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The Value of Mediated CommunicationI

Andrés Salamanca Lugo1

Toulouse School of Economics

Abstract

Kamenica and Gentzkow (2011) consider a model in which a sender chooses a public com-
munication device for signaling his information to an uninformed receiver, who then takes an
action that affects the welfare of both individuals. In their model, the sender is fully commit-
ted to truthfully communicate the signal to the receiver, so that they abstract from incentive
compatibility issues. By considering mediated communication, we provide an analytical frame-
work overcoming this overly restrictive assumption. We use the concept of virtual utility to
develop a geometric approach to the sender’s optimization problem. We characterize the value
of persuasion from the concavification of a non-revealing function over beliefs. We apply our
approach to a model of information transmission based on Crawford and Sobel (1982). In this
setting, we provide necessary and sufficient conditions for the sender to benefit from his private
information.

Keywords: Bayesian persuasion, mediated communication, incentive compatibility, virtual
utility.

JEL Classification: D82, D83.

1. Introduction

This paper provides an analytical framework for studying Bayesian persuasion problems in
which the sender cannot commit himself to truthfully communicate the signal to the receiver,
so that incentive compatibility becomes one of the major issues for communication to be mean-
ingful. By allowing the two players to communicate with a neutral third party who makes non-
binding recommendations, we are able to solve two analytical problems that could possibly
prevent a tractable analysis of incentive compatibility: first, truthful revelation of information
when communication is direct may considerably limit the ability of the sender to credibly signal
his information by himself. In particular, Forges (1985) and Farrell (1993) propose some exam-
ples in which no substantive communication can occur between the players. However, it is well
known that the set of implementable outcomes may be strictly larger when players use mediated
rather than direct communication (see for instance, Forges (1985, 1990)). Second, revelation of
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influential information with direct communication requires the sender to be indifferent between
all signals he sends with positive probability. This is a strong form of incentive compatibility
whose formulation is difficult to deal with1. In contrast, when the players use a mediator to
perform the randomization of the signals on behalf of the sender, incentive compatibility will
only demand each type of the sender to prefer the expected allocation designated for him.

On a recent pioneering work, Kamenica and Gentzkow (2011) offer a general approach to
Bayesian persuasion under full commitment on the part of the sender. They consider a sender-
receiver game in which before learning his type (ex-ante stage), the sender publicly chooses a
signaling strategy, i.e., a conditional distribution of signals for each of his types2, that he will
use for transmitting his information to an uninformed receiver (signaling stage). The sender
produces a signal according to his true type and the corresponding distribution of signals. He
cannot distort the signal realization, nor he can misrepresent his information. The receiver
observes the signal realization and then takes an action that affects the welfare of both indi-
viduals3. Kamenica and Gentzkow characterize the sender’s problem as a constrained splitting
of the total prior probability into a distribution over posterior beliefs. Proceeding as in Au-
mann and Maschler (1995), they derive a non-revealing payoff function and then compute both
the sender’s optimal expected payoff (value of persuasion) and the optimal signaling strategy
from the concavification of that function4. Although this model provides good insights into the
problem of finding optimal information structures, in most of the relevant social, economic and
political settings, the full commitment assumption is overly restrictive. By allowing players
to communicate through a mediator, we overcome this difficulty. Specifically, we are able to
characterize incentive constraints by a set of linear inequalities. As a result, we can use an al-
ternative geometric approach based on duality theory. This enables us to transform the sender’s
problem into a simplified problem without incentive constraints, that can be solved using the
concavification of some non-revealing payoff function.

Under mediation, the sender communicates with a neutral trustworthy mediator who then re-
commends an action to the receiver. The mediator’s recommendation is not binding, that is, the
receiver is free to choose any action different from the recommended one. The mediator can
only create value by controlling the flow of information between both players. He introduces
noise in the communication, which may relax the incentive constraints faced by the sender.
The revelation principle applies, so that, without loss of generality we can restrict attention to
mediation protocols in which the sender reports his type truthfully and the receiver obeys the
prescribed recommendation. A mediation protocol in which the sender always reports the truth
and the receiver always follows the recommendation is called a communication equilibrium
(see Myerson (1986) and Forges (1986)). In this setup, the problem of the sender is to select a
communication equilibrium maximizing his ex-ante payoff. The set of communication equilib-

1For instance, solving principal-agent problems with adverse selection and limited commitment in which com-
munication is direct may require a laborious manipulation of incentive constraint (see Bester and Strausz (2001)).

2Kamenica and Gentzkow (2011) refer to a signaling strategy as a signal. In order to distinguish the condi-
tional distribution from its realizations, they call this latter signal realization. We deliberately use the terminology
developed in the literature of communication games.

