a theory. The synchronic character of a theory 
appears in the description of the theory-elements. 

Definition 1: To determine a theory-element one has 
to specify:

1) The portions of reality the theory-element con-
ceptualizes, i. E. The portions of reality the theory 
can speak of, called potential models. These poten-
tial models are   described as portions of reality 
which can be modelled by using a structure (that 
is to say, a tuple (D1, D2, …, R1, R2, …) of sets Di and 
relations Rj between these sets) and a list of prop-
erties applicable to the structures of the former 
type. We call Mp the set of potential models.
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2) The laws with which the theory-element aims 
to enlighten reality. Each law is a property ap-
plicable to the structures of the specified type. 
The laws distinguish the so-called actual models 
among the potential models. We call M the set of 
actual models.

3) The partial potential models, which are these 
portions of reality which can be checked to be 
potential models without assuming the laws of 
the theory-element. Notice that to verify that a 
portion of reality is a potential model we check, 
in particular, that the relations Rj appearing in 
the type of structure are satisfied. In this check-
ing we use some method and this method might, 
or might not, assume the laws of the theory-ele-
ment. A relation Rj is theoretical with respect to 
a theory element T (or, in short, T-theoretical) if 
every method of determination of Rj assumes the 
validity of the laws of this theory-element. Thus, 
a partial potential model of a theory-element is 
nothing but a potential model in which we omit 
the theoretical relations. We call Mpp the set of 
partial potential models.

4) Those partial potential models that are expect-
ed to be actual models. These partial potential 
models are, after all, the intended applications of 
our theory-element. We call I the set of intended 
applications of our theory-element. 

Thus a theory-element is an ordered pair T = (K, I) where 
I is the set of intended applications and K = (Mp, Mpp, M) 
is the core, formed by the set of potential models, the 
set of partial potential models, and the set of actual 
models.

The empirical claim of a theory-element is just the 
statement which asserts that the intended applica-
tions are actual models, I ⊆ M, that is to say, that in 
certain portions of reality, which can be detected with-
out assuming the laws of the theory-element, these 
laws actually hold.

In the next section we will give several examples of 
theory-elements but, unfortunately, we will not point 
out a theoretical relation in any of them. It is an im-
portant open question whether there are theoreti-
cal relations in the current theories of Mathematics 
Education. In Classical Mechanics (CM), the relations 
of position or time are not CM-theoretical, since you 

can determine them without assuming any proper law 
of Classical Mechanics. However, the relation mass is 
CM-theoretical, since any method of determination of 
the amount of mass of an object assumes a law prop-
er of the CM. For examples in other disciplines see 
(Balzer et al., 1987).

NETWORKING THEORIES

In what follows we use the structuralist approach to 
present different kinds of possible connections be-
tween theory-elements.

Definition 2: A theory-element T’ is a specialization 
of another theory-element T, and we write T’ σ T, if: 

1. 

1.1. M’p = Mp, that is to say, both theory-elements 
conceptualize the world in the same way.

1.2. M’pp = Mpp, that is to say, both theory-elements 
consider the same theoretical relations.

1.3. M’ ⊆ M, that is to say, every law in T is also 
a law in T’.

2. I’ ⊆ I, that is to say, every portion of reality aimed 
to be explained by T’ is also a portion of reality 
aimed to be explained by T. 

In short, to specialize consists of increasing the 
amount of laws without changing the conceptual ar-
chitecture.

Definition 3: A net-theory is a pair N = ({Ti}, σ) where 
{Ti} is a non-empty set of theory-elements and σ is a 
specialization relation on {Ti}.

Next we are defining the notion of theorization, but 
first we need the following:

Definition 4: Given two structures (see Definition 1) 
x = (D1, …, Dm, R1, …, Rn) and y = (D’1, …, D’p, R’1,…, R’q), we 
say that y is a substructure of x if:

1. p ≤ m, q ≤ n.

2. Every D’i is a subset of some Dj.

3. Every R’i is a subset of some Rj.
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Definition 5: A theory-element T’ is a theorization of 
a theory-element T if:

1. Every intended application of T’ admits an actual 
model of T as substructure.

2. There are potential models of T’ which are not 
substructures of potential models of T (because 
they contemplate new domains and/or new re-
lations).

