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The Value of Mediated CommunicationI

Andrés Salamanca Lugo1

Toulouse School of Economics

Abstract

Kamenica and Gentzkow [Bayesian persuasion. (2001). A.E.R., 101, p. 2590-2615] consider
a model in which a sender chooses a public communication device for signaling his infor-
mation to an uninformed receiver, who then takes an action that affects the welfare of both
individuals. In their model, the sender is fully committed to truthfully communicate the signal
to the receiver, so that they abstract from incentive compatibility issues. By considering me-
diated communication, we provide an analytical framework overcoming this overly restrictive
assumption. Specifically, we are able to characterize incentive constraints by a set of linear in-
equalities, which allows us to formulate the sender’s problem as a linear programming problem.
As a result, we can use an alternative geometric approach based on Duality Theory to transform
the sender’s problem into a simplified problem without incentive constraints that can be solved
using concavification arguments.

Keywords: Bayesian persuasion, mediated communication, incentive compatibility, virtual
utility.

JEL Classification: D82, D83.

1. Introduction

This paper provides an analytical framework for studying Bayesian persuasion problems in
which the sender cannot commit himself to truthfully communicate his information to the re-
ceiver, so that incentive compatibility becomes one of the major issues for communication to
be meaningful. By allowing the two players to communicate with a neutral third party, we
are able to solve two analytical problems that could possibly prevent a tractable analysis of
incentive compatibility: first, truthful revelation of information when communication is direct
may considerably limit the ability of the sender to credibly signal his information by himself.
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In particular, Forges (1985) and Farrell (1993) propose some examples in which no substan-
tive communication can occur between the players. However, it is well known that the set of
implementable outcomes may be strictly larger when players use mediated rather than direct
communication (see for instance, Forges (1985, 1990)). Second, revelation of influential infor-
mation with direct communication requires the sender to be indifferent between all signals he
sends with positive probability. This is a strong form of incentive compatibility that reflects the
fact that the sender sends a random signal by himself. In contrast, when the players use a media-
tor to perform the randomization of the signals on behalf of the sender, incentive compatibility
will only demand each type of the sender to prefer the expected allocation designated for him.

In a recent pioneering work, Kamenica and Gentzkow (2011) offer a general approach to
Bayesian persuasion under full commitment on the part of the sender. They consider a sender-
receiver game in which before learning his type (ex-ante stage), the sender publicly chooses a
signaling strategy, i.e., a conditional distribution of signals for each of his types, that he will
use for transmitting his information to an uninformed receiver2. The sender produces a sig-
nal according to his true type and the corresponding distribution of signals. He cannot distort
the signal realization, nor can he misrepresent his information (full commitment assumption).
The receiver observes the signal realization and then takes an action that affects the welfare
of both individuals. Drawing on a geometric approach developed by Aumann and Maschler
(1995), Kamenica and Gentzkow characterize the sender’s optimal value of persuasion. They
first construct a non-revealing payoff function over prior beliefs, â(·), describing the (ex-ante)
expected equilibrium payoffs the sender can achieve in the absence of communication. Then,
they compute the concavification of â(·), denoted cav â(·), i.e., the smallest concave function
that is larger or equal to â(·). Their main result establishes that, for given prior beliefs p, the
sender’s optimal expected payoff (value of persuasion) is cav â(p).

Under full commitment, restricting attention to either direct or indirect communication systems
does not change the value of persuasion. Yet, in the absence of commitment, the communica-
tion system determines the strategic opportunities the sender has for manipulating his private
information, thus, it might have an impact on the sender’s payoffs. We consider the Bayesian
persuasion setup studied by Kamenica and Gentzkow (2011), but with limited commitment and
mediated communication. Under mediation, the sender reports a type to a neutral trustworthy
mediator who then recommends an action to the receiver. The sender’s report is not verifiable
either by the mediator or the receiver, which allows the sender to strategically manipulate his
private information. The mediator’s recommendation is not binding, that is, the receiver is free
to choose any action different from the recommended one. The mediator can only create value
by controlling the flow of information between both players. He introduces noise in the com-
munication, which may relax the incentive constraints faced by the sender. In our setting, a
very broad form of the revelation principle applies and, thus, without loss of generality, we
can restrict attention to mediation protocols in which the sender reports his type truthfully and
the receiver obeys the prescribed recommendation. A mediation protocol in which the sender

2Kamenica and Gentzkow (2011) refer to a signaling strategy simply as a signal. In order to distinguish the con-
ditional distribution from its realizations, they call the latter signal realization. This paper follows the terminology
developed in the literature of communication games.
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always reports the truth and the receiver always follows the recommendation is called a com-
munication equilibrium (see Myerson (1986) and Forges (1986)). The sender’s problem is thus
to select a communication equilibrium maximizing his ex-ante expected payoff.

The Lagrange multipliers associated to the truth-telling incentive constraints yield “shadow
prices”, γ, that can be used to define the sender’s virtual utility (see Myerson (1991, ch. 10)).
These virtual utility scales incorporate into the sender’s utility function the signaling costs as-
sociated with incentive compatibility3. Considering virtual utilities rather than real utilities, we
construct a fictitious persuasion problem in which there are no truth-telling incentive constraints.
For this game, the non-revealing payoff function, α̂(·; p, γ), depends on the prior probability p
and the signaling costs γ. Our main result (Theorem 1) says that the sender’s optimal expected
payoff at the prior belief p, denoted a∗(p), equals the value of persuasion in the fictitious game
with virtual scales defined by the optimal signaling costs, namely,

a∗(p) = min
γ

cav α̂(p ; p, γ).

Ex-post inefficiencies derived from the signaling costs are geometrically expressed in the form
of non convexities in the subgraph (or hypograph) of a∗. That is, the optimal value of persuasion
may not be a concave function of the prior beliefs, as it is in the full commitment model. In
fact, it may contain convex segments lying strictly below cav â(·). Moreover, it may also exhibit
discontinuities.

We characterize the optimal mediation protocol through a constrained splitting of the prior be-
lief into a distribution over posterior beliefs. Given the optimal signaling costs γ∗, the posterior
beliefs induced by any optimal mediation protocol correspond to the points on the domain of
α̂( · ; p, γ∗) for which the convex combination of their images yields a∗(p). The corresponding
distribution of posteriors is constrained by the Bayes plausibility (martingale property) together
with complementary slackness conditions from Duality Theory (see Proposition 1). Comple-
mentary slackness says that if a shadow price is positive, then the associated informational
incentive constraint must be binding.

We also provide an upper-bound on the number of messages that the sender requires to trans-
mit in order to attain the value of persuasion. Under full commitment, the greatest number of
messages the sender needs to convey does not exceed his number of types. However, when mis-
representation is problematic, the sender might need to transmit one extra message with every
binding incentive constraint. Hence the number of messages is bounded by the total number
of types plus the total number of incentive constraints (see Proposition 2). To understand the
idea behind this result, consider for instance a situation in which the sender could be a “good”
type or a “bad” type. Assume that he would prefer to be perceived as the good type, so that
the incentive constraint asserting that the bad type should not gain by imitating the good type
is binding. The good type of the sender would like to communicate his true type to the receiver
(which requires every type to send a different message). However, since the receiver will face
difficulties preventing the bad type from claiming to be the good type, the latter will need to find

3The approach is similar to the one used in Auction theory to define the virtual surplus that takes into account
the bidders’ information rents (see Myerson (1981)).
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a way to separate himself from the bad type. To do this, he may commit to recommend some
additional action that might be unpleasant for him but highly hurtful for the bad type.