3Brocas and Carrillo (2007), Rayo and Segal (2010), and Tamura (2014) study some related models.
4The concavification of a function f is the least concave function that is larger or equal to f .
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ria is defined by a system of linear inequalities from which the dual variables (shadow prices)
can be used to define the sender’s virtual utility (see Myerson (1991, ch. 10)). These virtual
utility scales incorporate into the utility function the signaling costs associated with incentive
compatibility. Using the concept of virtual utility we construct a fictitious game in which there
are no incentive constraints and the sender’s payoffs are in the virtual scales. For this game, the
optimal splitting of the prior probability guarantees the sender an expected virtual payoff equal
to the concavification of a certain non-revealing payoff function. Our main result is that the
sender’s optimal expected payoff equals the value of persuasion in the fictitious game with vir-
tual scales defined by the optimal signaling costs (Theorem 1). We also characterize the optimal
mediation protocol: we show that the optimal splitting of the prior probability is constrained by
the Bayes plausibility (martingale property) together with a complementary slackness condition
(Proposition 1).

Unlike in the full commitment model, in which the optimal number of signals does not exceed
the number of types, when misrepresentation is problematic, incentive compatibility may in-
crease the amount of information the sender needs to signal in order to attain the optimal value
(a detailed analysis is provided in section 3.4). The idea is that the sender might require to signal
as much information as when he is fully committed, but also he needs to make such revelation
credible to the receiver. This is illustrated by means of some eloquent examples (see section
3.1). It is also shown that the optimal value of persuasion may not be a concave function as in
the full commitment model. In fact, it may contain convex segments lying strictly below the
concavification of the (full commitment) non-revealing function.

We conclude the paper with an application of our approach to a model of information trans-
mission with the same qualitative features as the one of Crawford and Sobel (1982). In this
setting, we provide necessary and sufficient conditions for the sender to benefit from his private
information.

Related literature. Our analytical framework is the same as in Kamenica and Gentzkow (2011),
except that we consider a more general interaction situation in which communication is medi-
ated and the sender may distort his private information. In that respect, our paper relates to
the recent literature on information design known as Bayesian persuasion. To our best knowl-
edge, this literature so far has been rather unsuccessful in developing a tractable approach for
an explicit analysis of the sender’s informational incentive compatibility. Perez-Richet (2014),
Alonso and Câmara (2014) and, Hedlund (2014) study Bayesian persuasion when the sender
privately observes some information before choosing a public signaling strategy5. When the
sender fully commits to a public signaling strategy prior to learning any private information,
the interaction is ultimately nonstrategic: the sender solves a constrained decision problem. In
contrast, when the sender is privately informed, the persuasion game becomes a signaling game
whose Bayesian equilibria are implicitly characterized by some informational incentive cons-
traints. It is worth mentioning that these contributions assume that communication is direct. On
the other hand, Kolotilin, Li, Mylovanov and Zapechelnyuk (2015) study Bayesian persuasion

5These papers are connected to a strand of literature in mechanism design that considers the choice of a me-
chanism by an informed principal (Myerson (1983), Maskin and Tirole (1990, 1992)).
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with a privately informed receiver. In their framework, the sender designs a communication
device that gathers information from the receiver and then sends a recommendation to the re-
ceiver conditional on her report and the sender’s type. In addition to the strategic incentive
constraints ensuring that the receiver will follow the recommendation, the sender is also led to
consider informational incentive constraints guaranteeing that the receiver finds it optimal to
report truthfully her information. Here the communication device is a mediation rule unable to
verify the receiver’s private information, but capable of identifying the sender’s type.

This paper also relates to the literature on contracting with limited commitment. This litera-
ture considers a principal-agent setup in which the principal (receiver) is imperfectly informed
about the agent’s (sender) type. The principal cannot contractually commit herself to chose any
action, however, she may extract information from the agent by using a communication proto-
col. Bester and Strausz (2001) study direct communication in which the agent simply sends a
single message to the principal. In contrast, Bester and Strausz (2007) allow the principal to use
general communication devices which may enlarge the set of implementable contracts. Con-
trary to Bayesian persuasion, here the communication device (mechanism) is designed by the
uninformed party, i.e., the principal. However, because the agent cannot commit to truthfully
transmit his information, informational incentive compatibility is a relevant matter.

Mitusch and Strausz (2005) and, Golstman, Hörner, Pavlov and Squintani (2009) compare diffe-
rent communication protocols in the framework of Crawford and Sobel (1982). In this regard,
our paper is also connected with this literature. They study the conditions under which media-
tion improves upon direct communication. As with contracting problems with adverse selection
and limited commitment, it is also assumed that the communication procedures are designed to
maximize the ex-ante welfare of the receiver.

Finally, by using the concept of virtual utility, we borrow some analytical tools that were de-
veloped by Myerson (1984a,b) in order to extend the Nash bargaining solution and the Shapley
value to cooperative games with incomplete information.