The first condition says that every portion of reality 
T’ aims to explain satisfies the laws of T. The second 
condition says that T’ includes new (not necessarily 
T’-theoretical) concepts not contemplated by T.

Next I will show in examples some tentative structur-
alist descriptions of some elements of the ATD.

Example of theory-element: Our first example is in-
spired in the so-called Herbartian scheme (Chevallard, 
2015), which is probably the most general structure 
proposed by the ATD to deal with situations of study. 
In this structure there are things like a task or ques-
tion which requires some answer, a series of partial 
answers, and a final answer. Therefore, the structure 
corresponding to our theory-element T1 will be the 
tuple ({1, …, n}, P, s) where {1, …, n} is the set of the first n 
natural numbers, P is a non-empty set P, and s is a map 
from {1, …, n} to P. The image of 1 is said to be a generat-
ing question, the image of n is said to be a final answer 
and the other images are said to be partial answers. 
Since no law is stated, there is no distinction between 
potential, partial potential and actual models. Notice 
that every temporal sequence of n events fits in this 
structure, but, of course, not every such sequence is 
an intended application of T1. This is why it is impor-
tant to explain which are our intended applications, 
namely, those sequences of events consisting in find-
ing an answer to a question.

Example of theorization: If, moreover, in each of the 
partial answers of T1 we distinguish between tasks, 
techniques and logos elements, that is, if we look at 
the constituent parts of the so-called praxeologies 
(Chevallard, 1999), we would have reached a theori-
zation, T2, of T1. The structure corresponding to T2 will 
be a tuple ({1, …, n}, ST, St, SL, s) where ST, St, and SL are 
non-empty sets whose elements are called tasks, tech-
niques and logos-elements, respectively, and s is a map 
from {1, …, n} to ST × St × SL. Since no law is stated there 

is no distinction between potential, partial potential 
and actual models. Now not every temporal sequence 
of n events fits in the structure of T2. Not even every 
temporal sequence of n events consisting in finding 
an answer to a question! In fact, our intended appli-
cations are temporal sequences of events consisting 
in finding an answer to a question such that in each 
of these events we find three components and such 
that, moreover,

 ― all the first components of the events are “of the 
same nature” (this is encoded in the fact that they 
belong to the same set), namely, tasks;

 ― all the second components of the events are of the 
same nature, namely, solutions to the task spec-
ified in the corresponding first component, and

 ― all the third components of the events are of the 
same nature, namely, explanations of why the 
corresponding second element solves the corre-
sponding first element.

Example of theorization: If, moreover, we take into 
account the dynamics of each of these praxeologies, 
recognizing the so-called study moments (Chevallard, 
1999), we would have a theorization, T3, of T2. The 
structure corresponding to T3 will be a tuple ({1, …, 
n}, ST, St, SL, {0,1}, {*}, s) where

– {1, …, n}, ST, St and SL are as before;

– s is a map from {1, …, n} to S × (S ∪ {*}) × (S ∪ {*}) × {0, 1} ×  
{0, 1} × ([0, 1] ∪ {*}) × (N ∪ {*}) × (N ∪ {*}), where S is the 
union of ST, St and SL, called the study sequence map, 
and its images are called events.

The structure is now more complicated because it 
has to model more ambitious intended applications. 
Indeed, in the events of the sequence we still look at 
tasks, techniques and logos, but we also pay attention 
to the way they are related:

–  The first (respectively, second, third, fourth and 
fifth) component of an event refers to the first (respec-
tively, second, third, fourth and fifth) study moment 
(Chevallard, 1999).

– The last three components of an event refer to the 
sixth study moment, namely, to the evaluation mo-
ment. More precisely, the sixth component refers to 
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the scope of the technique (it is a bounded magnitude 
which reaches the value 1 if the technique covers all 
the possible cases of the task), the seventh component 
refers to its economy and the eighth component refers 
to its reliability (see Sierra, Bosch, & Gáscon, 2013)2.

For example, an event which is an element of 
ST × St × SL × ... is regarded as a task followed by an 
elaboration of a technique followed by an explanation 
of why this technique works, whereas an element of 
St × ST × {*} × … is regarded as a technique followed by 
a task which is solved by the technique followed by 
no explanation of why the technique works. We use 

* to express absence of activity in the second, third, 
sixth, seventh and eighth components, and we use 0 
(respectively, 1) to express absence (respectively, pres-
ence) of activity in the fourth and fifth components. 
We can add some axioms devoted to prevent us from 
considering impossible events, for example:

Axiom 1: There are not events starting with a task and 
continuing with a logos element.