We conclude the paper with some discussions about the cheap-talk implementation of the op-
timal mediation protocols and the extension of our approach to general information design
problems.

Related literature. Our analytical framework is the same as in Kamenica and Gentzkow (2011),
except that we consider a more general interaction situation in which communication is media-
ted and the sender may strategically manipulate his private information. In that respect, our pa-
per relates to the recent literature on information design known as Bayesian persuasion. To our
best knowledge, this literature so far has been rather unsuccessful in developing a tractable ap-
proach for an explicit analysis of the sender’s informational incentive compatibility. It is worth
mentioning that Kolotilin, Li, Mylovanov and Zapechelnyuk (2016) study Bayesian persuasion
with a privately informed receiver. In their framework, the sender designs a communication
device that gathers information from the receiver and then sends a recommendation to the re-
ceiver conditional on her report and the sender’s true type. In addition to the strategic incentive
constraints ensuring that the receiver will follow the recommendation, the sender is also led to
consider informational incentive constraints guaranteeing that the receiver finds it optimal to
report truthfully her information. In their setup, the communication device is a mediation rule
unable to verify the receiver’s private information, but capable of identifying the sender’s type.

This paper also relates to the literature on contracting with limited commitment. This literature
considers a principal-agent setup in which the principal (receiver) is imperfectly informed about
the agent’s (sender’s) type. The principal cannot contractually commit herself to chose any ac-
tion, however, she may extract information from the agent by using a communication system.
Bester and Strausz (2001) study direct communication in which the agent simply sends a sin-
gle message to the principal. In contrast, Bester and Strausz (2007) allow the principal to use
general communication devices which may enlarge the set of implementable contracts. Con-
trary to Bayesian persuasion, here the communication device (mechanism) is designed by the
uninformed party, i.e., the principal. However, because the agent cannot commit to truthfully
transmit his information, informational incentive compatibility is a relevant matter.

Mitusch and Strausz (2005) and, Golstman, Hörner, Pavlov and Squintani (2009) compare diffe-
rent communication protocols in the framework of Crawford and Sobel (1982). In this regard,
our paper is also connected with this literature. They study the conditions under which media-
tion improves upon direct communication. As with contracting problems with adverse selection
and limited commitment, it is also assumed that the communication procedures are designed to
maximize the ex-ante welfare of the receiver. However, due to the particular structure of pay-
offs, it turns out that this is also equivalent to maximize the ex-ante welfare of the sender.

Finally, it is worth mentioning that our model is mathematically analogous to a problem of
mechanism design by an informed principal (as in Myerson (1983)) in which contracting takes
place at the ex-ante stage4. Indeed, by using the concept of virtual utility, we borrow some

4Myerson (1983) considers contracting at the interim stage, whereby the principal chooses the mechanism after
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analytical tools that were developed by Myerson (1983) in order to characterize his neutral
optimum.

This paper is organized as follows. In the next section we present a motivating example. Section
3 is devoted to formally describing the basic interaction scenario. The concept of communica-
tion equilibrium is also defined. Section 4 introduces the mediated persuasion problem and
the virtual utility approach. The main results are presented. It also contains some examples
illustrating our findings. Finally, Section 5 presents some concluding discussions.

2. Motivating Example

In this section we study an example which motivates several aspects of our analytical frame-
work. First, it illustrates how, in the absence of commitment, the necessity of players to trust
each other may lead to inefficiencies derived from the signaling costs associated with incentive
compatibility. Second, the example shows that mediated communication may help the sender
to reach equilibrium outcomes that cannot be achieved under direct communication. Finally,
the example provides an instance in which, by allowing for more signaling opportunities, me-
diated communication compels the sender to disclose more information than when he is fully
committed.

Consider the following sender-receiver game. Player 1 (the sender) has a privately known type
that may be H with probability p = 1/10 or L with probability 1 − p = 9/10, and player 2 (the
receiver) must choose an action from the set J = { j1, j2, j3}. Payoffs for both players depend on
the sender’s type and the receiver’s action as follows:

j1 j2 j3

H 1,3 3,1 -5,-3
L -1,-3 2,-1 0,0

We can set this example in an economic situation described as follows. The informed player is a
financial analyst knowing whether the general state of the financial markets is more favorable for
investments in portfolios j1 and j2 (type H) rather than in j3 (type L). The uninformed player is
an investor who must select among these three different portfolios offered by the analyst5. Thus,
each portfolio generates an expected return for the investor that depends on the state. On the
other hand, the analyst’s preferences are explained by fact that he gets profits with investments
in the portfolio j2 but he wants also to give good advice to the investor.

The expected payoff of the receiver, as a function of her belief q ∈ [ 0, 1 ] about the type H, is
depicted in Figure 1. Thick lines denote her best-reply payoff (optimal actions appear above the
corresponding best-reply payoff). At q = 1/5 (resp. q = 1/2) any randomization between j3

and j2 (resp. j2 and j1) is a best reply for the receiver.

Given the receiver’s best-replies, the sender’s (ex-ante) expected payoffs, as a function of the
belief q ∈ [ 0, 1 ], are represented in Figure 2. In particular, according to the prior belief p =

she has received her private information. This is a more involved problem, as the choice of the mechanism may
signal information about the principal’s type.

5To keep the example as simple as possible, we suppose that the investor has no outside option.

5



1
5

1
2

j3 j2

j1

1

−3

−1

0

1

3

q

Figure 1: Receiver’s expected payoffs (thin lines) and best-reply expected payoffs (thick lines)

1/10, in the absence of communication, the receiver will choose action j3. Thus, leaving the
sender with an expected payoff equal to −1/2(= −5 × p + 0 × (1 − p)).
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Figure 2: Non-revealing payoffs and optimal split under full commitment

Assume now that, in order to persuade the receiver to change her action, the sender publicly
commits to disclose his information according to a signaling strategy (i.e., a conditional distri-
bution of signals for each of his types). This commitment assumption means that the sender
cannot distort the signal realization, nor can he misrepresent his private information. The prob-
lem for the sender is then to induce posterior beliefs leading the receiver to choose actions
maximizing his expected payoff. Without loss of generality, the sender may choose to send
“recommendations” in J. Then, the unique optimal signaling strategy can be described as fol-
lows:

�

�

�

π : H

j2

j3

1

0

�

�

�

L

j2

j3

4/9

5/9

According to π, the sender recommends j2 with probability 1 when he is type H and randomizes
between j2 and j3 with probabilities 4/9 and 5/9 respectively, when he is type L. After receiving
the recommendation to play j2 (resp. j3), the receiver forms a posterior belief p2 =

1
5 (resp.

p3 = 0). Since j2 (resp. j3) is optimal for the receiver at p2 (resp. p3), she will follow
the recommendation. Both actions are recommended with an expected probability equal to
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1/2(= 1×p+4/9×(1−p)), and thus the sender’s expected payoff is 11/10(= 1/2×0+1/2×11/5).
Figure 2 illustrates this situation.