This paper is organized as follows. Section 2 is devoted to formally describing the basic sender-
receiver scenario. The concept of communication equilibrium is also defined. Section 3 intro-
duces the mediated persuasion problem and the virtual utility approach. The main results are
presented. It also contains some eloquent examples illustrating our findings. Section 4 provides
an application of our analytical framework to a model of information transmission. Finally,
Section 5 contains concluding remarks. All proofs are relegated to Section 6.

2. Basic Game

Our basic framework is a two-person finite Bayesian game in which player 1 has no decision to
make, but he is the only player to have private (nonverifiable) information. Let K be the (finite)
set of types of player 1. A type k ∈ K is chosen according to6 p ∈ ∆(K), and only player 1
is informed about k. We assume that pk > 0 for every k ∈ K. Player 2 chooses an action in a
(finite) set J. When action j is chosen by player 2 and player 1 is of type k, then player 1 and
player 2 get respective payoffs ak

j and bk
j. We refer to this game as Γ(p).

6For any finite set A, ∆(A) denotes the set of probability distributions over A.
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A (mediated) communication device δ is a mapping δ : K → ∆(J), namely a vector of proba-
bility distributions (δk)k∈K over J for every k ∈ K. By adding a communication device δ to the
game Γ(p), one generates an extended game Γδ(p), which is played as follows:

1. A type k ∈ K is randomly chosen according to p.
2. Player 1 learns his type k ∈ K.
3. Player 1 sends a confidential report k′ ∈ K to a mediator.
4. The mediator chooses an action j ∈ J with probability δk′

j .
5. The mediator recommends the action j to player 2.
6. Player 2 chooses an action and both players receive payoffs as in Γ(p).

For obvious reasons, we refer to player 1 in Γδ(p) as the sender, and player 2 as the receiver. In
this game, a strategy for the sender is a transition probability τ : K → ∆(K) where τ(k′ | k) is
the probability to report k′ if his type is k. A strategy τ is called sincere if τ(k | k) = 1 for every
k ∈ K, namely, if the sender always reveals honestly his type to the mediator. A strategy for
the receiver in Γδ(p) is a transition probability ς : J → ∆(J) where ς(i | j) is the probability to
choose i when j is recommended by the mediator. A strategy ς is called obedient if ς( j | j) = 1
for every j ∈ J, i.e., if the receiver always follows the recommendation made by the mediator.
When both players are sincere and obedient, respectively, the expected payoff of the sender of
type k is

ak(δ) =
∑

j∈J

δk
ja

k
j

and the expected payoff of the receiver is

b(δ) =
∑

k∈K

pk
∑

j∈J

δk
jb

k
j

The communication device δ is incentive-compatible for the sender if and only if the sincere
strategy is a best response for the sender in Γδ(p) whenever the receiver is obedient, that is,

∑

j∈J

δk
ja

k
j ≥
∑

j∈J

δk′
j ak

j, ∀ k, k′ ∈ K (2.1)

The informational incentive constraints in (2.1) reflect the fact that neither the receiver nor the
mediator can verify the private information of the sender (adverse selection problem).

Suppose action j is recommended to the receiver. Then, she computes posterior probabilities
p j = (pk

j)k∈K given by

pk
j =

δk
j p

k

∑

k′∈K δ
k′
j pk′

The communication device δ is incentive-compatible for the receiver if and only if the obedient
strategy is a best response for the receiver in Γδ(p) whenever the sender is sincere, namely,

∑

k∈K

δk
j p

kbk
j ≥
∑

k∈K

δk
j p

kbk
i , ∀ i, j ∈ J (2.2)
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The strategic incentive constraints in (2.2) characterize the receiver’s inalienable right to control
her action in J (moral hazard problem). The two sides of (2.2) differ from the expected payoffs
w.r.t. the posterior p j because we have not divided by the total probability of receiving the
recommendation to play j ; however, this factor can be ignored, since it is the same on both
sides.

Definition 1.
We denote as D(p) the set of communication devices satisfying the strategic incentive cons-
traints for a given prior p.

We define F(q) as the set of receiver’s optimal actions at belief q ∈ ∆(K), i.e.,

F(q) =
{

σ ∈ ∆(J) |
∑

k∈K

qk
∑

j∈J

σ j bk
j = max

j∈J

∑

k∈K

qkbk
j

}

Let π j(δ) =
∑

k∈K pkδk
j be the probability of sending the recommendation j when δ is imple-

mented. Then, δ is incentive compatible for the receiver if and only if π j(δ) > 0 for some j ∈ J
only if j ∈ F(p j).

We introduce some additional notation. For any conditional distribution δk ∈ ∆(J), supp(δk)
denotes its support. Also, for any communication device δ we define its support as supp(δ) ≡
{ j ∈ J | π j(δ) > 0}.

Definition 2 (Communication equilibrium).
A communication device δ is a communication equilibrium of Γ(p) if and only if the sincere
and obedient strategies form a Nash equilibrium of Γδ(p), that is, δ is incentive compatible for
both the sender and the receiver. We let D∗(p) denote the set of communication equilibria of
Γ(p).

