
HAL Id: hal-01289412
https://hal.science/hal-01289412v1

Submitted on 16 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Specs Verifier ATG: a Tool for Model-based
Generation of High Coverage Test Suites

Orlando Ferrante, Marco Marazza, Alberto Ferrari

To cite this version:
Orlando Ferrante, Marco Marazza, Alberto Ferrari. Formal Specs Verifier ATG: a Tool for Model-
based Generation of High Coverage Test Suites. 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01289412�

https://hal.science/hal-01289412v1
https://hal.archives-ouvertes.fr


Formal Specs Verifier ATG: a Tool for Model-based
Generation of High Coverage Test Suites

Orlando Ferrante, Marco Marazza, Alberto Ferrari
ALES - UTSCE,

Piazza della Repubblica, 68 - 00185, Roma - Italy
e-mail: name.surname@utsce.utc.com

Abstract—In this paper we describe Formal Specs Verifier
Automatic Test Generation, a tool generating high coverage test
suites for embedded systems. Our tool implements a test case
synthesis algorithm using a combination of model checking and
optimization techniques starting from a Simulink/Stateflow model
of the System Under Test. The main contributions of this paper
are the following: we (1) give an extended description of our test
generation algorithm, (2) describe the algorithm implementation
as part of the Formal Specs Verifier framework, (3) present a
concrete application of the tool to a cruise control case study
and discuss experimental results comparing our algorithm with
a state-of-the art COTS tool.

Keywords—Model-based Automatic Test Generation, High Cov-
erage Test Suites, Formal Methods

I. INTRODUCTION

Testing complex hardware-software embedded systems’
architectures is one of the most important and costly phases
of their entire development life cycle. A significant portion
of development time is spent indeed for the verification and
validation phases (V&V) during which teams of test engineers
aim at discovering requirements’ misinterpretation and imple-
mentation errors. Early error detection facilitates correction
complexity, which in turn favors minimizing the overall system
development cost and time. Testing consists in the execution
of a set of predefined input vectors on the System Under Test
(SUT) and observation of its response for detecting possible
deviations from the expected behavior. In order to perform
the testing phase, test vectors (or test cases) must be provided
to the test execution environment. A test vector consists of a
sequence of pairs (inputs, outputs) where inputs is the set of
values to be applied to the system and outputs is the set of
expected output values. A set of test cases is said to be a test
suite. In case the execution of the system produces a set of
output values not matching the expected ones the test can be
used to highlight an error of the SUT. To quantitatively evaluate
the quality of test suites, hence of the entire test execution,
coverage metrics are used. Coverage metrics measure the
effectiveness of a test suite i.e. how much it covers: (1) the
structure of the SUT, as in MC/DC coverage metrics, (2) the
set of requirements, as in requirements-based testing, or (3)
a meaningful subset of admissible faults of the system, as
in fault-injection testing. A good test suite satisfies as much
as possible a given coverage metric. As a general rule the
more the tests executed, the higher the confidence about the
correctness of the system, as long as the executed test cases
are of high quality. However, the generation of high quality
test suites has a relevant impact on costs, e.g. complexity,

setup time and execution time; hence, besides providing test
suites maximizing a given coverage metric (optimality), it is
of paramount importance to ensure a reduced number of test
cases (efficiency). Typically, a test suite represents a trade-
off between optimality and efficiency. Several techniques have
been adopted for the test generation process, especially in
the area of test generation from system models whose main
idea is to represent the SUT using a formal model and use
automatic algorithms for the definition of test cases (model-
based test generation). In particular, the use of model checking
techniques for test generation has been extensively explored:
the test generation procedure is formulated as a problem of
reachability, enriching the model with test objectives. Such test
objectives must be achieved by the produced test suite in order
for a given coverage metric to be satisfied. Once the model
is enriched with test objectives, a model checker is used to
analyze their reachability. In case a test objective is reachable,
a counter-example is produced and stored as a test case, which
is said to cover that test objective. Once all test objectives are
covered, the generated set of tests is a high coverage test suite.
In this paper we describe a novel approach for the automatic
test generation from system models combining bounded model
checking and optimization to generate efficient test cases
and test suites. This paper is an extension of the algorithm
presented in [1]; the main contributions of current paper
can be summarized as follows: we (1) provide an extended
description of the test generation algorithm, (2) describe the
implementation of the algorithm in our Formal Specs Verifier
framework and (3) show the application of our tool to a cruise
control case study, along with additional experimental results.
The proposed use case only covers the MC/DC as an example.
The paper is organized as follows: Section II stresses the
central role played by model-based test generation and model-
based testing in current industry development processes. Sec-
tion III summarizes existing approaches for test case genera-
tion using exhaustive search techniques. Section IV provides a
formal description of the problem our algorithm tries to address
and Section VI describes our algorithm in details. Section
VII provides an overview of the algorithm implementation as
well as an application to a cruise control example and finally
Section VIII concludes the paper.