Let us now consider the situation in which commitment cannot be (legally) enforced, for ins-
tance because the sender’s private information is not verifiable by any authority. The question
is then: why would the sender like to maintain his commitment? Knowing that the receiver
will follow the recommendation, type L of the sender will send message j2 with probability 1.
But then a message that is sent with probability 1 by both types will convey no information
to the receiver. Therefore, in anticipation of this behavior, the receiver will rationally choose
her optimal action at p = 1/2. As a consequence, the information transmitted by the sender is
not credible and thus π has no persuasive effect. In the absence of commitment, the signaling
strategy must be part of a Nash equilibrium of the underlying cheap-talk game. Thus, truthful
revelation of information requires the sender to be indifferent between the distinct outcomes
that his messages lead the receiver to choose. This is a strong form of incentive compatibility
that may considerably limit the ability of the sender for credibly signaling his information. In
this game, the most the sender can get in the absence of commitment is 1/6. To achieve this
payoff, he can use the signaling strategy6

�

	




π̃ : H

j2

j3

1

0

�

�



L

j2

j3

1/9

8/9

After receiving the recommendation to play j2 and j3, the receiver forms posterior beliefs p2 =

1/2 and p3 = 0, respectively. At p3 action j3 is her unique best-reply, so she follows the
recommendation. At p2 action j2 is optimal for the receiver, yet following this recommendation
(with probability 1) will lead type L of the sender to recommend j2 with probability 1, thus
making communication not credible. Instead, the receiver may randomizes between actions j1

and j2 with probabilities 2/3 and 1/3, respectively, which is also optimal for her at p2. In this
way, the receiver makes type L indifferent between the recommendations j1 and j2 and, thereby
communicating his information according to π̃ remains optimal for the sender.

Assume now that, instead of communicating his information directly to the receiver, the sender
sends a confidential report about his type to an impartial mediator commissioned to produce a
recommendation for the receiver. Because information is nonverifiable, even with the help of
a mediator, the sender may strategically manipulate his information. For instance, consider a
mediator that recommends actions according to π. This mediation rule is not incentive com-
patible for the sender. Indeed, type L would have incentives to report that he is type H. As a
consequence, the sender cannot get 11/10, yet he can do better than 1/6. Consider a mediator
that recommends actions as follows:

6The signaling strategy π̃ is part of the unique cheap-talk equilibrium of this game that maximizes the sender’s
(ex-ante) expected payoff.
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δ : H

j3

j2

j110/19

9/19

0

�

�

�

�L

j3

j2

j10

4/19

15/19

According to this mediation protocol, the receiver will infer posterior beliefs p1 = 1, p2 = 1/5
and p3 = 0, where as before p j denotes the probability of type H conditional on the recommen-
dation to play j. For any j ∈ J, action j is a best-reply at p j, then following the recommendation
is optimal for the receiver. On the other hand, given that the receiver is obedient, no type of the
sender has incentives to misrepresent his information. Indeed, by reporting to the mediator that
he is type H, type L gets an expected payoff equal to 8/19(= −1 × 10/19 + 2 × 9/19 + 0 × 0),
while by telling the truth he gets 8/19(= −1 × 0 + 2 × 4/19 + 0 × 15/19). That is, type L is
indifferent, and thus he has no incentives to lie. A similar analysis reveals that type H has no
incentives to misrepresent his information either.

The mediation protocol δ gives the sender an (ex-ante) expected payoff equal to 109/190(≈
0.57 > 1/6). No other mediation rule can guarantee a higher expected payoff to the sender. In
this particular game, mediation facilitates incentive compatibility, thus allowing the sender to
achieve an outcome that cannot be attained under direct communication. Mediation alleviates
the conflict between the incentives of both players. However, its potential benefits are reduced
by the degree of such a conflict. In particular, the sender’s expected payoff in the absence of
commitment is larger under mediation than under direct communication, but lower than what
he gets under full commitment.

Finally, notice that δ requires the sender to transmit 3 (> 2) different messages with positive
probability. That is, the sender communicates more information than just his true type (which
has two possible values). Unlike the full commitment case, in which the number of messages
need not exceed the number of types, when misrepresentation is problematic, the sender might
need to disclose more information. The idea is that the sender requires to signal as much
information as when he is fully committed (i.e., he needs to induce posterior beliefs p3 = 0,
p2 =

1
5 ), but also he needs to make such revelation credible to the receiver. Because type L has

incentives to imitate type H, the latter type will need to find a way to separate himself from type
L. To do this, type H can commit himself to recommend action j1 (with probability 10/19),
something that is unpleasant for type L. In this manner, the receiver can discriminate between
both sender’s types, so that whenever j1 is recommended, she deduces that this message can
only come from type H, i.e., p1 = 1, and thus, she follows the recommendation.

3. Basic Game

Our basic framework is a two-person finite Bayesian game in which player 1 has no decision
to make, but is the only player to have private (nonverifiable) information. Let K be the (finite)
set of types of player 1. A type k ∈ K is chosen according to7 p ∈ ∆(K), and only player 1
is informed about k. We assume that pk > 0 for every k ∈ K. Player 2 chooses an action in a

7For any finite set A, |A| denotes its cardinality and ∆(A) denotes the set of probability distributions over A.

8



(finite) set J. When action j is chosen by player 2 and player 1 is of type k, then player 1 and
player 2 get respective payoffs ak

j and bk
j. We refer to this basic game as Γ(p).

A (mediated) communication device δ is a mapping δ : K → ∆(J), namely a vector of proba-
bility distributions (δk)k∈K over J for every k ∈ K. By adding a communication device δ to the
game Γ(p), one generates an extended game Γδ(p), which is played as follows:

1. A type k ∈ K is randomly chosen according to p.
2. Player 1 learns his type k ∈ K.
3. Player 1 sends a confidential report k′ ∈ K to a mediator.
4. The mediator chooses an action j ∈ J with probability δk′

j .
5. The mediator recommends the action j to player 2.
6. Player 2 chooses an action and both players receive payoffs as in Γ(p).

For obvious reasons, we refer to player 1 in Γδ(p) as the sender, and player 2 as the receiver. In
this game, a strategy for the sender is a transition probability τ : K → ∆(K) where τ(k′ | k) is
the probability to report k′ if his type is k. A strategy τ is called sincere if τ(k | k) = 1 for every
k ∈ K, namely, if the sender always reveals honestly his type to the mediator. A strategy for
the receiver in Γδ(p) is a transition probability ς : J → ∆(J) where ς(i | j) is the probability to
choose i when j is recommended by the mediator. A strategy ς is called obedient if ς( j | j) = 1
for every j ∈ J, i.e., if the receiver always follows the recommendation made by the mediator.
When both players are sincere and obedient, respectively, in Γδ(p), the (ex-ante) expected payoff
of the sender is

a(δ; p) B
∑

k∈K

pk
∑

j∈J

δk
ja

k
j. (3.1)

The communication device δ is incentive-compatible for the sender if and only if the sincere
strategy is a best response for the sender in Γδ(p) whenever the receiver is obedient, that is,

∑

j∈J

δk
ja

k
j ≥
∑

j∈J

δk′
j ak

j, ∀ k, k′ ∈ K. (3.2)

The informational incentive constraints in (3.2) reflect the fact that neither the receiver nor the
mediator can verify the sender’s private information (adverse selection problem).