A communication equilibrium δ is fully revealing (FR) if ∩k∈Ksupp(δk) = ∅, so that the receiver
can infer the true type of the sender by looking at the prescribed recommendation. It is non-
revealing (NR) if δk = δk′ for every k, k′ ∈ K, so that no useful information is revealed to the
receiver. It is partially revealing (PR) if it is not NR nor FR.

R:

1. Assume that the game Γ(p) is extended by allowing the players to communicate for a
possibly infinite number of stages through a general communication device, sending sig-
nals for every player at every stage but also receiving messages from them. Such devices
may involve preplay communication, before player 1 learns his type, but also interplay
communication, after player 1 has learnt his type but before player 2 chooses his action.
Then a general revelation principle holds: the set of all Nash equilibrium payoffs of all
extensions of Γ(p) by general communication devices coincides with the set of all com-
munication equilibrium payoffs (see Forges (1986) and Myerson (1991, ch. 6)).

2. Plain conversation between the players seems to be more natural than mediated com-
munication. Is it possible to achieve any communication equilibrium payoff by means of
cheap-talk? Forges (1990) shows that there may exist communication equilibrium payoffs
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that cannot be implemented as Nash equilibrium payoffs of any long cheap-talk extension
of Γ(p). However, communication equilibrium payoffs can be implemented as correlated
equilibrium payoffs (in the sense of Aumann (1974)). Then a feasibility theorem holds:
the set of all correlated equilibrium payoffs of all cheap-talk extensions of Γ(p) coin-
cides with the set of all communication equilibrium payoffs. In fact, any communication
equilibrium payoff can be achieved as a correlated equilibrium payoff of the cheap-talk
extension of Γ(p) with one stage of information transmission (see Forges (1985)).

3. Communication equilibria are defined by a set of linear inequalities, hence the set D∗(p)
is a convex polyhedron. Furthermore, this set is closed, bounded and non-empty. Indeed,
the communication device δ defined by δk = σ for all k ∈ K with σ ∈ F(p) is a NR
communication equilibrium of Γ(p). As a consequence, the set of all communication
equilibrium payoffs is also a convex polytope.

3. Mediated Persuasion

In the basic game Γ(p), player 1 has the option to remain silent and let player 2 choose an action
given p. He can also design a communication system to signal his private information, and try
to persuade player 2 to change her action. We assume that player 1 publicly chooses a mediated
communication device δ (i.e., a mediator) before learning his type. Then both players interact
as in Γδ(p). Because the selection of the communication device is done at the ex-ante stage, this
choice is by itself uninformative. By the revelation principle, player 1 can restrict attention to
the mediated communication equilibria of Γ(p). Then, the problem of player 1 is to choose a
communication device δ ∈ D∗(p) to solve

max
d∈D∗(p )

∑

k∈K

pkak(d) (3.1)

We shall refer to this linear programming problem as the primal problem for p.

Definition 3 (Value of persuasion).
The optimal value of the primal problem for p will be called the value of persuasion at p and is
denoted a∗(p).

3.1. Mediated Persuasion Under Verifiable Information
Before studying the primal problem in detail, let us consider the more simplified persuasion
game in which the type of the sender is verifiable by the mediator but not by the receiver. In
such a situation, the informational incentive constraints are not relevant, so that our framework
reduces to Kamenica and Gentzkow’s (2011) model. The problem for the sender is thus

max
d∈D(p)

∑

k∈K

pkak(d) (3.2)

Notice that the domain of maximization in (3.2) is the set of communication devices satisfy-
ing only the strategic incentive constraints, i.e., D(p). Under this verifiability assumption, the
sender has nothing to communicate to the mediator. The only thing he has to do is to choose
a communication device that will recommend an action to the receiver depending on his true
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type. We let j(q) ∈ F(q) denote the receiver’s optimal action at belief q that maximizes the
sender’s ex-ante expected utility7. When both sender and receiver hold the same belief q, the
maximal ex-ante utility that the sender can expect is

â(q) ≡
∑

k∈K

qkak
j(q)

We refer to the function â as the non-revealing payoff function. Let cav â be the concavification
of â, i.e., the least concave function that is larger or equal to â. As observed by Kamenica and
Gentzkow (2011), the optimal value of the relaxed primal problem (3.2) is cav â(p). Also there
exist a subset I ⊆ J of actions with |I| ≤ |K| and posterior probabilities (pi)i∈I with pi ∈ ∆(K)
for every i ∈ I, such that there exist a unique probability vector ρ ∈ ∆(I) satisfying

∑

i∈I

ρiâ(pi) = cav â(p) and
∑

i∈I

ρi pi = p (3.3)

Then, it is possible to design a communication device δ so that the receiver will find that the
conditional distributions over the types of the sender that she computes after receiving a recom-
mendation are always elements of the set {pi | i ∈ I }. Since the distribution ρ is unique, the
receiver will infer with probability ρi the conditional distribution pi. Then, by (3.3), the com-
munication device δ guarantees the sender an expected payoffs of cav â(p). Such an optimal
communication device can be easily computed from the following formula:

δk
j =















pk
jρ j

pk , if j ∈ I
0, otherwise

, ∀k ∈ K (3.4)

Condition (3.3) on the left is thus an optimality condition, while condition on the right is called
Bayes plausibility.