II. MODEL BASED TEST GENERATION

Current practice in industrial systems’ design and devel-
opment process is to create models –also known as virtual
prototypes– of the system being developed. A model is the
artifact meant to imitate the system of interest. The system
can be abstracted (modeled) at different levels of refinement



and each level of refinement has its own best-fitting formal
models. For example, a mathematical model is a set of formal
definitions and mathematical formulas that describe the system
under analysis. At the various system development phases,
models are gradually refined until these get detailed enough to
allow for physical implementation of the system. The system
implementation can be achieved by means of either fully-
automated or pseudo-automated synthesis tools. With regards
to testing, the main benefits of model-based approach are
manifold: (1) tests can be automatically generated from models
(model-based automatic test generation), (2) testing can be
performed at different refinement levels, far before the system
gets implemented and, more interestingly, (3) tests generated
at early phases of the system design can be refined and re-
used in later phases of the design to check whether all system
properties are still fulfilled (back-to-back testing). Virtual
prototyping and related testing are particularly important when
the realization of components involves different technology
suppliers and manufacturers, and requirements fulfillment must
be checked by all the parties at all stages of the design process.
This work targets model-based generation of test suites used
to bring evidence that functional and non-functional metrics
have been achieved by the design implementation.

III. RELATED WORK

Several techniques have been described in literature on the
topic of automatic test generation. In this section we provide
a brief summary of the available techniques pointing out the
differences with the one proposed in this paper. Evolutionary
and genetic approaches [2] generate tests by randomly exer-
cising the inputs of the SUT and measuring the quality of the
test maximizing an objective function. Such function is derived
from a structural analysis of the SUT, hence a test that provides
better values of the cost function is selected in a set of possible
generation process outcomes. In addition, evolutionary testing
employs evolutionary algorithm techniques for selection and
generation of new tests from a previously generated set of
tests. These techniques rely on random search adding structure
to the search to avoid generating low coverage tests. However,
there are no guarantees that a selected behavior is effectively
the best test case with respect to a given coverage metric.
Model-checking based techniques are heavily studied for the
generation of test cases. In [3] the authors describe the use
of a model checking engine for the generation of test cases
starting from a modified version of the SUT model enriched
with a reset transition (i.e. a variable that, when true, resets
the entire state of SUT to the initial state) and test objectives
related to the coverage criteria. The proposed approach differs
from ours in several ways. At first, the number of satisfied
objectives is a non-deterministic result of the execution of
the algorithm hence each test case may cover an arbitrary
number of test cases, whereas our method allows for se-
lecting the maximum number of satisfiable test objectives at
each execution. In addition, the generated tests are produced
monolithically starting from the initial model not allowing
the application of an incremental test generation methodology;
hence, the applicability of the technique to concrete industrial
size cases heavily depends on the size of the input model [4].
In [5] a methodology to generate tests from a formalization
of requirements based on a tabular representation is described
and the counter-example finding capabilities of model checkers

is described as a technique to derive such counter-examples.
The use of the model checker is straightforward and there
is not any guarantee on the quality of generated tests. In
[6] the authors describe a method for extracting test cases
from Statecharts state machines considering state transitions
covering (i.e. covering all states and/or all transitions of the
Statecharts). The generation is executed by enriching the model
with additional states and searching from counter-examples of
a specific CTL formula. The method may produce redundant
test cases and after test generation an additional test reduction
phase is needed. This approach differs from ours in that it does
not guarantee the generation of a minimal set of high coverage
test cases and it relies on a specific CTL-based formulation of
the problem. As a consequence it cannot be solved using SAT-
based model checking techniques, that usually perform better
than BDD-based techniques when a counter-example search is
performed. In [7] a method exploiting random-simulation and
formal verification is described based on a semi-formal method
for the traversing of Extended Finite State Machines (EFSMs)
that allows for reaching deep test cases exploiting the strength
of simulation-based approaches. However, no guarantees are
given in terms of efficiency of the generated suite and the
use of the model checking engine is limited to the analysis of
constraints to guide the main simulation-based test generation
algorithm. In [8] the authors propose a test generation method
based on the reachability of given test cases as well as
extension of already generated test cases. This approach differs
from ours in several ways. First, it does not provide guarantees
that every generated test is optimal with respect to a specific
coverage metric. The model checker is called in order to satisfy
some of the test goals but no guarantees are provided to the
number of the goals satisfied. Second, it does not employ an
incremental test generation procedure: at every execution no
guarantees are given about the length of the found counter-
example: there might be cases in which a high coverage test
case has a given length, but the same results would be obtained
with a shorter test case.

