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In this theoretical paper, we explore interrelationships 
between conceptual and procedural understanding of 
mathematics in the context of individuals and groups. 
We question the enterprise of attempting to assess learn-
ers’ mathematical understanding by inviting them to 
perform a (perhaps unfamiliar) procedure or offer an 
explanation. Would it be appropriate to describe a learn-
er in possession of an algorithm for responding satisfac-
torily to such prompts as displaying conceptual under-
standing? We relate the discussion to Searle’s “Chinese 
Room” thought experiment and draw on Habermas’ 
Theory of Communicative Action to develop potential 
implications for addressing the problem of interpreting 
learners’ mathematical understanding.
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understanding.

INTRODUCTION

The quest to help learners develop a deep and mean-
ingful understanding of mathematics has become the 
holy grail for mathematics educators (Llewellyn, 2012), 
particularly since Skemp’s (1976) seminal division of 
understanding into “instrumental” and “relational” 
categories. Relational (or conceptual) understand-
ing is seen as more powerful, authentic and satisfy-
ing for the learner, representing true mathematical 
sense-making. But how can we know whether or not 
a learner has this relational understanding in any 
particular area of mathematics? The short, closed 
questions which dominate traditional paper-based 
assessments are unlikely to elicit this information. 
Hewitt (2009, p. 91) comments that “it is perfectly 
possible for a student to get right answers whilst not 
knowing about the mathematics within their work”, 
and offers an example in which a learner aged 12–13 
was finding the areas of triangles by multiplying the 

base by the height and dividing by 2, but admitted that 
he had no idea why he was multiplying or dividing 
by 2. This same example is used by Skemp (1976) to 
exemplify his distinction between instrumental and 
relational understanding of mathematics. Yet inviting 
learners to go further and explain their mathemat-
ics is also problematic. An invitation to “explain” an 
answer may be experienced as yet another request 
for “a performance”: the “right” explanation that will 
satisfy a teacher or examiner may be memorised or 
produced algorithmically, just like the answer itself.

We might ask what it means for learners to have 
relational understanding of factorising a quadratic 
expression, for instance (Foster, 2014). If they can 
perform the procedure fluently (i.e., quickly, accu-
rately, flexibly and confidently) then would we be sat-
isfied (Foster, 2013)? We might argue that relational 
understanding involves adapting what is known to 
novel, non-straightforward problem-solving situa-
tions. Yet a robust enough algorithm will dispose of a 
very wide range of scenarios, including unanticipated 
ones, and a comprehensive enough set of algorithms 
might successfully deal with any situation likely to be 
encountered in any assessment (MacCormick, 2012). 
If the learner’s performance continued to be faultless 
would we wish to probe their thinking further? To 
some extent mathematical fluency entails withdraw-
ing attention from the details of why and how the pro-
cedure works so as to speed up the process and allow 
cognitive space for focusing on wider aspects of the 
problem (Hewitt, 1996; Foster, 2013). A mathemati-
cian does not want to have to differentiate 3x2 – 2x + 4 
from first principles every time, although they are 
capable of doing so. Perhaps relational understanding 
involves an ability to deconstruct the procedure if 
required rather than an expectation that this is going 
on every time it is carried out? But deconstructing 
a procedure could itself be regarded as a procedure, 



Re-conceptualising conceptual understanding in mathematics (Geoff Kent and Colin Foster)

2657

and presumably one that can be prepared for – even 
memorised, just as proofs can be memorised. So is 
there something more to relational understanding 
than expert procedural fluency, and if so how might 
this be conceptualised? Is there a difference between 
being able to manipulate syntax and being able to un-
derstanding meaning?