Suppose action j is recommended to the receiver according to the communication device δ,
provided that the sender is sincere in Γδ(p). Then, the receiver computes posterior probabilities
p j(δ) =

(

pk
j(δ)
)

k∈K
given by

pk
j(δ) =

δk
j p

k

∑

k′∈K δ
k′
j pk′
. (3.3)

The communication device δ is incentive-compatible for the receiver if and only if the obedient
strategy is a best response for the receiver in Γδ(p) whenever the sender is sincere, namely,

∑

k∈K

pk
j(δ)b

k
j ≥
∑

k∈K

pk
j(δ)b

k
i , ∀ i, j ∈ J. (3.4)

The strategic incentive constraints in (3.4) characterize the receiver’s inalienable right to control
her action in J (moral hazard problem). By definition of the posterior probabilities in (3.3), both
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sides of (3.4) are divided by the total probability of receiving the recommendation to play j.
Then, the strategic incentive constraints can be equivalently written as

∑

k∈K

δk
j p

kbk
j ≥
∑

k∈K

δk
j p

kbk
i , ∀ i, j ∈ J. (3.5)

We define Y(q) as the set of receiver’s optimal actions at belief q ∈ ∆(K), i.e.,

Y(q) =
{

y ∈ ∆(J)
∣

∣

∣

∣

∣

∑

k∈K

qk
∑

j ∈J

y j bk
j = max

j ∈J

∑

k∈K

qkbk
j

}

.

Let π j(δ) B
∑

k∈K pkδk
j be the probability of sending the recommendation j when δ is imple-

mented. Then, δ is incentive compatible for the receiver if and only if for each j ∈ J, π j(δ) > 0
implies that j is optimal for the receiver given the posterior probabilities p j(δ), i.e., j ∈ Y(p j(δ)).

Definition 1 (Communication equilibrium).
A communication device δ is a communication equilibrium of Γ(p) if and only if the sincere and
obedient strategies form a Nash equilibrium of Γδ(p), that is, δ satisfies the incentive constraints
in (3.2) and (3.5). We letD∗(p) denote the set of communication equilibria of Γ(p).

R 1. Communication equilibria are defined by a set of linear inequalities, hence the set
D∗(p) is a convex polyhedron. Furthermore, this set is closed, bounded and non-empty.

A communication equilibrium δ is fully revealing (FR) if it recommends different actions for
every type of the sender, so that the receiver can infer the true state by looking at the prescribed
recommendation. It is non-revealing (NR) if δk = δk′ for every k, k′ ∈ K, so that no useful
information is revealed to the receiver. It is partially revealing (PR) if it is neither NR nor FR.

Thanks to a very general form of the revelation principle for Bayesian games (see Forges (1985,
1986)), there is no loss of generality in restricting attention to communication equilibria, in the
following sense: assume that the game Γ(p) is extended by allowing the players to communi-
cate for a possibly infinite number of stages through a general communication device, sending
signals to every player at every stage but also receiving messages from them. Such devices may
involve preplay communication, before player 1 learns his type, but also interplay communica-
tion, after player 1 has learnt his type but before player 2 chooses his action. The set of all Nash
equilibrium payoffs of all extensions of Γ(p) by general communication devices coincides with
the set of all communication equilibrium payoffs.

4. Mediated Persuasion

In the basic game Γ(p), player 1 has the option to remain silent and let player 2 to choose
an action given her prior belief p. He can also design a communication system to signal his
private information, and try to persuade player 2 to change her action. We assume that player 1
publicly chooses a mediated communication device δ (i.e., a mediator) before learning his type.
Then both players interact as in Γδ(p). Because the selection of the communication device is
done at the ex-ante stage, this choice is by itself uninformative. The problem of player 1 is
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then to choose a communication equilibrium maximizing his ex-ante payoff, namely, to select a
communication device solving

max
δ∈D∗(p )

a(δ; p). (4.1)

We shall refer to this optimization problem as the primal problem for p.

R 2. The optimization problem in (4.1) is a linear programming problem: the objective
function is linear in δ (see (3.1)) and the feasible set is defined by a system of linear inequalities
in δ (see Remark 1).

Definition 2 (Value of persuasion).
The optimal value of the primal problem for p will be called the value of persuasion at p and is
denoted a∗(p).

R 3. Viewed as a correspondence defined on ∆(K), the set of communication equilibria
is upper-hemicontinuous. Then, a∗ is an upper-semicontinuous function. It may however fail to
be continuous.

4.1. Mediated Persuasion Under Verifiable Information
Before proceeding with the analysis of the primal problem, let us consider the more simplified
persuasion game in which the type of the sender is verifiable by the mediator but not by the
receiver. In such a situation, the informational incentive constraints are not relevant, so that our
framework reduces to Kamenica and Gentzkow’s (2011).

Definition 3.
For a given prior p, we denote asD(p) the set of communication devices satisfying the strategic
incentive constraints in (4.5).

Under verifiable information, the problem for the sender can thus be expressed as

max
δ∈D(p )

a(δ; p). (4.2)

In this case, the sender has nothing to communicate to the mediator. The only thing he has to do
is to choose a communication device that will recommend an action to the receiver depending on
his true type. The verifiability assumption is thus equivalent to the full commitment assumption.

Given any prior belief q, the maximal ex-ante utility that the sender can expect in the absence
of communication is

â(q) B max
y∈Y(q)

∑

k∈K

qk
∑

j∈J

y jak
j.

We refer to the function â as the non-revealing payoff function. Let cav â be the concavification
of â, i.e., the smallest concave function that is larger or equal to â. As observed by Aumann and
Maschler (1995) and Kamenica and Gentzkow (2011), the optimal value of the relaxed primal
problem (4.2) is cav â(p). Also there exists a subset I ⊆ J of actions with |I| ≤ |K| and posterior
probabilities {pi}i∈I with pi ∈ ∆(K) for every i ∈ I, such that there exists a unique probability
vector ρ ∈ ∆(I) satisfying

∑

i∈I

ρi pi = p (4.3a)
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and
∑

i∈I

ρiâ(pi) = cav â(p). (4.3b)

Then, it is possible to “split” the total prior probability p into a set of conditional distributions
{pi}i∈I, such that (i ), for every i ∈ I, the posterior probabilities that the receiver computes
after receiving the recommendation to play i are pi ∈ ∆(K) ; and (ii ) the sender guarantees an
expected payoff equal to cav â(p). Condition (4.3a) is called Bayes plausibility, while condition
(4.3b) is an optimality requirement. Since the distribution ρ is unique, the receiver will update
her prior beliefs from p to pi with probability ρi.

Notice that in the previous result the number of signals required for achieving the optimal value
of (4.2) is bounded by the number of types of the sender8. Namely, the most the sender needs
to transmit to the receiver is just k, which has |K| possible values.