Axiom 2: If an event starts with a technique, then it 
cannot continue with a logos element.

Axiom 3: In an event there are not two tasks, two tech-
niques or two logos elements. Thus, for instance, there 
are not events which are elements of ST × ST × …

Axiom 4: If in an event there is no task, then the last 
three components of the event are (*, *, *).

Axiom 5: If the fourth component of an event is *, then 
the last three components are (*, *, *).

Examples of specialization: Imagine we create a new 
theory-element T4 by adding the following law to the 
theory-element T3:

Law: The last three components of every event are 
(*, *, *).

The new theory-element T4  is a specialization of T3. 
Indeed, there are actual models in T3 which are not 
actual models in T4, namely, those study sequences 
having at least an event in which the last three com-
ponents are not (*, *, *). After the axioms, it is clear 
that the former law holds for those study sequences 
in which each event si = (si1, si2, si3, si4, si5, si6, si7, si8) satis-
fies that none of the sij are a task or that si4 = *. Hence, 

those study sequences would be actual models of our 
theory-element T4.

The notion of didactic contract (Brousseau, 1986) is a 
good source of laws for theory-elements dealing with 
study sequences. Indeed, a didactic contract can be 
regarded as a special family of clauses or conventions, 
and, inspired in Lewis (1969), we could express a con-
vention as a law stating that a certain regularity in 
the events of a study sequence holds (see for instance 
the law above).

Remark: In Chevallard (1988b), there is a sketch of 
the possible sets and relations of the structures an 
anthropological theory of the didactics would deal 
with. It would be interesting to compare them with 
the ones used in our examples above.

Remark: Brousseau (1986), inspired among others by 
Suppes (1969, 1976)3, used finite automata to give a 
structuralist formulation of the notion of situation. 
Our structuralist formulations of notions of the 
ATD are more in the spirit of the Stimulus-Sampling 
Theory (Estes & Suppes, 1959). It is worth noting that, 
as proved in Suppes (1969), given any finite connected 
automaton there is a stimulus-response model that 
asymptotically becomes isomorphic to it.

Finally, let us consider the relation of reduction be-
tween theory-elements.

Definition 6: A theory-element T is reducible 
to a theory-element T* if there exists a relation 
ρ ⊆ Mp(T) × Mp(T*) such that:

1. If (x, x*) ∈ ρ and x* ∈ M(T*), then x ∈ M(T).

2. If y ∈ I(T) ∩ M(T) then there exists y* ∈ I(T*) ∩ M(T*) 
such that (y, y*) ∈ ρ.

The underlying idea is to regard the elements (x, x*) 
of ρ as pairs of portions of reality so that x* is the T*-
version of x. The first condition says that the laws of T 
can be derived from those of T*. The second condition 
says that all the successful applications of T admit T*-
versions which are also successful applications of T*. 
In other words, the successes of T can be explained in 
virtue of those of T*. Notice that, in contrast to what 
happened with the theorization (Definition 5), reduc-
tion does not require an increase in the conceptual 
map, that is to say, the kind of structures contemplated 
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as potential models. Indeed, the conceptual map of T* 
might be completely different to the conceptual map T.

Examples of reduction: The classical mathematics edu-
cation (see Gascón, 1998) explains certain phenomena 
with laws involving cognitive or motivational con-
cepts. Indeed, these would be the kind of concepts used 
by the classical mathematics education to explain the 
kind of phenomena presented in IREM de Grenoble 
(1979). One can use Chevallard (1988a) to sketch how 
part of this classical mathematics education can be 
reduced to a theory-element including among the laws 
the clauses of the didactic contract. On the other hand, 
one can also use (Chevallard, Bosch, & Gascón, 1997) 
to reduce part of this classical mathematics education 
to a theory-element with laws stating the incomplete-
ness of scholar study processes (this incompleteness 
can be expressed in terms of the study moments, for 
example, by saying that the moment of the construction 
of the technological-theoretical frame or the moment of 
the work of the technique is lost).