PROCEDURAL AND CONCEPTUAL KNOWLEDGE

Skemp’s (1976) famous distinction between instru-
mental and relational understanding characterises 
relational understanding as “knowing both what to do 
and why” (p. 20), whereas instrumental understand-
ing is merely “rules without reasons” (p. 20). While ac-
knowledging that “one can often get the right answer 
more quickly and reliably by instrumental thinking 
than relational” (p. 23), he nonetheless criticises in-
strumental learning as a proliferation of little rules 
to remember rather than fewer general principles 
with wider application. More recently, the terms pro-
cedural and conceptual learning have been widely 
adopted, and theoretical interpretations of these in 
mathematics education have increasingly highlighted 
their interweaving and iterative relationship (Star, 
2005; Baroody, Feil, & Johnson, 2007; Star, 2007; Kieran, 
2013; Star & Stylianides, 2013; Foster, 2014). 

The most commonly-used definitions of procedural 
and conceptual knowledge in the context of mathe-
matics are those due to Hiebert and Lefevre (1986). 
They see conceptual knowledge as knowledge that 
is rich in relationships, where the connections be-
tween facts are as important as the facts themselves, 
whereas procedural knowledge is rules for solving 
mathematical problems. This distinction parallels 
Skemp’s (1976) conclusion that there are really two 
kinds of mathematics – instrumental and relation-
al – dealing with different kinds of knowledge. More 
recently, Star (2005, 2007) distinguishes between 
types of knowledge (knowledge about procedures or 
knowledge about concepts) and qualities of knowl-
edge (superficial or deep), and complains that these 
are frequently confounded. He highlights the way in 
which “procedural” is often equated with “superficial”, 
and “conceptual” with “deep”, and draws attention to 
the possibility of “deep procedural knowledge” and 

“superficial conceptual knowledge” as valid categories. 
Kieran (2013) goes further in declaring the dichotomy 
between conceptual understanding and procedural 
skills a fundamentally false one. Other researchers 

have also explored the interplay between procedural 
and conceptual knowledge (Sfard, 1991), with Gray 
and Tall (1994) integrating processes and concepts 
into what they term “procepts” (Tall, 2013). But there 
remains the question of what precisely it is that con-
ceptual knowledge consists of beyond confident pro-
cedural knowledge.

THE CHINESE ROOM

Searle’s (1980) famous thought experiment about a 
“Chinese Room” was an attack on the “strong” artificial 
intelligence claim that a computer is a mind, having 
cognitive states such as “understanding”. Searle im-
agined a native English speaker who knew no Chinese 
locked in a room with a book of instructions for ma-
nipulating Chinese symbols. Messages in Chinese 
are posted through the door and the English speaker 
follows the instructions in the book to produce new 
messages in Chinese, which they post out of the room. 
Unknown to them, they are having a conversation 
in Chinese, a language which they do not speak a 
word of. Searle argued that syntax does not add up 
to semantics; behaving “as if ” you understand is not 
the same as understanding. But it is very difficult to 
pinpoint exactly where the difference lies (Gavalas, 
2007). Searle does acknowledge that “The rules are in 
English, and I understand these rules as well as any 
other native speaker of English” (1980, p. 418), but it 
remains mysterious exactly what test could distin-
guish a competently performing machine from a real 
mathematician. A learner performing a mathematical 
procedure may be making mathematical sense to an 
observing mathematician, such as a teacher, without 
apparently knowing much themselves about what 
they are doing.

The focus here has now changed from whether the 
computer (or the mind as a computer) understands 
mathematics to the question of whether some com-
puter could be such that it is indistinguishable from a 
real mathematician. It may be that, whether or not you 
could tell them apart, they would perform the tasks 
of producing syntactically correct mathematics in im-
portantly different manners. Thus the issue becomes 
the sense in which rules are being followed. If rules 
are followed in a meaningful sense and their semantic 
content is well defined and connected within constel-
lations of schemas, then test item responses could be 
strong evidence of mathematical understanding. But 
this requires that those items are designed so that they 
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engage procedural knowledge in a sophisticated man-
ner which takes into account all of the aspects of the 
concept image that is the object of assessment. We 
could specify an additional requirement that the test 
be administered to a human being and not a computer. 
While this may seem flippant, it points to the heart of 
Searle’s argument, which is that humans follow rules 
through semantic causality that is more or less part 
of the “hardware” of our brains; that there is no (or 
minimal) “software” layer (Searle, 1984). So does this 
imply that truly instrumental understanding is an 
impossibility for a human being?

