
HAL Id: hal-01289454
https://hal.science/hal-01289454

Submitted on 16 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking of SCADE Designed Systems
S Heim, Xavier Dumas, E Bonnafous, Philippe Dhaussy, C Teodorov, Lise

Leroux

To cite this version:
S Heim, Xavier Dumas, E Bonnafous, Philippe Dhaussy, C Teodorov, et al.. Model Checking of
SCADE Designed Systems. 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01289454�

https://hal.science/hal-01289454
https://hal.archives-ouvertes.fr

 Page 1/8

Model Checking of SCADE Designed Systems

S. Heim
1
,

X. Dumas

1
, E. Bonnafous

1

P. Dhaussy
2
, C. Teodorov

2
, L. Leroux

2

1: CSSI, 3 rue du professeur Pierre Vellas, Toulouse, France

2: ENSTA-Bretagne, Lab-STICC UMR CNRS 6285, Brest, France

Abstract

Keywords: model checking, formal methods, CDL,
SCADE, LUSTRE, OBP, synchronous,
asynchronous

Introduction

Model checking [1] is a well-known method to verify
a formal model in all possible configurations.
Nevertheless this technique can hardly scale up to
industrial asynchronous systems because of the
state-space explosion problem [17].

To address this challenge, a new approach based
on context specification (the environment of the
system) and an observation engine called OBP
(Observer Based Prover) has been developed [2].
The idea is that given a property to be verified, one
doesn’t need to explore all possible configurations of
the complete system. Among all possible behavior
of the system, a tiny part is representative enough
for the property to be verified.

Thus, specifying a pertinent environment (a context)
allows restricting the system behavior on those
only parts where the property is worth verifying.

The objective of our work is to apply this Context-
aware verification method to the verification of
SCADE [3, 10] systems designed in LUSTRE
language, in order to check behavioral properties
related to system safety.

Moreover LUSTRE [4, 9] is a synchronous
language whereas OBP exploration engine takes as
input an asynchronous model designed in FIACRE
[5] language.

To cope with this problem our approach consists in
developing a GALS method combining
asynchronous contexts with synchronous models [6,
7, 8].

The interest of our new approach is twofold:

 Verifying formal properties on synchronous
industrial systems with formal methods using
GALS approach,

 Facing the state-space explosion via context
aware specification;

To our knowledge, there’s no work combining those
two previous methods.

This document is organized as follows:

First, a state of art on existing methods combining
synchronous system modeling within an
asynchronous environment is presented.

Next, we expose the GALS methodology approach
we combined with context aware verification method.

Then we introduce two case studies used for
experimentation of our method.

Eventually we conclude and present some
perspectives for future work.

This work is done in the frame of the French R&D

project DEPARTS
(1)

, which is a FSN/BGLE project

supported by BPI France.

1. State of the art

Mixing synchronous and asynchronous model
designs. As demonstrated into previous studies (cf.
Airbus [12], and Rockwell-Collins [13]), using an
explicit model-checker for synchronous language
verification may be required to verify some
asynchronous properties between synchronous
parts of a system.

Moreover, traditional “synchronous-observers”
verification approach is not applicable in that case:
asynchronous behaviors’ modeling is not possible
with synchronous language (i.e. communication
delays, asynchronous clocks between processors).

GALS. Verifying a synchronous system in an
asynchronous environment is not an easy task
because of synchronicity assumption: Input/Output
computations are considered to take no time.

To cope with this problem several GALS approaches
have been developed [6, 7, 8].

(1)

DEsign PAtterns for Real Time and Safe applications.

FSN - Fonds national pour la Société Numérique.

BGLE - Briques Génériques du Logiciel Embarqué.

 Page 2/8

In [7], the work consists in generating C code from
the synchronous language SIGNAL [14]. Then, this
code is called atomically (to ensure synchronicity
assumption) in an asynchronous formal language:
PROMELA [15]. The environment closing the overall
system is then designed in PROMELA and the
verification of a property is done with SPIN model
checker [15].

Nevertheless when dealing with huge systems, the
environment grows drastically generating a state-
space explosion. For this reason, an optimized
exploration method has been developed based on
OBP explorer and its associated Context Description
Language called CDL

2
.

Context-aware Verification approach. State-space
explosion is intrinsically related on the way model
checking method works. Model checking consists in
closing a formal system with all possible behaviors
of its environment, and then exhaustively analyzing
the emerging executions. The idea behind the
Context-aware Verification methodology [2] is that
only a subset of the environment is necessary in
accordance with the property one want to verify. This
explicit description of the environment has many
benefits:

 The environment can be decomposed by
several contexts focusing on different system
modes.