IV. PROBLEM FORMULATION

A. Model And Coverage Criteria Formulation

We focus on the problem of generating high coverage
test suites for discrete time models formalized as connec-
tions of blocks. Several languages are available to capture
embedded control systems using this formalism, e.g. MATLAB
Simulink/Stateflow and Esterel SCADE1. A model M can
be formally represented as a connection of blocks exposing
a well-defined interface in terms of input and output ports,
each describing its run-time behavior as an Extended Finite
State Machine (EFSM). Block’s interfaces are formalized as a
pair of input and output vectors u[k] ∈ X, y[k] ∈ Y , where
X and Y represent the vector domains and k ∈ N the discrete
time. Each block behavior is then formalized as a transition
function F [u, x, f, k] that at each discrete time k maps the
vectors input u[k] and current state x[k] to an output vector
y[k] and next-state values x′[k], where x′[k] = x[k + 1].
In order to be fully specified, an initial value for the state
vector should be provided. Connections between blocks act as
constraints between the values of inputs and outputs that must
match at every time step. The transition relation of a block

1http://www.esterel-technologies.com/



contains logical and arithmetic expressions for Boolean and
bit vectors. For a complete description of the richness of the
Simulink/Stateflow languages please refer to [9]. A test suite
Π is a set of test traces π1, . . . , πn, each representing a finite
sequence of admissible input values: πk = 〈u[1], . . . , u[m]〉.
Each test trace πk has a finite length ‖πk‖ = m that
corresponds to the maximum time step for which the model
is exercised. The objective of test generation is to produce
a test suite that exercises the model for maximizing a given
coverage criterion. Several coverage criteria have been defined
depending on the test generation algorithm input. As an
example for finite state machine a relevant coverage criteria
is related to the capability of exercising the state machine
enabling as much transitions as possible (transition coverage
criteria). In model-based approaches several criteria can be
defined depending on the input model. In our flow, Simulink
and Stateflow models are processed and we use the following
coverage criteria (that can be applied to similar languages
such as Esterel SCADE). MC/DC coverage: following the
definition of MC/DC for software a similar criterion has been
followed for model elements associated to Boolean formulas.
More precisely, for each block corresponding to a Boolean
formula y = f [u1, . . . , uN ] to fully satisfy the criterion there
should exist a trace such that each input affects the truth value
of the output independently of the other inputs [10]. Relations
coverage: for each block that compares two values y = u1�u2
(where � ∈ {≤, <,=, 6=, >,≥}), there should exist tests for
which the output value y transitions from FALSE to TRUE
and vice-versa. State coverage: for state machines, there
should be tests such that the state machine states assume all
possible values. Transition coverage: for each state machine,
there should be tests such that all the transitions of the state
machines are asserted.
In our flow, Simulink and Stateflow models are processed and
we use the following coverage criteria (that can be applied to
similar languages such as Esterel SCADE): MC/DC coverage,
relations coverage, state coverage and transition coverage. The
first two criteria apply also to guards and actions of the state
machines; hence, if a guard is a composite Boolean expression,
the test suite should provide tests covering the guard with a
maximum MC/DC percentage value.

B. Problem Formulation

The test generation problem we address in this paper can
be now formalized as follows. Given a discrete time model
M, a coverage metric and a test generation maximum time
step m, generate a test suite Π = {π1, . . . , πn} of vectors of
length ‖πk‖ ≤ m, such that:

1) the achieved coverage is maximal with respect to the
coverage metric

2) each test trace contributes to increase the coverage of
the test suite

Objective 1) ensures that the generated test suite achieves high
test effectiveness, provides high coverage of the input model
and captures as much errors as possible, whereas objective
2) ensures that the cost of test execution is well-balanced,
meaning that each test trace effectively improves the overall
coverage of the model and avoids execution of useless tests.