Notice that in the previous result the number of signals required for achieving the optimal value
of (3.2) is bounded by the number of types of the sender. Namely, the most the sender needs to
transmit to the receiver is just k, which has |K| possible values.

Finally, we observe that for any p ∈ ∆(K), we have that

â(p) ≤ a∗(p) ≤ cav â(p) (3.5)

The first inequality follows from the fact that â(p) can always be achieved by the NR commu-
nication equilibrium δ defined by δk

j(p) = 1 for every k. The second inequality is due to the fact
thatD∗(p) ⊆ D(p).

3.2. The Virtual Persuasion Game
As we have seen, when there are no informational incentive constraints, the solution to the pri-
mal problem can be easily characterized. Informational incentive constraints complicate matters

7If there is more than one action in F(q) that maximizes sender’s expected utility, we let j(q) denote an arbitrary
element of that set.
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by interconnecting the signals in different states. However, we can remove the informational
incentive constraints using duality theory. The idea is that the set of communication equilibria
is defined by a system of linear inequalities (see remark 3) for which the dual variables can be
used to define the sender’s virtual utility. These virtual utility scales incorporate into the utility
function the signalling costs associated with the incentive compatibility. Using the concept of
virtual utility we can transform the original primal problem into a simplified problem without
informational incentive constraints.

Let γ(k′ | k) ≥ 0 be the dual variable for the constraint that the type k of the sender should
not gain by reporting k′ in the primal problem for p. Following Myerson (1984a,b, 1991), we
define the virtual utility of the sender from the action j, when his type is k, w.r.t. the prior p and
the duals γ to be

αk
j(p, γ) =

1
pk





























pk +
∑

k′∈K

γ(k′ | k)















ak
j −
∑

k′∈K

γ(k | k′)ak′
j















(3.6)

Virtual utility of the sender is a distorted utility that magnifies the difference between his true
type and the types that would be tempted to imitate him. In a situation where information is not
verifiable, so that misrepresentation is possible, some types of the sender may adopt a different
behavior in an effort to distinguish themselves from the types that try to mimic them. This new
compromise in the payoff maximization goal of the sender may generate some signaling costs
that are mathematically measured by the dual variables. The dual variables correspond to the
“shadow prices” of strengthening incentive compatibility.

Economists have widely recognized the prominent character of the shadow prices (dual vari-
ables) of the resource constraints for measuring the marginal costs of scarcity. Also, it has been
used for measuring the costs of distortionary taxation, regulations and market failures among
others. In the same way, the dual variables of the informational incentive constraints together
with the concept of virtual utility enhances our understanding of the ex-post inefficiencies de-
rived from the signaling costs associated with incentive compatibility.

Let us assume that, as a consequence of the pressure that a type might feel in getting the receiver
to trust him, the sender begins to act as if he were maximizing his virtual utility (Myerson (1991)
refers to this idea as the virtual utility hypothesis). Thus, for some fixed prior probability p and
signaling costs γ, consider the (p, γ)-virtual persuasion problem, a fictitious game that differs
from the original persuasion game in the following. First, the sender’s types are verifiable by
the mediator (but not by the receiver), so that there are no informational incentive constraints.
Second, the sender’s payoffs are in the virtual utility scales (αk

j(p, γ)) j∈J, k∈K instead of (ak
j) j∈J, k∈K .

Let i(q) ∈ F(q) denote the receiver’s optimal action at belief q that maximizes the sender’s
ex-ante expected virtual utility8. When both sender and receiver hold the same belief q in the
(p, γ)-virtual game, the non-revealing (virtual) payoff function is given by

α̂(q; p, γ) ≡
∑

k∈K

qkαk
i(q)(p, γ)

8If there is more than one action in F(q) that maximizes sender’s expected virtual utility, we let i(q) denote an
arbitrary element of that set.

9



Then, as already observed in section 3.1, the value of persuasion in the (p, γ)-virtual game is
given by cav α̂(p ; p, γ). Although the (p, γ)-virtual game gives us some insights on how to
simplify the sender’s problem by removing the informational incentive constraints, it does not
say anything about the “dual” relationship between the optimal value of the primal problem
for p, a∗(p), and the value of persuasion in the virtual game. Furthermore, it leaves open the
question of determining the optimal signaling costs incurred by the sender in order to distinguish
himself from the types that are tempted to imitate him. However, there exist an answer to the
first question that will make the second question redundant.