MATHEMATICAL UNDERSTANDING

Searle’s later articulation of social theory addresses 
how language can be used to create a social reality 
which is iterative and generative (Searle 1995, 2010). 
Further, Searle articulates an analysis of language 
that points towards strong connections between the 
structure of language and the structure of intentional 
states. In some ways this leads us back to the idea of the 
mathematician as performing as though merely in com-
mand of a complex constellation of algorithms that are 
triggered and brought to bear in a purely syntactical 
manner. In light of the argument put forth by Searle, 
we should rather say that the mathematician employs 
an array of mathematical understandings which have 
semantic content. While this seems unsatisfying, as 
though Searle is saying “it is semantic when humans 
do it”, it bears strong connections with Sierpinska’s 
articulation of procedural understanding and its re-
lationship to conceptual understanding. Procedural 
understandings, according to Sierpinska (1994):

are representations based on some sort of schema 
of actions, procedures. There must be a conceptu-
al component in them – these procedures serve 
to manipulate abstract objects, symbols, and they 
are sufficiently general to be applied in a variety 
of cases. Without the conceptual component they 
would not become procedures. We may only say 
that the conceptual component is stronger or 
weaker. (p. 51)

Hence, it is reasonable for a mathematician to see 
many elements of their understanding as arrays of 
algorithms that allow them to address wide categories 
of mathematical problems. Yet this is fundamentally 
different from how a digital computer would operate 
in a purely syntactical approach.

Gordon, Achiman and Melman (1981, p. 2) define rules 
as “statements of the logical form ‘In type-Y situations 
one does ... X’”. For Wittgenstein (1953), it is not possi-
ble to choose to follow a rule: “When I obey a rule, I do 
not choose. I obey the rule blindly” (p. 85, original em-
phasis). Otherwise it is not a rule. It is in this sense that 
Searle raises a question fundamental to this discus-
sion: Should understanding mathematics be under-
stood as sophisticated algorithmic arrays which are 
akin to complex computer programs? Searle’s (1984) 
critique of this and related ideas has several facets, the 
most pertinent of which is that there is an ambiguity 
in what is meant by rule following and that humans 
and computers do not follow rules in the same sense. 
In essence, Searle argues that humans follow rules in 
as much as they understand the meaning of the rules 
(which is thus semantic and about intentional states), 
whereas computers are purely syntactical in their 
rule following; they can be said to “act in accord with 
formal procedures” (ibid, p. 45, original emphasis).

Returning to the question of relational versus in-
strumental understanding, it seems that if we follow 
Searle’s arguments we can say that mathematical un-
derstanding is probably not effective human under-
standing if it is primarily instrumental (in the sense 
of syntactical rule following). However, it is clear that 
procedural, syntactical and algorithmic practices and 
concepts form an important part of the background 
to meaningful mathematical understanding. Thus 
from a perspective of assessment we would expect it 
to be important to assess algorithmic fluency while 
also seeking to assess the strength of the conceptual 
content associated with the procedural performance.

So in contrast to the kinds of digital computers that 
Searle and Hiebert and Lefevre are talking about, al-
gorithms exist within a semantic framework. Perhaps 
it is as though a digital computer (syntactical machine 
environment) is being modelled using a semantic 
machine environment (the brain). If so, the potential 
problem for mathematics education relating to in-
strumental learning in mathematics may be that the 
seeming simplicity of rule following is made vastly 
more complicated by its need to run in a sort of virtual 
syntactic machine running on essentially semantic 
hardware. On the other hand, the generation of cor-
rect syntactical content is a power of certain constella-
tions of semantic knowledge (relational knowledge). It 
seems that the teaching of algorithms and procedures 
is crucial for the development of sophisticated math-
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ematical understanding, but also that how they are 
taught is critical to supporting the development in 
learners of mathematical understanding that goes 
beyond procedural understandings with weak con-
ceptual content (Foster, 2014).