Fig. 1. Test Objective example

V. MAXIMAL COVERAGE TEST CASE GENERATION

VI. ALGORITHM DESCRIPTION

In this section the test generation algorithm presented in
[1] is summarized and extended showing the usage of monitor
variables for the automatic synthesis of test cases. In Section
VI-A the algorithm is summarized, whereas in Section VI-B
the details of the efficient search sub-activity are provided.
This section describes the details of the efficient search sub-
activity of the test generation algorithm we presented in [1]
and differs from a previous implementation [11] generating
Minimal Critical Failure Sets.

A. Test Generation Flow

The overall flow of the test generation algorithm is de-
scribed in Fig. 2. The initial formal model is elaborated in
a model transformation step that enriches the input adding a
finite number of test objectives. Each test objective represents
a Boolean condition over the discrete time that should be
satisfied by at least one generated test case. The formal
description of the test objective depends on the coverage
criteria selected by the user (e.g. MC/DC, relation coverage,
transition coverage, etc.). During the test objectives generation
step the input model is instrumented with additional Boolean
expressions representing the test objectives the Automatic Test
Generation (ATG) step should satisfy. Each test objective is
derived by analyzing the input model blocks according to the
selected criteria. As an example consider the Simulink model
in Fig. 1 containing a Comparator block and a Switch block.
The Comparator has an output that is true when input u1 is
greater or equal to zero and false otherwise, while the Switch
connects to the output the first input when the control input c
is FALSE and the second input (u2) otherwise.
In case the user selected the relation coverage criteria, two Test
Objectives (TOs) to be satisfied would have been derived for
the Comparator block: the first TO is true when the comparator
output transitions from FALSE to TRUE and the second is true
when it transitions from TRUE to FALSE. Similarly, when the
MC/DC criterion is selected, two additional test objectives are
derived: one that is true when the control input of the Switch
transitions from FALSE to TRUE and another one for the
opposite condition. Using this approach we are able to convert
different coverage criteria to a common criterion (test objective
criterion) and the sub-sequent test generation step will try to
produce a high coverage test suite maximizing the number



Formal
Model

Extended
Formal
Model

Coverage
Information

Model.
Transformation

Depth.bound,.Num.Bound,
Exec..Timeout,.etc.

Automatic
Test

Generation

Efficient
Test
Suite

Fig. 2. Test Generation Flow

of test objectives satisfied by the generated traces. Once the
extended model is produced, the Automatic Test Generation
algorithm generates a set of test traces. Each trace has a finite
length and satisfies the maximum number of test objectives that
have not been yet satisfied by other (previously generated) test
cases. As stated previously, the generated test cases verify the
following properties:

• The test suite coverage percentage always increments
with the addition of a new test case;

• Each test case is not redundant: no other test case of
the same length covering the same (or a super-set of
the) set of satisfied test objectives exists.

The ATG process can be bounded in time or in number of
generated test cases by setting a set of parameters controlling
its execution.

The algorithm is described in Algorithm 1. The algorithm
is described in [1] and is summarized here for clarity. At
start-up the explored depth bound is set to the initial value (it
might be 1 or user-defined). The algorithm loops until all test
objectives are satisfied or a given resource/time/depth bound is
reached and in each iteration a subset of not yet satisfied test
objectives (TO) is identified. The subset may be the entire set
of unsatisfied TOs or it may be driven by the user needs (i.e.
all the TOs related to the coverage of a given sub-function
of the SUT, etc.). Once the TOs are selected an inner loop
is performed until an explicit exit condition occurs or all the
test objectives selected have been covered. In the inner loop,
the formal engine is queried to find all the test cases of length
equal to l that maximize the number of satisfied TOs among the
ones selected at previous step. Each test case satisfies a unique
subset of TOs (i.e. there are not two test cases satisfying the
same subset of TOs). If new test cases are found, collect all the
subsets of satisfied TOs and remove them from the search to
avoid search again their satisfaction in next iteration. In case no
new test cases are found we can assess that for the given length
bound, test cases satisfying the selected test objectives do not
exist. This claim is possible because of the exhaustive search

Algorithm 1 High Level View of the Test Generator Algorithm
Input: Θ = {TO1, . . . , TOJ}
Input: L max explored step, TOUT Algorithm execution

timeout

Init
l← 1, Currently Explored Length index
T C[0]← ∅, Test Case Collection @ step 0
Ω[0]← Θ = set of not yet satisfied TOs @ step 0
Ψ[0]← ∅ = set of satisfied test objectives @ step 0