 When the environment is too large, it can be
decomposed by OBP (splitting method [11]) to
generate independent sub-contexts, which
are successively composed with the system and
the property so that to make several little
verification.

 By enforcing some structural properties on the
environment behaviors, OBP explorer can also
use optimized algorithms such as PastFree[ze]
to reduce the verification time [16].

 Properties are verified only on specific context
definitions.

The following picture could summarize the Context-
aware Verification approach, implemented in the
OBP toolkit.

2
 www.obpcdl.org

2. Contribution

In this paper we propose to combine a GALS
verification methodology with the Context-aware
Verification approach. Our technique uses the
synchronous LUSTRE language designed with
SCADE tool and FIACRE asynchronous language
used by OBP. We have experimentally validated our
approach using two realistic case studies from the
automotive and aero-space domain. In this study we
focused on the verification of functional properties.
Nevertheless our approach could integrate other
classes of properties, and can accommodate
techniques for guaranteeing the numerical accuracy.

The following picture summarizes our method.

Our approach is structured as follows:

1. We first design the system with SCADE
components based on LUSTRE language;

2. Then we generate C code from the LUSTRE
model thanks to the qualified SCADE code
generator KCG51;

 Page 3/8

3. Next, from C code we generate the
corresponding FIACRE model in accordance
with the synchronicity assumption;

4. To make possible the compilation of C code, we
generate some wrappers; the wrapper is useful
to exchange data between FIACRE model and C
code called functions;

5. FIACRE system with C code called function is
generated so that to make the OBP exploration
possible;

Once the FIACRE system is generated, following the
previous five 5 steps one can implement an
environment (an OBP context) to verify properties.

Nevertheless, some stimuli sent from the
environment needs some parameters values so that
to make the system under verification evolving.

To this purpose, we choose to generate a data
structure into the FIACRE system containing all the
input and output values which can be exchanged
with the environment.

The data structure contained in the FIACRE model
will be used for verification purpose by OBP tool.

This implementation is well suited to our
methodology because SCADE system stores all
input and output values on global data structure too.

The stimuli and parameters sent by the environment
are therefore copied into the FIACRE data structure
(identical to SCADE C code data structure).

This data structure is passed in C call function
parameters which are dedicated to the computations
and modifications of input output values of the
system.

When the C call function has ended, the data
structure which has been modified is copied again
into the FIACRE data structure so that OBP tool
could display and verify properties from this FIACRE
data structure.

The following picture summarizes the data
exchanges between the environment, the FIACRE
system and C call procedures.

3. Environment Modeling and Analysis

3.1 Environment modeling

In the case of Context-aware Verification, the
environment modeling should be seen as a
methodological phase that needs to balance two
important constraints while building the context.

First the context has to cover enough behaviors to
be considered valid for a given property. But at the
same time it has to be small enough to be possible
to exhaustively explore the product of its
composition with the system under study (SUS).

The context is modelled starting from the system
requirements one want to verify. From the
requirements analysis, the designer identifies all the
actors of the system that can interact and send
some stimuli to the system.

For each actor, its behavior is refined by describing
possible actions it can send to the system.

Eventually all the actors behaviors’ are interleaved
so that to generate all possible scenario of the
environment.

Of course the more actors the worst, because each
actor behavior is interleaved with all others
potentially generating a combinatorial explosion of

 Page 4/8

the environment state space during unfolding and
interleaving step.

This phase is done manually, and relies on the
engineering judgment.

To face this environment state space explosion, a
pertinent modelling of the environment must be
described by the engineer who will for instance:

 discard some actors with no relation to the
requirements,

 discard some useless actors stimuli with regard
to the requirements he wants to verify,

 create several different environment with relation
to the set of requirements he wants to verify,

 create a specific initialization sequence events to
dig the system in a pertinent state for the
verification.

3.2 Environment Analysis

Nevertheless a pertinent environment modeling is
not always sufficient to face the environment
combinatorial explosion.

For this purpose, the context aware verification tool
(OBP) incorporates some algorithm to reduce
environment state space explosion thanks to the
splitting method.

The splitting method consists in decomposing the
global context generated by the interleaving of all the
actors’ events in a set of global “sub-contexts” which
will be composed with the system under study.

This method allows verifying systems stimulated by
a complex environment, and covers exhaustively the
whole generated state-space.

The combinatorial explosion environment behavior in
space due to environment is transferred to
combinatorial explosion in time due to the countless
“sub-contexts” generated.