Given the set {pi}i∈I and the corresponding distribution of posteriors ρ, an optimal communica-
tion device can be computed from the following formula:

δk
j =















pk
jρ j

pk , if j ∈ I
0, otherwise

, ∀k ∈ K. (4.4)

Finally, we observe that for any p ∈ ∆(K), we have that

â(p) ≤ a∗(p) ≤ cav â(p). (4.5)

The first inequality follows from the fact that â(p) can always be achieved by a NR communi-
cation equilibrium. The second inequality is due to the fact thatD∗(p) ⊆ D(p).

We start the analysis of the primal problem in Section 4.2 by dealing only with its optimal value.
Then, in Section 4.3 we shall characterize its optimal solutions.

4.2. The Virtual Persuasion Game
As we have seen, when there are no informational incentive constraints, the solution to the
primal problem can be easily characterized. Informational incentive constraints complicate
matters by interconnecting the signals in different states. However, we can integrate the welfare
effects of incentive compatibility into the objective function using duality theory. The idea
is that the set of communication equilibria is defined by a system of linear inequalities (see
Remark 1) for which the dual variables can be used to define the sender’s virtual utility. These
virtual utility scales incorporate into the utility function the signalling costs associated with
the incentive compatibility. Using the concept of virtual utility we can transform the original
primal problem into a simplified problem without informational incentive constraints but with
a different objective function.

Let γ(k′ | k) ≥ 0 be the dual variable (or Lagrange multiplier) for the constraint that type k
of the sender should not gain by reporting k′ in the primal problem for p. Following Myerson

8This result follows from Carathéodory’s theorem.
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(1991, sec. 10.5), we define the virtual utility of the sender from the action j, when his type is
k, w.r.t. the prior p and the duals γ to be

αk
j(p, γ) =

1
pk





























pk +
∑

k′∈K

γ(k′ | k)















ak
j −
∑

k′∈K

γ(k | k′)ak′
j















. (4.6)

In order to understand formula (4.6), we disentangle its components. The terms of the form
γ(k′ | k) measures the information rent that type k can extract by pretending to be type k′. On
the other hand, the terms of the form γ(k | k′) measure the signaling cost that type k must incur in
order to reduce the misrepresentation of type k′. Virtual utility is thus defined as the actual utility
plus the total information rents minus the total signaling costs. Notice that multiplying type k’s
utility ak

j by the positive constant 1
pk

(

pk +
∑

k′∈K γ(k′ | k)
)

is decision-theoretically inessential.
That is, the unique decision-theoretic difference between the real utility scale and the virtual
utility scale is given by the signaling costs. Hence, the virtual utility of the sender is a distorted
utility that magnifies the difference between his actual utility and the utility of the types that
would be tempted to imitate him.

In a situation where information is not verifiable, so that misrepresentation is possible, some
types of the sender may get some information rents from having private information. Also, some
types may be compelled to incur in signaling costs in an effort to distinguish themselves from
the types that try to mimic them. This new compromise in the payoffmaximization goals of the
different types of the sender is described by the virtual utility and mathematically measured by
the dual variables.

Let us assume that, as a consequence of the pressure that a type might feel in getting the receiver
to trust him, the sender begins to act as if he were maximizing his virtual utility (Myerson (1991,
sec. 10.8) refers to this idea as the virtual utility hypothesis). Thus, for some fixed prior beliefs
p and signaling costs γ, consider the (p, γ)-virtual persuasion problem, a fictitious game that
differs from the original persuasion game in the following. First, the sender’s types are verifiable
by the mediator (but not by the receiver), so that there are no informational incentive constraints.
Second, the sender’s payoffs are in the virtual utility scales (αk

j(p, γ)) j∈J, k∈K instead of (ak
j) j∈J, k∈K .

Let α̂( · ; p, γ) denote the non-revealing (virtual) payoff function of the (p, γ)-virtual persuasion
problem. As already observed in Section 4.1, the value of persuasion in the (p, γ)-virtual game
is given by cav α̂(p ; p, γ).

Although the (p, γ)-virtual game gives us some insights on how to simplify the sender’s problem
by removing the informational incentive constraints, it does not say anything about the “dual”
relationship between the optimal value of the primal problem for p, a∗(p), and the value of
persuasion in the virtual game. Furthermore, it leaves open the question of determining the
optimal signaling costs incurred by the sender in order to distinguish himself from the types
that are tempted to imitate him. However, there exists an answer to the first question that will
make the second question redundant. The following result is a consequence of strong duality.

Theorem 1.
For any prior p ∈ ∆(K) we have that

a∗(p) = min
γ≥0

cav α̂(p ; p, γ). (4.7)
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We refer to the minimization problem in (4.7) as the dual problem for p.9

Proof. The Lagrangian of the primal problem for p is

L(δ, p, γ) =
∑

k∈K

pk
∑

j∈J

δk
ja

k
j +
∑

k∈K

∑

k′∈K

γ(k′ | k)

















∑

j∈J

δk
ja

k
j −
∑

j∈J

δk′
j ak

j

















=
∑

k∈K

pkαk(δ; p, γ)

where γ ≥ 0 and δ ∈ D(p).

Then, the dual problem for p, associated to the primal problem for p, is given by

min
γ≥0

max
δ∈D(p)

L(δ, p, γ) = min
γ≥0

max
δ∈D(p )

∑

k∈K

pkαk(δ; p, γ)

= min
γ≥0

cav α̂(p; p, γ)

By strong duality, the value of the primal problem equals the value of its dual10. Thus a∗(p) =
minα≥0 cav α̂(p; p, γ).

Fix a prior p ∈ ∆(K) and let γ∗(p) be an optimal solution of the dual problem for p. Then, the
key implication of Theorem 1 is that the value of persuasion in the original game coincides with
the value of persuasion in the (p, γ∗(p))-virtual game, namely,

a∗(p) = cav α̂(p ; p, γ∗(p)).

Thus, instead of saying that incentive compatibility restricts the sender’s ability to signal his
information, we may say that he is compelled to modify his actual preferences from the real to
the virtual scales (p, γ∗(p)).

Definition 4 (Value of information).
The value of information for the sender at the prior p is the difference between the value of
persuasion at p and the non-revealing value at p, i.e., a∗(p) − â(p).

We say that the sender benefits from his private information at p if the value of information at
p is positive. Theorem 1 provides a necessary and sufficient condition for the sender to benefit
from his information.

Corollary 1.
The sender benefits from his information at p if and only if for all γ ≥ 0,

cav α̂(p; p, γ) > â(p).

9We notice that the right-hand side of (4.7) is not, strictly speaking, the dual problem associated to (4.1).
However, as shown in the proof of Theorem 1, its optimal value equals the optimal value of the dual.

10The following characterization also results from strong duality. Let α(δ; p, γ) be the ex-ante expected payoff
the sender gets in the (p, γ)-virtual game when he uses the communication device δ ∈ D(p). Let us define, for every
p ∈ ∆(K), the auxiliary zero-sum game G(p), in which the maximizing player chooses δ ∈ D(p), the minimizing
player chooses γ ≥ 0 and the payoff is α(δ; p, γ). Then the value of G(p) exists and equals a∗(p).
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The motivating example of Section 2 will help us to understand the meaning and significance
of the virtual utility. Also, it will provide some interesting conclusions about the effects of
informational incentive compatibility.