Habermas’ theory of communication, partly based 
in and complementary to Searle’s theories, can point 
towards models of understanding and how to assess 
it. In communicative action, as defined by Habermas 
(1984), action is coordinated intersubjectively through 
achieving understanding. The theory of communica-
tive action (TCA) analyses communication as having 
an inherent rationality focused on the goal of achieving 
understanding. Using speech act theory and argumen-
tation theory, Habermas identifies categories of validity 
claims that are raised in any communicative interaction 
and also identifies implicit preconditions for successful 
communication. The former is referred to by Habermas 
as “discourse”, but might better be termed “validity-dis-
course”, in order to differentiate it from other uses of 
that term in social sciences. The preconditions for com-
municative action are referred to collectively as the 

“Ideal Speech Situation” by Habermas and constitute a 
set of counterfactual norms identified abductively as 
necessary for successful communication. These norms 
are focused on equitable conditions for participation in 
communication where the “unforced force of the better 
argument” has the opportunity to motivate agreement. 
This is a bit tricky, as Habermas claims that such condi-
tions must be assumed by participants as in operation 
in order to communicate, despite representing more of 
an ideal horizon that never completely obtains. Society 
is power-laden, and all communication occurs within a 
social context. Thus the breakdown of communication 
is all too common, and intersubjective understanding 
is seen as a fleeting and fallible goal that is ever ap-
proached but seldom attained. 

The claim that Habermas’s TCA and Searle’s speech 
act theory are complementary and can be produc-
tively networked is based on the specific arguments 
made by Habermas in the TCA, his use of speech act 
theory to develop his ideas of communicative action 
and also upon analysis of similarities and departures 
between the principles, methodologies and questions 
of each author:

Analytical philosophy, with the theory of mean-
ing at its core, does offer a promising point of 
departure for a theory of communicative action 

that places understanding in language, as the me-
dium for coordinating action at the focal point of 
interest. (Habermas, 1984, p. 274)

While it might be possible to argue that Searle’s theo-
ries depart somewhat from the kinds of analytic the-
ories that Habermas wants to make use of, this is mis-
taken, since their focus is on incorporating theories 
of intentionality. Searle beings with the structure of 
linguistic expressions and then deals with intention-
ality, and importantly in his later work he introduces 
the idea of collective intentionality, which is focused 
on the coordination of speakers, and which is closely 
related to Habermas’ ideas about the importance of 
intersubjectivity in communicative action:

For a theory of communicative action only those 
analytic theories of meaning are instructive that 
start from the structure of linguistic expressions 
rather than from speakers’ intentions. And the 
theory will need to keep in mind how the actions 
of several actors are linked to one another by 
means of the mechanism of reaching understand-
ing. (Habermas, 1984, p. 275) 

Searle’s ideas add rigour and detail at the level of so-
cial ontology and may allow for a more sophisticated 
operationalising of concepts and constructs based in 
Habermas’ TCA. These ideas could be used to further 
network critical theory, cognitive science, neurosci-
ence and other approaches to the study of mathematics 
education so that they may inform one another without 
reducing one to the other. Thus the issue of theoretical 
incommensurability may be navigated without theoret-
ical insights becoming “siloed” within various sub-cul-
tures of theory which do not communicate with one 
another. A common theoretical language might allow 
researchers to disagree with greater clarity without 
running the risk of becoming an over-arching “grand 
theory”. More broadly, Searle’s ideas could serve as 
tools for building rigorous analysis of particular in-
stances of theoretical networking, allowing productive 
discussion between theoretical perspectives.

These ideas can be operationalised to analyse small-
group problem solving and in this manner interpret 
the mathematical understanding of participants 
(Kent, 2013), which could serve as the basis for the 
development of interactive assessment techniques, 
activities and protocols. Understanding from this per-
spective is about being able to identify what reasons, 
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arguments and evidence could be legitimately raised 
to justify a claim. This emphasis on the identification 
of shared bases for validity can serve as a pragmatic 
approach to the analysis of human understanding in 
mathematics. Thus when we speak of assessing math-
ematical understanding we can begin to identify as 
a community of mathematicians and mathematics 
educators (with due consideration of developmental 
and disciplinary appropriateness) the claims and the 
appropriate reasons that justify these claims. We can 
consider how to engage participants in communica-
tive actions around mathematical goals that require 
the articulation of arguments and justifications that 
show evidence that the participants can explain why 
certain mathematical claims are true. 