Nevertheless this new combinatorial explosion can
be faced by parallel verification of the “sub-contexts”
distributed to a set of machines.

An important observation is that while with the
automatic-split technique the state-space is
decomposed in several partitions, these partitions
are not disjoint.

Hence the sum of these explorations with splitting
represents the analysis of nearly two times more
states and transitions than the exact initial state-
space without splitting.

Nevertheless, we believe that this is a small price to
pay for the possibility of analyzing five times larger
state-space without the need of doubling the
physical memory of the machine.

4. Case Studies

4.1 Roll-Control. We have first applied our method
to a simple case study: a Roll-Control system.

The Roll-Control system allows to compute the Roll-
Rate value, and to generate roll warnings whenever
the roll rate is greater than 15° or lower than -15°.

The environment of this system is composed by
three « actors »:

 Pilot actions on joystick

 Left and Right yaw applied on the plane

As a result of those inputs, the Roll-Rate is updated
and warnings are activated in case the Roll-Rate is
out of range.

First, the simplified coupling effect is calculated,
then, the plane roll rate is calculated as follows:

rollCoupling = (leftAdvYaw – rightAdvYaw) × 0.1

rollRate = (joystickCmd – rollCoupling) × 0.25

The absolute value of the Roll Rate has to be
saturated to 25.0.

The Roll-Control system is described in the following
figure 4.1.

The Roll-Control is composed of 2500 lines of C
code.

We have successfully checked following property on
this model with OBP exploration engine:

The roll-control system shall never raise “left roll
warning” and “right roll warning” at the same time;

 Page 5/8

This case study has successfully passed verification
steps, because of its small size and limited possible
behaviors.

4.2 Cruise-Control system. We then applied our
method on an automotive Cruise-Control System
(CCS) designed in SCADE.

This section provides an overview and some
requirements of this case study.

Functional Overview. The CCS main function is to
adjust the speed of a vehicle.

After powering the system on, the driver first has to
capture a target speed, and then it is possible to
engage the system. This target speed can be
increased or decreased by 5 km/h with the tap of a
button.

There are also several important safety features.
The system shall disengage as soon as the driver
hits the brake pedal or if the current vehicle speed
(S) is out of bounds (40 < S < 180 km/h). In such
case, it shall not engage again until the driver hits a
"resume" button. If the driver presses the
accelerator, the system shall pause itself until the
pedal gets released.

Architecture overview (cf. Figure 4.2).

The CCS is composed of 3 mains parts: a “control
panel”, a “system center”, and an “actuation
manager” (for speed and throttle calculation).

The control panel is in charge of converting inputs
signals from user to provide them to the system.

The actuation manager is able to capture the
current speed and, once enabled, to adjust the
vehicle speed to the defined target speed (and also
throttle command value).

The system center component, that acts as a
controller, and includes a state machine (states
OFF, STDBY, ON).

The control panel acquires signals following from
buttons used by the driver to operate the system:

 On, Off: Enable or disable the system

 Set: Capture the current speed as the target
value

 Resume: Engage the control speed function

 Suspend: Disengage the control speed function

 QuickAccel: Increase the target speed by step

 QuickDecel: Decrease the target speed by step

In our case, the “control panel” is also responsible of
providing BrakePressed and AccelPressed signals,
which are built with Brake and Accel pedals signals,
and to compute SpeedOutOfBounds signal. All are
booleans signals provided to system center, with
behaviours defined below:

 Brake pedal pressed: induces disengagement,

 Speed of the vehicle goes out of bounds:
induces disengagement,

 Accelerator pedal pressed or released: pauses
or resumes the speed control function;

The actuation module provides means for the
system to interact with the vehicle. It can capture the
current speed of the vehicle, and use it as a new
target speed value. Once the CCS enabled, the
actuation is responsible for controlling the vehicle
speed accordingly.

Finally, the system center is the core of the CCS. It
is responsible for handling events detected by
control panel module.

Then system center use these events to switch to
right system state, and to engage control function or
not:

 From OFF to STD_BY: on btn_On,

 From STD_BY to ON: on btn_Set,

 From ON to STD_BY: on btn_Suspend or Brake,

 From STD_BY to OFF: on btn_Off;

Requirements. This section lists three main
requirements of the CCS system and shows how to
model them using the CDL formalism, with
predicates or observers automatons.

REQ.1: The system shall not engage itself if the
target cruise speed is not set.

REQ.2: The target Speed shall never be lower than
40 km/h or higher than 180 km/h.