1: while ((Ψ 6= Θ) ∧ (l ≤ L) ∧ (¬TOUT )) do
2: Ω[l] = SelectTestObjectives (Ω[l − 1],Θ)
3: Ψ[l] = ∅
4: bDone = false
5: while (Ω[l] 6= ∅) ∧ (bDone = false) do
6: (Ψ, tc) = FindTestCaseMaxSat(Ω[l], l)
7: if ({tc} 6= ∅) then
8: T C[l]← T C[l − 1] ∪ {tc}
9: Ψ[l]← Ψ[l − 1] ∪Ψ

10: Ω[l]← Ω[l]−Ψ
11: bDone = false
12: else
13: l = l + 1
14: bDone = true
15: end if
16: end while
17: end while
18: return Ψ[l], T C[l]

of the underlying formal back-end. Hence the TO selector can
be executed again to select a new subset of TOs or exiting from
the loop if no more TOs can be selected. If during last iteration
no new test cases are found, it is not possible to satisfy any
of the current set of selected TOs for the given length, hence
the explored depth bound is increased and a new iteration is
started if resource limits are not reached (i.e. timeout, memory
consumption, etc.).

1) The algorithm loops until all test objectives are satis-
fied or a given resource/time/depth bound is reached;

2) While this bound has not been reached:
a) A subset of not yet satisfied test objectives

(TO) is identified. The subset may be the en-
tire set of unsatisfied TOs or it may be driven
by the user needs (i.e. all the TOs related to
the coverage of a given sub-function of the
SUT, etc.)

b) The following loop will be executed until
new test cases are not found or the selection
mechanism has not anymore TOs to select:
i) The formal engine is queried to find

all the test cases of length equal to
the current length bound that maximize
the number of satisfied TOs among the
ones selected at previous step. Each
test case satisfies a unique subset of
unsatisfied TOs i.e. there are not two
test cases satisfying the same subset of
TOs.

ii) If new test cases are found, collect all



the subsets of satisfied TOs and remove
them from the search to avoid search
again their satisfaction in next iteration.

iii) In case no new test cases are found,
we can assess that for the given length
bound do not exist test cases satisfying
the selected test objectives. This claim
is possible because of the exhaustive
search of the underlying formal back-
end. Hence the TO selector can be
executed again to select a new subset
of TOs or exiting from the loop if no
more TOs can be selected.

c. If during last iteration no new test cases
are found, it is not possible to satisfy any of
the current set of selected TOs for the given
length. Hence the explored depth bound is
increased

The algorithm is guaranteed to terminate provided that the test
objective selection performed at line 2 is able to identify the
test objectives previously selected even if not satisfied. The
simplest admissible selection mechanism picks the entire set
of unsatisfied objectives at once and exits from the outer loop
at point 3 after the first execution. More efficient test selection
mechanisms are admissible and possible but for brevity we will
not cover this topic in the report. During the search at line 6
a sub-procedure is called in order to produce queries to the
formal engine and storing the counter-examples provided by
the model checker as test cases. A Detailed description of the
procedure is provided in Algorithm 2. The overall algorithm
proceeds in an incremental fashion. Starting from an initial
exploration depth bound all the test cases of a given length
that maximally satisfies the test objectives are found. After the
formal engine proofs that no more test cases of the given length
can satisfy additional TOs, the explored bound is incremented
and the search is executed again. Due the exhaustive nature of
the search, it is guarantee that the set (or a super-set) of the
TOs satisfied by a test case of length k cannot be satisfied by
test case of length j < k. Hence, the method is efficient in the
following sense:

• each new test case covers only new test objectives
hence it strictly increments the coverage of the test
suite by covering only not yet covered test objectives;

• every test case covers the maximal number of unsat-
isfied test objectives of a given length

In addition the incremental nature of the algorithm allows
for generating test cases by starting from a complex problem
in the number of TOs but simpler in the unrolling of the
SUT model transition relation and incrementally increasing
the complexity due the unrolling of the transition relation
but reducing the number of satisfiable test objectives. Our
experience with industry sized models shows that this trade
off allows for applying ATG on complex models since the
satisfied TOs are removed incrementally at every step and the
complexity of the formal problem introduced by the increment
of the explored bound is partially mitigated by the reduced
number of TOs to be satisfied.