Example 1. Consider again the motivating example studied in Section 2. The non-revealing
value function â joint with its concavification cav â are depicted in Figure 3.

q1
5

1
2 1

5/2
11/5

1

−1

a

â

cav â

Figure 3: Function â and its concavification

We fix the prior probability of type H to be p < 1
5 and we denote p j the posterior belief about

type H that the receiver will infer after receiving the recommendation to choose action j. Under
full commitment, (which is equivalente to assume that information is verifiable by the mediator),
an optimal communication device must split the total probability p into the posteriors p3 = 0
and p2 =

1
5 with probabilities ρ3 = 1 − 5p and ρ2 = 5p, respectively (see Figure 3). The value

of persuasion under the verifiability assumption is

cav â(p) = 0ρ3 +
11
5 ρ2 = 11p

Thus, the unique optimal communication device is given by

δH
2 = 1, δL

2 = 1 − δL
3 =

4p
1−p

This communication device is, however, not incentive compatible for the sender. This is so
because type L would have incentives to report that he is type H. As a consequence, the sender
cannot achieve the expected payoff cav â(p) when information is not verifiable, yet he can do
better than â(p) as we will see in the sequel.

By solving the dual problem for p < 1
5 , we have that the optimal value of the dual variables

(Lagrange multipliers) is

γ∗(H | L) = 10p(1−p)
3−11p B γ

∗(p), γ∗(L | H) = 0

Because type L has incentives to lie, it is natural that γ∗(H | L) > 0. Since type H cannot
take any advantage from his private information (lying is not profitable), γ∗(L | H) = 0. The
(p, γ∗(p))-virtual utility game can thus be described by the following payoffs matrix:
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α, b j1 j2 j3

H 1 + γ
∗(p)
p , 3 3 − 2γ∗(p)

p , 1 −5,−3

L −
(

1 + γ
∗(p)

1−p

)

,−3 2
(

1 + γ
∗(p)

1−p

)

,−1 0, 0

We notice that type L’s virtual utility is just a positive multiple of his actual utility. Therefore,
both the virtual game and the actual persuasion problem are decision-theoretically equivalent
in state L. On the other hand, in state H, the sender’s virtual utility magnifies the difference
between his true type and the type that would be tempted to imitate him.

Figure 4 illustrates the non-revealing value function α̂ of the virtual game and its concavifica-
tion. According to Theorem 1, the optimal value of the primal problem for p < 1

5 is

a∗(p) = cav α(p; p, γ∗(p)) = p + γ∗(p) < 11p = cav â(p)

We observe that ex-post inefficiencies are incurred in an optimal solution of the primal problem.
The optimal value is, however, ex-post efficient in terms of the virtual utility scales. Thus, in-
stead of saying that incentive compatibility forces the sender to incur in (ex-post) inefficiencies,
we may say that incentive compatibility compels the sender to behave according to his virtual
utilities (Myerson (1991, ch. 10) refers to this idea as the virtual utility hypothesis).

q1
5

1
2 1

1 + γ
∗(p)
p

−1

0

a

α̂

cav α̂

Figure 4: Function α̂ and its concavification

A similar analysis for the case p > 1
2 shows that optimal value of the primal problem is

a∗(p) = cav α(p; p, γ∗∗(p)) = p + 6γ∗∗(p) < 4 − 3p = cav â(p)

where, γ∗∗(p) B γ∗∗(L | H) = 2p(p−1)
5p−1 and γ∗∗(H | L) = 0 are the optimal solutions of the dual

problem for p.

Whenever p ∈ [ 1/5, 1/2 ], the receiver’s optimal action is to choose j2, which is the preferred
action for both types of the sender. Thus, a∗(p) = â(p) = cav â(p). The value function a∗ looks
like in Figure 5.
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q1
5

1
2 1

a

5/2
11/5

1 a∗

cav â

Figure 5: Functions a∗ and cav â for Example 1

Example 2. As a further illustration of our methodology, we study the following game, pro-
posed by Forges (1990). It has been extensively analyzed in the literature of strategic informa-
tion transmission. Payoffs for both players depend on the sender’s type and the receiver’s action
as follows:

a, b j1 j2 j0 j3 j4

H 3,0 4,4 0,7 10,9 6,10
L 6,10 10,9 0,7 4,4 3,0

This example has a natural interpretation in terms of a job assignment scenario. An employer
must decide whether to hire a candidate and, if so, to assign the employee to one of four possible
jobs. The candidate may be one of two types. Type L performs better in job 1 but prefers job 2;
he is bad at job 3, and even worse at job 4. Type H is similar but with jobs reversed. Sender’s
prior probability of type H is p ∈ ( 0, 1 ).

By performing a similar analysis as in Example 1, it can be shown that the value of persuasion
in this game (depicted in Figure 6) is given by

a∗(p) =























6 + 14p + 28p(5p−1)
4−15p , if p < 1

5
44
5 , if 1

5 ≤ p ≤ 4
5

20 − 14p − 28(1−p)(5p−4)
15p−11 , if p > 4

5

In particular, we have that for any p < 1/5 (resp. p > 4/5) only type L (resp. H) has incentives
to lie, so that γ(H | L) > 0 (resp. γ(L | H) > 0).

q1
5

2
5

3
5

4
5 1

6

44
5

0

a

â

a∗

Figure 6: Functions a∗ and â for example 2
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The nature of this game is similar to that of Example 1, except that here there is an outside
option: not to hire the candidate, i.e., action j0.

4.3. Optimal Mediators
So far we have focused on the optimal value of the primal problem. Our aim now is to charac-
terize its optimal solutions. For that, let us start considering the case in which the optimal value
of the dual variables is zero at some prior p, so that incentive constraints are not essential. In
such a situation virtual utilities coincide with real utilities and the value of persuasion at p is
cav â(p). Then, according to (4.3b), the posterior beliefs {pi}i∈I induced by any optimal commu-
nication device correspond to the points on the domain of â for which the convex combination
of their images yields cav â(p). The corresponding distribution of posteriors ρ = (ρi)i∈I is the
(unique) solution of a well determined system of linear equations given by (4.3a). Hence, given
{pi}i∈I and ρ, an optimal communication device can be easily computed using formula (4.4).

Now consider the situation in which there are binding informational incentive constraints. On
one hand, according to the virtual utility hypothesis, the sender might distort his preferences
from the actual to the virtual scales, exaggerating the difference from the types that try to mimic
him. On the other hand, as we have shown in the motivating example (Example 1), the sender
may require to transmit more messages than his number of types. Then, the number of un-
knowns in (4.3a) (messages) increases while the number of equations (types) remains the same.
The system in (4.3a) may become underdetermined and therefore infinitely many distributions
of posteriors may be consistent with the same prior probability. Thus, additional conditions are
required to characterize any optimal communication device.

To understand this issue, let us return to Example 1. Let p < 1
5 and consider the (p, γ∗(p))-virtual

game. According to Figure 4 and condition (4.3b), the optimal value of the primal problem can
be achieved by splitting the total probability p in either of the following collection of posteriors:

(i ) p3 = 0, p2 =
1
5 , or

(ii ) p3 = 0, p1 = 1, or
(iii ) p3 = 0, p2 =

1
5 , p1 = 1.