REQ.3: When the system is powered off, the target
speed shall be reset, and considered as unset.

 Page 6/8

REQ.1 can be encoded by using an observer
automaton, on figure 4.3 below. To encode this
observer using CDL formalism, we first need to
introduce the events triggering the transitions

4.4 predicate pCruiseSpeedIsUnset is {

 {sys}1:context._Cruise_speed < 40

 or {sys}1:context._Cruise_speed >180 }

 event eTargetSpeedUnset is {

 pCruiseSpeedIsUnset becomes true }

On listing 4.4, pCruiseSpeedIsUnset is a predicate
on cruise speed value, read from interface structure
(context) of the main process {sys}, returning true if
the constraint is verified.

Then an event eTargetSpeedUnset is built with
“becomes true” formula in order to express a rising
edge of the predicate, which is an observable event
in OBP observation engine.

On listing 4.5, another event can be defined based
on system center state machine output value
(Regul_ON).

4.5 predicate pSystemIsEngaged is {

 {sys}1:context._Regul_ON = 1 }

 event eSystemEngaged is {

 pSystemIsEngaged becomes true }

Using these events, the observer automaton of
figure is defined in listing 4.6:

4.6 property REQ1 is {

 start -- eTargetSpeedUnset --> wait;

 wait -- eSystemEngaged --> reject;

 wait -- eTargetSpeedSet --> start }

We can then encode two others requirements
REQ.2 and REQ.3 using the same principles.

To model predicates and events, we could also use
internal states of concurrent processes of the
system.

Environment. In the case of the CCS the
environment is built from two main distinct actors
modeling:

a) a nominal scenario,

b) a disruptor;

The basic scenario can be seen as a linear use case
of the CCS that covers all the functionality involved
by the properties we aim to verify.

This scenario must pass through following steps:

Event Behavior

Press Accelerate pedal Vehicle speed grows

Button On CCS ON / stand-by

Button Set Target speed set

Stop Accelerate pedal CCS engaged / regulate

Brake pedal CCS in stand-by

Resume button CCS engaged

Button Off CCS OFF

The disruptor is a wide alternative including changes
of the vehicle speed within the allowed range or not,
pressure on the pedals and the panel buttons. The
disruptor stresses the SUS against a number of
possible unexpected behaviors of the environment.

The disruptor encoding refers to verification
environment capability of sending events to system,
including speed target requests, pressure on pedals,
or on panel buttons.

4.7 activity disruptor is {

eRegularSpeed_v1/v2

[] eAbnormalSpeed_v3/v4

[] ePressPedals_p1/p2

[] ePushButton_b1/b2/b3 }

Once these two actors are composed
asynchronously, we get a wide range of variations of
the basic scenario using the capabilities of the
disruptor at all stages.

4.8 Cdl myContext is {

Properties req1

Assert req2, req3

 Init is { eBtnOn }

Main is { basic_scenario

 || disruptor }

}

 Page 7/8

4.3 Verification Results

This section presents the results obtained for the
verification of the main requirements previously
presented, emphasizing the importance of the
Context-aware Verification approach, applied on our
GALS approach.

During the exploration, we have tried several kinds
of observers, and we have intentionally create errors
into the model in order to check that there were
detected (assertion, or reject state of automaton).

The verification results for the CCS case study are:

 17.847 states and 62.771 transitions (with 3
processes, in 21 sec);

 367.800 states and 1.621.000 transitions
(with 4 processes, in 571 sec)

So we can conclude that our approach does not
produce a too large state space, due to
encapsulation technique used (atomic execution of
synchronous function into asynchronous process).

Even if we have not yet modeled all required
behaviors as asynchronous communication between
several more synchronous processes, it seems to be
a very promising approach for larger and complex
systems.

As a comparison, our partner from Lab-STICC has
applied same verification context on an
asynchronous CCS UML model, which generates 3
millions of states and 10 millions of transitions (with
4 processes, and 4 ticks of clock only) (cf. [18]).

For the moment, we have only used traditional
Breadth-First Search (BFS) reachability algorithms.
But we know that in case of a larger state space, we
could also use PastFree[ze] algorithm and splitting
technique.

The use of the PastFree[ze] algorithm enable the
analysis of a 2.4 times larger state-space, and the
joint use of PastFree[ze] and automatic split
technique enable 4.78 times larger state-space,
compared to traditional Breadth-First Search (BFS)
reachability algorithms, without the need of
extending the physical memory of the machine.