B. Maximal Coverage Test Case Generation

The mechanism to find the test case satisfying the
maximum number of TOs is an important part of the optimal
test suite generation procedure and in this sub-section it will
be described in details. The algorithm relies on the concept
of monitor variable associated to a test objective TO. A
monitor is an integer variable and can be seen as a function
m associated to a test objective TO that at every execution
step k evolves as follows:

mTO[k] =


1 if

{
mTO[k − 1] = 1, or

∃j ≤ k s.t. TO satisfied at step j

0 otherwise
and

mTO[0] =

{
1 if TO satisfied at initial step
0 otherwise

Each test objective Tk has an associated monitor variable mk.
Given a set of unsatisfied test objectives T1, T2, . . . , TN and
their associated monitors m1,m2, . . . ,mN the algorithm that
searches for the test case set is described by the pseudo-code
shown by Algorithm 2. The algorithm loops until there are
counter examples found (lines 1 . . . 9). The search at step 2
searches for a counter example that maximizes the sum of
the values of the monitors m1, . . . ,mN . The counter-example
is obtained applying bounded model checking on the input
model. The model checker takes into account the dynamics
of the SUT and the given coverage metrics (that is used to
generate the test objectives and the associated monitors).
The maximization procedure ensures that the found counter-
example exercises as much test objectives as possible. If a
counter example is found the monitor values’ configuration is
extracted and a new constraint is added to the model in order
to exclude the configuration from future searches (line 4, 5).
This step ensures the progress of the iteration loop avoiding
the model checker to find a counter-example satisfying the
same test objectives over and over (there might be an infinity
of them). Then the test case is extracted from the counter

Algorithm 2 Maximal Coverage Test Generator Algorithm
Input: model: The enhanced formal model under analysis
Input: m1,m2, . . . ,mN : Set of model variables representing

unsatisfied test objectives’ monitors
Output: testCases : Set of produced test cases

1: repeat
2: find a counter example such that m1 +m2 + . . .+mN

is maximal
3: if counter example exists then
4: define m∗ = [m∗1,m

∗
2, . . . ,m

∗
N ] the found monitor

configuration
5: exclude m∗ from the admissible solutions of the

maximization search
6: extract test case values for the found counter-example

7: add extracted test case to the testCases set
8: end if
9: until counter-example has been found



FindItestIcasesIsatisfyingItheImaxI
numberIofItestIobjectives

SetIdepthItoIinitialIvalue

END

SelectItestIobjectivesItoIbeI
satisfied

RemoveIfromIsearchIsatisfiedItestI
objectives

START

IncrementIexploredIdepthIbound

AllItestIobjectivesIsatisfiedIorI
boundIreached

TestIcase(s)Ifound

else

NoItestIcase(s)IfoundIonIlastI
iteration

UnsatisfiedItestIobjectivesItoIbeI
selected

else

else

else

Fig. 3. Test Generation Work Flow

example by storing the values of the interesting variables
of the system (inputs, outputs and internal variables) and
finally it is added to the output set (line 6 and 7). The loop is
then executed again looking for additional maximal possible
monitor configurations until no more configurations can be
found. This guarantees that: 1) every test case produced
by the algorithm maximizes the number of test objectives
covered and it is not possible that another test case satisfies
a super set of the covered ones and 2) for the produced test
suite is true by construction that there are not two test cases
satisfying the same set of test objectives.

VII. ALGORITHM IMPLEMENTATION IN FSV

Our automatic test generation algorithm has been imple-
mented in the FormalSpecs Verifier (FSV) framework for the
verification of embedded systems.

A. FormalSpecs Verifier

The FormalSpecs Verifier is a framework targeting complex
embedded systems verification. The core of the tool is based
on a translator from Simulink modeling language to NuSMV
native language. The transformation process produces a seman-
tically equivalent NuSMV representation of the input model
taking into account the non-determinism resolution that may be
introduced during the transformation step. In Fig. 4 the generic
flow is described in details. As a first step the Simulink textual

Simulink
Meta-model

Model
Transformation
(JQVT)

NuSMV
Meta-model

Simulink
Model

NuSMV
Model

Text2Model
Transformation

Model2Text
Transformation

Simulink
Artifact

NuSMV
Artifact

conformsTo conformsTo

Fig. 4. Formal Specs Verifier Model Transformation Flow

file is parsed. Then the parsed Simulink model is processed
generating a semantically equivalent NuSMV model that is
used to generate the concrete NuSMV artifact with a model
to text step. The technology used to perform the model trans-



Fig. 5. Controller sub-system

formation step is an internally developed Java embodiment of
the OMG Query/View/Transformation (QVT) language called
JQVT. The JQVT library aims at providing an industry-level
operational implementation of the QVT language. It supports
the definition of QVT mappings and the definition of mappings
inheritance, disjunction and merging. JQVT allows capturing
the mapping relation that links a source model element to a
target model element and it supports the resolve and resolveIn
operators to retrieve the set of mapping source model elements
from a given mapped target model element. JQVT does not
support the entire QVT specification. However, it has been
extensively used as translation infrastructure of different tools
for the translation of industry-level sized models [12].