In case (i ), Bayes plausibility implies that (ρ2, ρ3) = (5p, 1 − 5p) and thus formula (4.4) yields
δH

2 = 1 − δH
3 = 1 and δL

2 = 1 − δL
3 =

4p
1−p . But this communication device is not incentive

compatible for the sender. In case (ii ) we have that Bayes plausibility implies that (ρ1, ρ3) =
(p, 1 − p) and therefore formula (4.4) yields δH

1 = δ
L
3 = 1. This communication device is a

FR communication equilibrium giving an expected payoff to the sender equal to p which is
strictly lower than a∗(p). Finally, in case (iii ), Bayes plausibility does not uniquely identify a
distribution of posteriors. In particular, any probability vector (ρ1, ρ2, ρ3) satisfying ρ1+

ρ2
5 = p is

a feasible distribution of posteriors. An additional condition is thus required in order to identify
the correct distribution of posteriors.

Duality theory implies a relationship between the primal and dual problems that is known as
complementary slackness. Specifically, it says that if a dual variable is positive, then the asso-
ciated informational incentive constraint must be binding. Conversely, if a constraint fails to
bind, then the associated dual variable must be zero. Complementary slackness provides us the
additional equations we needed. Consider again Example 1 with p < 1

5 . As we have already
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shown, the optimal value of γ∗(H | L) is strictly positive. Then, according to the complementary
slackness, the constraint asserting that the type L should not gain by reporting H is binding, i.e.,

2δL
2 − δ

L
1 = 2δH

2 − δ
H
1

The previous equality joint with formula (4.4) yield the additional restriction

5ρ1(1 − p) = 2ρ2(1 − 5p)

This equality together with Bayes plausibility implies that the optimal distribution of posteriors
is

ρ1 =
2p(1−5p)

3−11p , ρ2 =
5p(1−p)
3−11p , and ρ3 = 1 − ρ1 − ρ2

Given these posteriors, formula (4.4) gives the optimal communication device solving the pri-
mal problem for p. We conclude that, in order to achieve the optimal value a∗(p), the sender
requires to induce a split of the total prior probability p into posterior beliefs p3 = 0, p2 =

1
5

and p1 = 1. Hence, an optimal communication device transmits 3(> |K| = 2) different mes-
sages (recommendations) with positive probability. The sender transmits as much information
as when misrepresentation is not problematic (i.e., he induces posteriors p3 = 0 and p2 =

1
5 ),

however he also requires to send the message j1 to make such revelation credible to the receiver.

Drawing on the virtual utility hypothesis, the increased number of messages can be justified
by the fact that incentive compatibility obliges type H to use an additional costly signal, from
which he gains positive virtual utility. The optimal probability of sending message j1 (i.e., ρ1)
is determined by the minimization of the signaling costs incurred in recommending j1.

Optimality conditions from strong duality theory imply the following result:

Proposition 1.
Let δ be a communication device satisfying the informational incentive constraints for the
sender. Then, δ is an optimal solution of the primal problem for p if and only if there exists a
vector γ ≥ 0 such that

γ(k′ | k)

















∑

j∈J

(

δk
j − δ

k′
j

)

ak
j

















= 0, ∀ k, k′ ∈ K (4.8)

and
∑

k∈K

pkαk(δ; p, γ) = cav α̂(p; p, γ) (4.9)

Condition (4.9) is the counterpart of conditions (4.3a) and (4.3b). It says that the optimal com-
munication device induces a distribution of posterior beliefs giving the sender an ex-ante ex-
pected virtual payoff equal to the concavification of the non-revealing virtual payoff function
α( · ; p, γ) evaluated at the prior distribution p. Condition (4.8) is the complementary slackness.

Following Myerson (1991, sec. 10.5), we say that a type k jeopardizes another type k′ at the
prior p if the optimal value of the dual variable γ(k′ | k) at p is positive.
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4.4. Extreme Communication Equilibria and the Number of Signals
Our aim in this section is to provide an upper-bound on the number of recommended actions
required to achieve the value of persuasion. For that, we exploit the geometric properties of the
set of communication equilibria.

Recall that, for any fixed p ∈ ∆(K), the feasible set of the primal problem for p is a convex
polytope (bounded polyhedron). Then, the sender’s expected payoff achieves its maximum at
an extreme point ofD∗(p) (or a convex combination of them).

Definition 5 (Extreme communication equilibrium).
The communication device δ is an extreme communication equilibrium of Γ(p) if it is an extreme
point ofD∗(p).

Using a basic result from the theory of linear programming, it is possible to characterize the
number of messages sent with positive probability in any extreme communication equilibrium.
A solution of a system of linear inequalities is an extreme point of the corresponding feasible
set if and only if it can be obtained as the unique solution to a system of equations derived from
equality constraints by setting a subset of variables equal to zero (see for instance Schrijver
(1998)). These are called basic feasible solutions. As a consequence, the number of non-zero
components in any extreme point is no greater than the number of binding constraints. Thus, a
way to identify an upper-bound on the number of actions with positive probability in an extreme
communication equilibrium is to determine how many incentive constraints can be binding.

The previous insight was applied by Forges (1994) to show that whenever the sender has only
two types (i.e., |K| = 2), the number of recommended actions in an extreme communication
equilibrium cannot exceed 4. This bound corresponds to the number of types (|K| = 2) plus the
number of informational incentive constraints. Unfortunately, the reasoning in the proof of this
result relies strongly on the fact that |K| = 2. However, a similar statement can be proved for the
general case |K| ≥ 2 by modifying the sender’s problem11. The idea is as follows: let δ̄ denote
a solution of the primal problem for p. Now, replace each δk

j in the definition of the primal for
p by the variable θ jδ̄

k
j , with θ j ≥ 0 and add |K| constraints of the form

∑

j θ jδ̄
k
j = 1 for all k ∈ K.

By keeping fixed δ̄ and p, we obtain a linear programming problem on θ. For this problem,
the strategic incentive constraints are redundant, thus we end up with |K|2 (= |K| + |K|(|K| − 1))
constraints. Then, applying the previous insights, there exist a solution of the modified problem,
denoted θ̃, with at most |K|2 positive components. By construction, the communication device
δ̃ defined by θ̃ jδ̄

k
j is also an optimal solution of the primal problem for p. Since, all actions j for

which θ j = 0 have zero probability in δ̃, we are able to find an upper bound on the number of
signals.