5. Conclusion and Perspectives

In this paper we have used the Context-aware
Verification technique for the analysis of several
requirements of a Cruise-Control System composed
of synchronous languages functions.

Modeling and verification of asynchronous properties
of this kind of systems based on composition of
synchronous components, renders traditional
synchronous model-checking approaches inefficient.

Using the environment reification through the CDL
formalism, this task becomes manageable by relying
on two powerful optimization strategies.
These strategies rely on the structural properties of
the CDL contexts and enable the reachability
analysis of larger industrial models.

While the approach presented in this paper offers
promising results, for this technique to be used on
industrial-scale critical systems, some work has to
be done on the formalization of the context
coverage, with respect to the full-system behavior, in
order to assist the user on initial context
specification.

 Page 8/8

References

[1] Clarke, E.M., Emerson, E.A., Sistla, A.P.:
"Automatic verification of finite-state concurrent

systems using temporal logic specifications", ACM
Trans. Program. Lang. Syst., vol. 8, p. 244--263,
ACM, New York USA, 1986.

[2] Dhaussy P., Boniol F., Roger J.C.: Reducing
state explosion with context modeling for model-
checking. In: 13th IEEE International High
Assurance Systems. Engineering Symposium
(Hase'11). Boca Raton, USA (2011)

[3] “SCADE 6: A Model Based Solution For Safety
Critical Software Development”, François-Xavier
Dormoy. ERTS 2008, Esterel Technologies;

[4] “The Synchronous Dataflow Programming
Language Lustre”, N. Halbwachs, P. Caspi, P.
Raymond, and D. Pilaud, Proceedings of the IEEE,
79(9):1305-1320, September 1991.

[5] B. Berthomieu, J. P. Bodeveix, M. Filali, H.
Garavel, F. Lang, F. Peres, R. Saad, J. Stoecker, F.
Vernadat. The syntax and semantics of FIACRE v2,
specification, 2009.

[6] H. Garavel and D. Thivolle. Verification of GALS
Systems by Combining Synchronous Languages
and Process Calculi. In Proc. of SPIN, pages 241–
260, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] F. Doucet, M. Menarini, I. H. Kruger, R. Gupta,
and J. P. Talpin. A Verification Approach for GALS
Integration of Synchronous Components. Electron.
Notes Theor. Comput. Sci., 146:105–131, January
2006.

[8] H. Günther, S. Milius, O. Möller: On the formal
verification of systems of synchronous software
components, VerSyKo project, 31st International
Conference on Computer Safety, Reliability and
Security (SAFECOMP, MBEES), 2012.

[9] “The Foundations of Esterel”, Gérard Berry. In
“Proofs, Languages, and Interaction, Essays in
Honour of R. Milner,” G. Plotkin, C. Stirling, and M.
Tofteed., MIT Press (2000).

[10] Methodology Handbook Efficient Development
of Safe Avionics Software with DO-178B Objectives
Using SCADE, 2011;

[11] Dhaussy, P., Boniol, F., Roger, J.C., Leroux, L.:
Improving model checking with context modelling.
Advances in Software Engineering ID 547157, 13
pages (2012)

[12] “Model-checking Flight Control Systems : the
Airbus experience”, ICSE Companion, pages 18–27,
T.Bochot (Airbus), V.Wiels (ONERA), P. Virelizier, H.
Waeselynck, 2009.

[13] Choi, Y., “From NuSMV to SPIN: Experiences
with model checking flight guidance systems”,
Formal Methods in System Design 30 (FMSD) , 199-
216 (2007)

[14] P. Le Guernic, T. Gautier, M. Le Borgne, and C.
Le Maire. Programming Real-Time Applications with
SIGNAL. Proceedings of the IEEE, 79(9): 1321-
1336, September 1991.

[15] Holzmann, G. J., The SPIN Model Checker:
Primer and Reference Manual. Addison-Wesley,
2004. ISBN 0-321-22862-6.

[16] C.Teodorov, L.Leroux, P.Dhaussy: Context-
aware Verification of a Cruise-Control System, In
Proceedings of Model and Data Engineering 4th
International Conference, MEDI 2014, LNCS 8748;

[17] Valmari, A.: The state explosion problem, in
Springer LNCS volume 1491, 1998, pp 429-528
(http://dx.doi.org/10.1007/3-540-65306-6_21)

[18] P. Dhaussy, L. Le Roux, et C. Teodorov :
Vérification Formelle de Propriétés, application au
cas d’étude CCS en UML, dans le cadre du projet
DEPARTS, Revue Génie Logiciel, n° 109, juin 2014