Theorem 1.
For any prior p ∈ ∆(K) we have that

a∗(p) = min
γ≥0

cav α̂(p ; p, γ) (3.7)

We refer to the minimization problem in (3.7) as the dual problem for p.

Fix a prior p ∈ ∆(K) and let γ∗(p) be an optimal solution of the dual problem for p. Then, the
key implication of theorem 1 is that the value of persuasion in the original game coincides with
the value of persuasion in the (p, γ∗(p))-virtual game, namely,

a∗(p) = cav α̂(p ; p, γ∗(p))

Thus, instead of saying that incentive compatibility restricts the sender’s ability to signal his
information, we may say that he is compelled to modify his actual preferences from the real to
the virtual scales (p, γ∗(p)).

The virtual game is more than just a convenient construct for computing the value of persua-
sion. It gives us insights into the problem of finding optimal signals when misrepresentation is
problematic. Myerson (1991) provides an extended discussion of the meaning and significance
of the virtual utility.

Example 1. In the following game, player 1 has a privately known type that may be H or L and
player 2 must choose an action from the set J = { j1, j2, j3}. Payoffs for both players depend on
1’s type and 2’s action as follows:

a, b j1 j2 j3

H 1,3 3,1 -5,-3
L -1,-3 2,-1 0,0

The receiver’s optimal action at belief q is

F(q) =







































j3, if 0 ≤ q < 1
5

∆({ j2, j3}), if q = 1
5

j2, if 1
5 < q < 1

2
∆({ j1, j2}), if q = 1

2
j1, if 1

2 < q ≤ 1

The non-revealing value function â joint with its concavification cav â are depicted in figure 1.
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q1
5

1
2 1

5/2
11/5

1

−1

a

â

cav â

Figure 1: Function â and its concavification

Let p be the prior probability of type H and consider the case in which p < 1
5 . In the absence

of incentive constraints, an optimal communication device will lead to the posteriors p3 = 0
and p2 =

1
5 with probabilities 1 − 5p and 5p respectively. However, this splitting of the total

probability p cannot be made incentive compatible for the sender. The reason is that action j2

is strictly preferred to action j1 for the sender, hence type L would have incentives to report
H in order to influence the posterior probabilities towards 1

5 . As a consequence, the sender
cannot achieve the expected payoff of cav â(p) in any extension of the game Γ(p), yet he can
do better than â(p). Consider for instance the communication device δH

1 = δ
L
3 = 1 leading to the

posterior probabilities p3 = 0 and p1 = 1. Straightforward algebra reveals that this device is a
FR communication equilibrium giving an expected payoff to the sender equal to p. Although
the sender cannot get cav â(p), he can guarantee at least p which is strictly better than â(p).
Indeed, he can do even better as we will see in the sequel.

Tedious but easy computations show that, for any p ≤ 1
5 , the optimal value of the dual variables

solving the dual problem for p is

γ∗(H | L) = 10p(1−p)
3−11p ≡ γ

∗(p), γ∗(L | H) = 0

Hence the (p, γ∗)-virtual utility game is

α, b j1 j2 j3

H 1 + γ
∗(p)
p , 3 3 − 2γ∗(p)

p , 1 −5,−3

L −
(

1 + γ
∗(p)

1−p

)

,−3 2
(

1 + γ
∗(p)

1−p

)

,−1 0, 0

Figure 2 illustrates the non-revealing value function α̂ of the virtual game and its concavifica-
tion. We conclude that the optimal value of the primal problem for p < 1

5 is

a∗(p) = cav α(p; p, γ∗(p)) = p + γ∗(p) < 11p = cav â(p)

When p < 1
5 both types of the sender will try to persuade the receiver to change her action from

j3 to j2. For this, the sender needs to induce the receiver to belief that he is of type H with a
probability lying on [ 1/5, 1/2 ]. When the true state is H, the receiver is better by choosing j2;
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however, when the true state is L she would prefer to play j3. Thus, in state H the incentives
of both players are aligned, while in state L they are diametrically opposed. Consequently, the
receiver will face difficulties to trust in any claim about the sender’s private information. So
we have that ex-post inefficiencies (signaling costs) are incurred in a communication equilib-
rium (recall that a∗(p) < cav â(p)). Such signaling costs are mathematically formalized and
measured by the dual variable γ∗(p).

q1
5

1
2 1

1 + γ
∗(p)
p

−1

0

a

α̂

cav α̂

Figure 2: Function α̂ and its concavification

In order to achieve the optimal value a∗(p), the sender requieres to induce a split of the total
probability p into the posteriors p3 = 0, p2 =

1
5 and p1 = 1. Hence, an optimal communication

device requires to signal at least 3(> |K| = 2) different messages (actions). Unlike the case in
which the sender’s information is verifiable by the mediator, when incentive constraints matter,
the sender needs to transmit to the receiver more information. The idea is that the sender
requires to signal as much information as when information is verifiable (i.e., he needs to induce
posterior beliefs p3 = 0, p2 =

1
5 ), but also he needs to make such revelation credible to the

receiver. Because type L has incentives to imitate type H, this latter will need to find a way
to separate himself from type L. To do this, type H can commit himself to recommend action
j1 (with some positive probability), something that is too costly for type L. In this manner,
the receiver can discriminate between both types, so that whenever j1 is recommended, she
deduces that this message can only come from type H, i.e., p1 = 1, and thus, she follows
the recommendation. More generally, Forges (1994, corollary 4.3) shows that for any game
in which the sender has two types, the sender may need at most 4 messages. We will further
discuss this issue in section 3.4.