In Bikner-Ahsbahs and Prediger (2010) the following 
“networking strategies” are presented: to ignore other 
theories (as an extreme strategy of non-connection), 
to make your own theory and foreign theories un-
derstandable, to compare/contrast, to coordinate/
combine, to integrate locally/synthesize and to unify 
globally (as an extreme strategy of total connection). 
Next, let us clarify this taxonomy by presenting, in a 
brief and simplified way, possible translations of these 
strategies to the structuralist language:

 ― To ignore other theories: not to consider the pos-
sibility of (even partial) specialization, theoriza-
tion or reduction (see Definitions 2, 5 and 6) as a 
relation among two theory-elements.

 ― To make your own theory and foreign theories 
understandable: to accomplish this, as we said at 
the beginning of this paper, one need to translate 
both theories to the same language. What we sug-
gest here is to use the structuralist language. So, 
in a sense, in the present work we take seriously 
this second networking strategy.

 ― To compare/contrast: to check which are the po-
tential models shared by two theory-elements. 
Thus, when comparing/contrasting we could be 
performing a theorization.

 ― To coordinate/combine two theory-elements T 
and T’ consists in saying that a common intended 
application is both an actual model of T and an 
actual model of T’. It is important to notice that, 
for this to happen, T and T’ must share the partial 
potential models. This last sentence explains the 
meaning of the following statement of Bikner-
Ahsbahs and Prediger (2010): “Whereas all theo-
ries can of course be compared or contrasted, the 
combination of (elements of ) different theories 
risks becoming difficult when the theories are 
not compatible.”

 ― To integrate locally/synthesize two theory-ele-
ments T and T’: to find a third theory-element T” to 
which we can reduce the theory-element derived 
from T when considered just some sub-structures 
z of the structures x of T, as well as the theory-ele-
ment derived from T’ when considered just some 
sub-structures z’ of the structures x’ of T’. Notice 
that the structures x” of T” should admit both z 
and z’ as sub-structures.

 ― To unify globally: to find a theory to which any 
other theory could be reduced.

CONCLUSION

Here we suggest to use the structuralist formalization 
of scientific theories to the benefit of the questions 
about the theoretical status of different approaches 
in Mathematics Education. Needless to say, we do not 
mean one cannot work properly in theory unless this 
is formalized. For example, it is not reasonable to say 
that Newton was not doing Mechanics just because 
he did not have at hand a strict formalization. On the 
other hand, theories in Mathematics Education are 
still far from being formalizable, being this (even 
partial) formalization a long-term project in any case. 
Concerning this, it is important to point out that the 
degree of resistance of a theory to be formalized is in-
versely proportional to its degree of development. For 
example, if we cannot distinguish the actual models 
among the potential models, then we cannot identi-
fy any law of the theory (and at this point we should 
wonder whether this forces us to accept this theory 
is nonexistent…). Anyway, regardless of the difficulty 
of a complete formalization, we defend that:

 ― The framework offered by the structuralist con-
ception of scientific theories is illuminating to 
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the extent that it provides us with high order 
tools which allow a better understanding of the 
theoretical scene in Mathematics Education.

 ― Even if we were not interested in networking the-
ories, the attempt to formalize a theory in the 
structuralist way forces us to consider extreme-
ly interesting questions about this theory. For 
instance: which are the underlying structures? 
Which are the laws? Which are the theoretical 
relations?

Among many other things, it is still an open question 
which are the links between our structuralist ap-
proach, the definition of theory by Radford (2008) and 
the notion of research praxeology by Artigue,Bosch, 
and Gascón (2011a, 2011b).
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ENDNOTES

1. This is the short form for “Action, Process, Object 
and Scheme”. 

2. For the sake of simplicity, we do not distinguish be-
tween task and type of task, and between technological 
and theoretical elements among the logos elements, 
even if they are important distinctions in the ATD.

3. Actually, the last two components should be inter-
preted as evaluations of a technique in comparison 
with another technique. Indeed, we typically speak 
of a technique as being more or less economic or reli-
able than another technique. However, for the sake of 
simplicity, we do not take into account this aspect here.

4. It is a remarkable fact that Suppes was the main pro-
moter of the semantic conception, direct precedent of 
the structuralist conception.