Proposition 2.
For any p ∈ ∆(K), there exists a solution of the primal problem for p for which the number of
actions with positive probability does not exceed |K|2.12

11The same method is also applied by Bester and Strausz (2007).
12As it is inferred from the proof, we can also establish a result somewhat stronger than Proposition 2. Suppose
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Proof. Let p ∈ ∆(K) and assume that only m (≤ |K|(|K| −1)) informational incentive constraints
are linearly independent in the primal problem for p. Then, there exist a set M ⊆ K × K such
that |M| = m and any solution of the programming problem

max
δ≥0

∑

k∈K

pk
∑

j∈J

δk
ja

k
j (4.10)

s.t.
∑

j∈J

δk
ja

k
j ≥
∑

j∈J

δk′
j ak

j, ∀(k, k′) ∈ M

∑

k∈K

δk
j p

kbk
j ≥
∑

k∈K

δk
j p

kbk
i , ∀i, j ∈ J

∑

j∈J

δk
j = 1, ∀k ∈ K

is a solution of the primal problem for p, and viceversa. We need to prove that there exists a
solution of the primal problem for p for which no more than |K| + m actions are recommended
with positive probability. Let δ̄ be a solution of (4.10). Let N = { j ∈ J | π j(δ̄) > 0} and n = |N |.
If n ≤ |K| + m, there is nothing to prove. Then, assume that n > |K| + m. Consider the linear
programming problem

max
θ≥0

∑

k∈K

pk
∑

j∈J

θ j δ̄
k
ja

k
j (4.11)

s.t.
∑

j

θ j δ̄
k
ja

k
j ≥
∑

j

θ j δ̄
k′
j ak

j, ∀(k, k′) ∈ M

∑

j∈J

θ j δ̄
k
j = 1, ∀k ∈ K

Because δ̄ is a solution of (4.10), the vector θ̄ ≥ 0 defined by θ̄ j = 1 for all j ∈ N and θ̄ j = 0 for
all j ∈ J \ N solves the linear program (4.11). By a fundamental result of linear programming
(see Schrijver (1998)), we can always find a solution of (4.11) among the extreme points of its
feasible set. Therefore, since (4.11) has |K|+m constraints, it has a basic feasible solution θ̃ ≥ 0
with no more than |K| + m strictly positive components. For every j ∈ J and k ∈ K, we define
δ̃k

j = θ̃ j δ̄
k
j ≥ 0. Let Ñ = { j ∈ J | π j(δ̃) > 0}. Then, |Ñ | ≤ |K| + m,

∑

j∈J

δ̃k
j =
∑

j∈J

θ̃ j δ̄
k
j = 1, ∀k ∈ K

a(δ̃; p) =
∑

k∈K

pk
∑

j∈J

θ̃ j δ̄
k
ja

k
j =
∑

k∈K

pk
∑

j∈J

θ̄ j δ̄
k
ja

k
j = a(δ̄; p)

and
∑

k∈K

δ̃k
j p

kbk
j = θ̃ j

∑

k∈K

δ̄k
j p

kbk
j ≥ θ̃ j

∑

k∈K

δ̄k
j p

kbk
i =
∑

k∈K

δ̃k
j p

kbk
i , ∀i, j ∈ J

that it is possible to establish that at most m informational incentive constraints are binding, for instance by showing
that some of them can be written as linear combinations of the others. Then, there is a solution of the primal
problem for which the number of actions with positive probability does not exceed |K| + m.
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Then, δ̃ is a solution of (4.10) for which no more than |K| + m actions are recommended with
positive probability.

We now provide an example that shows that the bound in Proposition 2 is actually tight. This
means that without any further knowledge on the number of binding informational incentive
constraints, the lowest possible upper bound on the number of recommended actions is |K|2.

Example 3. Payoffs for both players depend on the sender’s type and the receiver’s action as
indicated in the following matrix:

a, b j1 j2 j3 j4 j5

H -2,0 2,4 1,7 3
2 ,9 0,10

L 0,10 3
2 ,9 1,7 2,4 -2,0

Let p = 1/2 be the prior probability of type H. Then, the optimal solution of the dual problem
for p is γ(H | L) = γ(L | H) = 17

42 . Complementary slackness implies that both informational in-
centive constraints are binding. Therefore, we expect an optimal solution of the primal problem
to involve 4 messages. Indeed, the unique optimal solution is

δH
2 = δ

L
4 =

8
21
, δL

4 = δ
L
2 =

4
7
, δH

5 = δ
L
1 =

1
21
,

which induces posterior probabilities p1(δ) = 0, p2(δ) = 2
5 , p4(δ) = 3

5 , p5(δ) = 1. Thus, actions
j1, j2, j4 and j5 are recommended with positive probability. Qualitatively similar results are
obtained for any prior probability p ∈

(

2
5 ,

3
5

)

.

5. Discussions

5.1. Cheap-Talk Implementation
In some environments, plain conversation between the players is more natural than mediated
communication. Is it possible to achieve any communication equilibrium payoff by means of
cheap-talk? Forges (1990) shows that there may exist communication equilibrium payoffs that
cannot be implemented as Nash equilibrium payoffs of any long cheap-talk extension of Γ(p).
However, communication equilibrium payoffs can be implemented as correlated equilibrium
payoffs (in the sense of Aumann (1974)). More precisely, a feasibility theorem holds: the set
of all correlated equilibrium payoffs of all cheap-talk extensions of Γ(p) coincides with the set
of all communication equilibrium payoffs. In fact, any communication equilibrium payoff can
be achieved as a correlated equilibrium payoff of a cheap-talk extension of Γ(p) with only one
stage of information transmission (see Forges (1985)).

5.2. Information Design Problems
The fundamental result we use to make the sender’s problem more tractable is the revelation
principle for general Bayesian games. This principle states that without loss of generality, the
sender may restrict attention to communication equilibria, which are described by a set of li-
near inequalities. Therefore the sender’s problem can be formulated as a linear programming
problem. One advantage of this approach is that it does not depend on the number of receivers
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or the fact that they are uninformed. Indeed, the revelation principle also applies for a persua-
sion problem with an arbitrary number of privately informed receivers. In this general setting,
the mediator (communication device) first asks all informed players (sender and receivers) to
simultaneously and confidentially reveal their individual types. Then he privately recommends
an action to each receiver. In a communication equilibrium of this game, all informed players
always report their types truthfully and the receivers always follow the prescribed recommenda-
tion. Here again, the set of communication equilibria is a convex polyhedron, thus our analytical
framework readily extends to more general information design problems.

Unfortunately, our main results concerning the dual properties of the primal problem -Theorem
1 and Proposition 1- do not extend to general information design problems. The main difficulty
comes from the fact that, because of the strategic externalities, each receiver’s optimal action
depends not only on the posterior beliefs she infers after receiving a recommendation, but also
on the non observed recommendations made to the other receivers.

Our approach is reminiscent of a recent methodology developed by Taneva (2016) for the study
of information design problems. She considers a basic game in which: (i ) a set of multiple
receivers have symmetric uncertainty about an unobserved payoff-relevant state with a com-
monly known prior distribution; and (ii ), an information designer has preferences that depend
on the state and the actions taken by the agents. The designer, before observing the realization
of the state, commits to an information structure (i.e., a set of signals together with a signal-
ing strategy). His problem then is to find an information structure which, for the given basic
game, supports a Bayesian equilibrium that maximizes his expected payoff. Using the concept
of Bayes correlated equilibrium, introduced by Bergemann and Morris (2016), Taneva cha-
racterizes the set of all Bayesian equilibria associated with all possible information structures
for a given basic game. By doing so, she equivalently reformulates the designer’s problem
as a linear programming problem. The notion of Bayes correlated equilibrium considers only
the strategic incentive constraints related to the “obedience” of the receivers. For that reason,
Tanevas’s approach assumes full commitment on the part of the designer. In contrast, the con-
cept of communication equilibrium captures the idea that players can strategically manipulate
their information by imposing additional truth-telling incentive constraints. As a consequence,
Taneva’s formulation can be seen as a particular case of our analytical framework, one in which
the receivers are uninformed (symmetric uncertainty) and the private information of the designer
is verifiable by the mediator.
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