Let us consider now the case p > 1
2 . A similar analysis shows that the optimal value of the dual

variables is
γ∗∗(L | H) =

2p(p − 1)
5p − 1

≡ γ∗∗(p), γ∗∗(H | L) = 0

and the optimal value of the primal problem for p > 1
2 is thus

a∗(p) = cav α(p; p, γ∗∗(p)) = p + 6γ∗∗(p) < 4 − 3p = cav â(p)

12



Finally, for any p ∈ [ 1/5, 1/2 ], the optimal action of the receiver is j2, which is the preferred
action for both types of the sender. Thus, he would prefer not to signal any information, thereby,
a∗(p) = â(p) = cav â(p). Thus, the value function a∗ looks like in figure 3.

q1
5

1
2 1

a

a∗

cav â

Figure 3: Functions a∗ and cav â for example 1

When the sender’s types are verifiable by the mediator, the optimal value function is concave,
since it equals cav â. This example shows that informational incentive compatibility may lead
to an optimal value function a∗ that is neither concave nor convex. In fact, it can contain strictly
convex segments. We would like to mention that analogous examples can be easily constructed
(see section 4 and example 2).

Example 2. The following game, proposed by Forges (1990), shares some features with our
previous example. Payoffs for both players depend on the sender’s type and the receiver’s
action as follows:

a, b j1 j2 j0 j3 j4

H 3,0 4,4 0,7 10,9 6,10
L 6,10 10,9 0,7 4,4 3,0

This example has a natural interpretation in terms of a job assignment scenario. An employer
must decide whether to hire a candidate and, if so, to assign the employee to one of four possible
jobs. The candidate may be one of two types. Type L performs better in job 1 but prefers job 2;
he is bad at job 3, and even worse at job 4. Type H is similar but with jobs reversed. Sender’s
prior probability of type H is p ∈ ( 0, 1 ).

By performing a similar analysis as in example 1, it can be shown that the value of persuasion
in this game (depicted in figure 4) is given by

a∗(p) =























6 + 14p + 28p(5p−1)
4−15p , if p < 1

5
44
5 , if 1

5 ≤ p ≤ 4
5

20 − 14p − 28(1−p)(5p−4)
15p−11 , if p > 4

5

In particular, we have that for any p < 1/5 (resp. p > 4/5) only type L (resp. H) has incentives
to lie, so that γ(H | L) > 0 (resp. γ(L | H) > 0). Also, at least 3 actions are required to be
recommended in order to achieve a∗(p) for any p < [1/5, 4/5].

13



q1
5

2
5

3
5

4
5 1

6

44
5

0

a

â

a∗

Figure 4: Functions a∗ and â for example 2

3.3. Optimal Mediators
Whenever the optimal value of the dual variables is zero for some prior p, so that incentive cons-
traints do not matter, the value of persuasion at p coincides with cav â(p). Then, conditions in
(3.3) identify the posterior beliefs induced by any optimal communication device; these beliefs
correspond to the points on â whose convex combination yields cav â(p). The corresponding
distribution of posteriors ρ is the (unique) solution of a well determined system of linear equa-
tions given by (3.3). Hence, the optimal communication device can be easily computed using
formula (3.4). As we have shown in examples 1 and 2, when there are binding informational
incentive constraints, the sender may require more messages than his number of types. Then,
the number of unknowns in (3.3) increases while the number of equations remains the same.
The system in (3.3) may become underdetermined and therefore infinitely many distributions
of posteriors may be consistent with the same prior probability. Thus, additional conditions are
required for characterizing any optimal communication device.

In order to understand this issue, let us return to the example 1. Let p < 1
5 and consider the

(p, γ∗(p))-virtual game. According to figure 2 and conditions (3.3), the optimal value of the
primal problem can be achieved by splitting the total probability p in either of the following
collection of posteriors:

(i ) p3 = 0, p2 =
1
5 .

(ii ) p3 = 0, p1 = 1.
(iii ) p3 = 0, p2 =

1
5 , p1 = 1.