B. Cruise Control Example

We show the application of our test generation algorithm
to a cruise control reference example implemented in MAT-
LAB Simulink. We consider a modified version of the model
proposed by Aldrich in [13]. A cruise control is an embedded
system that regulates the speed of a vehicle based on a set
of commands provided by the driver; the interface of the
control algorithm appears to the system as represented in
Fig. 5. The ACCEL and BRAKE inputs are Boolean values
representing the pressure of the accelerator and brake pedal
by the vehicle driver. The CC ON Boolean input is set when
the driver wants to engage the cruise control. The KEY ON
input represents the presence of the key (Boolean value) and
finally the CRUISE SPEED value is an unsigned integer input
set by the user representing the desired cruise speed. The
outputs of the controller are the ENABLE Boolean value that
is true whenever the cruise controller is actively controlling
the vehicles speed and the SPEED unsigned integer value
representing the reference speed passed to the cascade speed
controller that acts directly on the engine throttle based on the
reference and current speed values. In Fig. 6 the internal modal
logic of the controller is represented as an extended finite state
machine (Simulink Stateflow machine).
The controller is initially in an OFF state and passing thru an
IDLE state can go on a controller active mode (CC MODE)
or disengaged mode (CC MODE DISABLED) in which it
returns the direct control to the driver. This happens whenever

Fig. 6. Controller Extended Finite State Machine

Fig. 7. Automatic Generation of Test Objectives Results

she/he interacts with the car pressing the acceleration or brake
pedal. The FormalSpecs Verifier Automatic Test Generation
(FSV-ATG) tool is executed to perform the efficient generation
of test cases. As a first step the input model is elaborated
and automatically enriched with a set of test objectives to
enable the subsequent test generation procedure for covering
the state machine to obtain MC/DC coverage. The summary of
the generation process for the cruise control example is shown
in Fig. 7: a total number of 191 test objectives have been added
to the formal model to enable the ATG step. The ATG activity
is executed and as results generates a set of efficient test case.
For the cruise control example the ATG generated 31 test cases
given a bound of 100 maximum test cases and a depth bound
of 30 steps. To validate the obtained results we simulated the
generated test cases on the SUT evaluating the coverage value
using the Simulink Verifcation and Validation (V&V) toolbox
which provides an independent measure of effectiveness for
our approach. The obtained independent measured coverage
has been of 100% for decision, condition coverage and MC/DC
coverage.

C. Additional experiments

In order to quantitatively compare the proposed algorithm
and implementation with respect to state-of-the art tool we



Fig. 8. Comparison of MCDC Coverage Results

compared the test suites generated using the Formal Specs Ver-
ifier ATG tool with the Simulink Design Verifier tool (SLDV) 2

that represents an industrial strength tool for the generation of
test suites from MATLAB Simulink/Stateflow systems. A set
of verification cases has been set up containing blocks ranging
over a rich subset of Simulink/Stateflow Libraries. The results
for the comparison of the MCDC coverage of the produced
suites are presented in Fig. 8. The coverage values are obtained
using the MATLAB VnV toolbox3. The analysis of the results
shows that in some cases the SLDV tool is capable of achieving
higher coverage with respect to FSV-ATG whereas in other
cases the opposite is true. Cases where the MC/DC coverage
percentage is 0% for FSV-ATG indicate that our algorithm was
not able to generate any test cases. The analysis of the “losing”
cases for the FSV-ATG tool showed that the low coverage is
due to an inefficient translation of the Simulink/Stateflow block
that does not allow efficient application of our ATG algorithm,
as highlighted in Sec. VII-A. As an example, in some cases
the FSV-ATG tool produces a structure of comparison/logical
blocks that is inefficient for generating a high number of
test objectives. The optimization of the translation step for
achieving efficient coupling with the test generation engine is
one of the activities we have planned as the next development
steps of our tool.