Returning to the Chinese Room, this turn to the social 
does not suggest that there need be two people in the 
room, but rather that the person in the room must 
share requisite background knowledge or be able to 
develop it contextually with the Chinese speakers out-
side the room. The idea of communicative competence 
is key: sharing the contextual background knowledge 
that allows a language to have semantic meaning is 
the basis for “understanding”. This is different from 
quickly and accurately manipulating the symbols in 
a language in a syntactic fashion: no shared under-
standing entails from such activity. Now it is possible 
that meaning could be attributed to rules or symbols 
by the person in the Chinese room, but, without the 
ability to test these against another person who has 
semantic understanding of the symbols, no inter-
personal communication or shared understanding 
is achievable. The meaning so developed would be a 
private language that would not necessarily corre-
spond to that of the interlocutor. Thus the person in 
the Chinese room might imagine that they were hav-
ing a discussion about a family’s vacation outing when 
in fact the interlocutor interpreted the exchange of 
symbols as being a mathematical discourse on the 
solution to an algebraic problem (or vice versa).

CONCLUSION

These ideas about the nature of the relationship be-
tween syntax and semantics, procedure and concept, 
and instrumental and relational understanding do 
not undermine the importance of procedural fluency. 
Pimm (1995) addresses the issue in depth and iden-
tifies some of the important features of fluency in 
mathematics education: 

For me, fluency is about ease of production and 
mastery of generation – it is used also in relation 
to a complex system. ‘Fluent’ may be related to 
efficient, or just no wasted effort. It is often about 
working with the form. Finally, it can be about not 
having to pay conscious attention. (ibid, p. 174, 
original emphasis)

Thus fluency, including syntactical fluency, can serve 
as partial evidence of understanding in a communica-
tional context. Mathematical fluency, as in non-math-
ematical communication, is a sign of communicative 
competence, which is a prerequisite for interpersonal 
understanding according to the hermeneutic/commu-
nicational tradition (Habermas, 1984; Sierpinska, 1994). 
Thus when we say that a human being does not follow 
rules in the same sense as a computer, we mean that the 
symbolic rule following (or algorithmic manipulation 
of syntax) is done in the context of mathematical com-
munication, and thus has semantic framing.

Habermas’ articulation of rational behaviour in dis-
cursive practices has been identified as productive 
for the analysis of shared cognition in mathematics 
education (Boero et al., 2010). In communicative action 
participants achieve shared goals by coordinating 
action (including speech action) through the develop-
ment of a shared understanding. Thus, establishing 
shared goals and coordinating action around an ap-
propriately designed mathematical task could serve 
as an interpretive basis for the researcher (or other 
virtual participant) to make a judgement about the 
understanding of the participants in collaborative 
learning of mathematics (Kent, 2013).

We suggest that consideration of Searle’s (1984) cri-
tique of cognitive science allows for ongoing produc-
tive insight into what mathematical thinking is and 
its relation to education. An important problem faced 
by the mathematics education community is how we 
can use ideas of relational understanding and instru-
mental understanding in a sophisticated manner to 
promote the learning of mathematics. Learners of 
mathematics should gain genuine experience of real 
mathematical sense-making rather than engage in a 
charade of imitating what they think such behavior 
should look like. The increasing focus on fluency in 
policy in the UK (DfE, 2013) suggests the need for tools 
and practices to be developed which coordinate ideas 
of cognition, mathematical understanding and edu-
cational practices of teaching and assessment. Our 
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consideration of Searle’s Chinese Room argument has 
sought to highlight the nuance involved in these issues 
and the kinds of practices and theoretical frameworks 
that could be leveraged to address the problem of in-
terpreting learners’ mathematical understanding. 
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