VIII. CONCLUSION

Our model-based test generation algorithm produces a test
suite starting from a model of the system under test (SUT)
that is enriched with a set of test objectives to be satisfied
by the test cases derived from a given coverage metric. The
produced suite covers the model test objectives in an efficient
way such that 1) there are no two test cases satisfying the
same set of test objectives and 2) each test case covers
the maximum number of test objectives for a given length.
Our algorithm relies on the combination of bounded model
checking with an optimization-based formulation of the test
generation problem. The algorithm is implemented using an
incremental execution approach that mitigates the complexity
of the problem allowing successful application to complex

2https://www.mathworks.com/simulinkdv
3http://www.mathworks.com/products/simverification/

industrial use cases. Several ways of algorithm-improvement
are possible, though. From a technical standpoint the algorithm
could be improved by employing parallelism at test generation
level and not only at the formal back-end level. In addition,
the last advancements in pseudo-Boolean SAT solving can
be taken into account to explore additional formal back-ends.
From a methodological standpoint the use of contract-based
design ([14], [15]) could allow for exploiting a compositional
approach at test generation level. From a methodological
standpoint the use of contract-based design could allow for
exploiting a compositional approach at test generation level.
Finally, the use of formal proofs on the model can be used to
ease the process of test generation.

REFERENCES

[1] O. Ferrante, A. Ferrari, and M. Marazza, “Model based generation of
high coverage test suites for embedded systems,” in European Test
Symposium, 2014.

[2] M. Harman and P. McMinn, “A theoretical and empirical study of
search-based testing: Local, global, and hybrid search,” Software Engi-
neering, IEEE Transactions on, vol. 36, no. 2, pp. 226–247, 2010.

[3] S. Rayadurgam and M. P. E. Heimdahl, “Generating mc/dc adequate
test sequences through model checking.” in SEW. IEEE Computer
Society, 2003, p. 91.

[4] O. Ferrante, L. Benvenuti, L. Mangeruca, C. Sofronis, and A. Ferrari,
“Parallel nusmv: A nusmv extension for the verification of complex
embedded systems,” in Computer Safety, Reliability, and Security, ser.
Lecture Notes in Computer Science, F. Ortmeier and P. Daniel, Eds.
Springer Berlin Heidelberg, 2012, vol. 7613, pp. 409–416.

[5] A. Gargantini and C. Heitmeyer, “Using model checking to generate
tests from requirements specifications,” in Proceedings of the 7th
European Software Engineering Conference Held Jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE-7. London, UK, UK: Springer-Verlag,
1999, pp. 146–162.

[6] M. Kadono, T. Tsuchiya, and T. Kikuno, “Using the nusmv model
checker for test generation from statecharts,” in Dependable Computing,
2009. PRDC ’09. 15th IEEE Pacific Rim International Symposium on,
2009, pp. 37–42.

[7] G. Di Guglielmo, F. Fummi, G. Pravadelli, S. Soffia, and M. Roveri,
“Semi-formal functional verification by efsm traversing via nusmv,” in
High Level Design Validation and Test Workshop (HLDVT), 2010 IEEE
International, 2010, pp. 58–65.

[8] G. Hamon, L. deMoura, and J. Rushby, “Generating efficient test sets
with a model checker,” in 2nd International Conference on Software
Engineering and Formal Methods. Beijing, China: IEEE Computer
Society, Sep. 2004, pp. 261–270.

[9] http://www.mathworks.com/products/simulink/.
[10] J. Chilenski and S. Miller, “Applicability of modified condition/decision

coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193–200, 1994.

[11] M. Marazza, O. Ferrante, and A. Ferrari, “Automatic generation of
failure scenarios for SoC,” ERTS, 2014, February 5th.

[12] A. Ferrari, L. Mangeruca, O. Ferrante, and A. Mignogna, “DesyreML: a
sysml profile for heterogeneous embedded systems,” ERTS, Embedded
Real Time Software and Systems, 2012.

[13] W. Aldrich, “Coverage analysis for model based design tools,” Proc. of
the 18th International Conference and Exposition on Testing, 2001.

[14] L. Mangeruca, O. Ferrante, and A. Ferrari, “Formalization and com-
pleteness of evolving requirements using contracts,” in Industrial Em-
bedded Systems (SIES), 2013 8th IEEE International Symposium on,
2013, pp. 120–129.

[15] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B.
Raclet, P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm,
T. Henzinger, and K. G. Larsen, “Contracts for System Design,”
INRIA, Rapport de recherche RR-8147, Nov. 2012. [Online]. Available:
http://hal.inria.fr/hal-00757488