In case (i ), Bayes plausibility implies that (ρ2, ρ3) = (5p, 1 − 5p) and thus formula (3.4) yields
δH

2 = 1 − δH
3 = 1 and δL

2 = 1 − δL
3 =

4p
1−p . But this communication device is not incentive

compatible for the sender. In case (ii ) we have that Bayes plausibility implies that (ρ1, ρ3) =
(p, 1 − p) and therefore formula (3.4) yields δH

1 = δ
L
3 = 1. As we already mentioned above,

this communication device is a FR communication equilibrium giving an expected payoff to
the sender which is strictly lower than a∗(p). Finally, in case (iii ), Bayes plausibility does not
uniquely identify a distribution of posteriors. In particular, any probability vector (ρ1, ρ2, ρ3)
satisfying ρ1 +

ρ2
5 = p is a feasible distribution of posteriors. An additional condition is thus

required in order to identify the correct distribution of posteriors.

Duality theory implies a relationship between the primal and dual problems that is known as
the complementary slackness. Specifically, it says that if a dual variable is positive, then the
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associated informational incentive constraint must be binding. Conversely, if a constraint fails
to bind, then the associated dual variable must be zero. Complementary slackness provides us
the additional equations we needed. Consider again example 1. As we have already shown, the
optimal value of γ∗(H | L) is strictly positive. Then, according to the complementary slackness,
the constraint asserting that the type L should not gain by reporting H is binding, i.e.,

2δL
2 − δ

L
1 = 2δH

2 − δ
H
1

The previous equality joint with formula (3.4) yield the additional restriction

5ρ1(1 − p) = 2ρ2(1 − 5p)

Then, Bayes plausibility implies that the optimal distribution of posteriors is

ρ1 =
2p(1−5p)

3−11p , ρ2 =
5p(1−p)
3−11p , and ρ3 = 1 − ρ1 − ρ2

Given these posteriors, formula (3.4) gives the optimal communication device solving the pri-
mal problem for p. Complementary slackness together with the optimality condition in theorem
1 fully characterize the optimal solutions to the primal problem.

Proposition 1.
Suppose δ is a communication device satisfying the informational incentive constraints for the
sender. Then, δ is an optimal solution of the primal problem for p if and only if there exists a
vector γ ≥ 0 such that

γ(k′ | k)

















∑

j∈J

(

δk
j − δ

k′
j

)

ak
j

















= 0, ∀ k, k′ ∈ K (3.8)

and
∑

k∈K

pkαk(δ; p, γ) = cav α̂(p; p, γ) (3.9)

Condition (3.9) is the counterpart of condition (3.3) in the general model with nonverifiable
information. It says that the optimal communication device induces a distribution of poste-
rior beliefs giving the sender an ex-ante expected virtual payoff equal to the concavification of
the non-revealing virtual function α(·; p, γ) evaluated at the prior distribution p. This distribu-
tion of posteriors is Bayes plausible, that is, the expected posterior probability equals the prior
probability. As we already illustrated before, when informational incentive constraints matter,
(3.9) is not the only restriction imposed on the optimal communication device. According to
proposition 1, the complementary slackness condition in (3.8) is also required.

Following Myerson (1991), we say that a type k jeopardizes another type k′, in the optimal
communication device δ, if the constraint that the type k should not gain by reporting k′ is
binding (i.e.,

∑

j∈J δ
k
ja

k
j =
∑

j∈J δ
k′
j ak

j) and the associated dual variable γ(k′ | k) is positive.
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3.4. Extreme Communication Equilibria and the Number of Signals
When incentive constraints are not essential, for instance because information is verifiable by
the mediator, the number of signals with positive probability do not exceed the number of types
of the sender (see section 3.1). Yet this number may be increased with every binding informa-
tional incentive constraint (see examples 1 and 2). The reason is that the optimal splitting of the
prior probability is constrained not only by the Bayes plausibility but also by the complemen-
tary slackness (3.3). Intuitively, the sender requires to signal as much information as when he
is not constrained by the incentive compatibility, but also he might need to transmit additional
information in order to make such revelation credible.

Exploiting the geometric properties of the set of communication equilibria it is possible to
identify an upper bound on the minimum number of actions that can have positive probability
in a solution of the primal problem. Recall that for any fixed p ∈ ∆(K), the feasible set of the
primal problem for p is a convex polytope (bounded polyhedron). Then, the sender’s expected
payoff achieves its maximum at an extreme point ofD∗(p) (or a convex combination of them).

Definition 4 (Extreme communication equilibrium).
We say that δ ∈ D∗(p) is an extreme communication equilibrium of Γ(p) if it is an extreme point
ofD∗(p).

Let us introduce some notation. For any j ∈ J, let ∆ j ⊆ ∆(K) be the set of beliefs for which the
action j is optimal for the receiver, that is,

∆ j =
{

q ∈ ∆(K) | j ∈ F(q)
}

(3.10)

The set ∆ j is a closed and convex polytope; we denote its boundary by ∂∆ j.

The following proposition, due to Forges (1994), states that either an extreme communication
equilibrium is NR or it induces posterior probabilities lying on the boundary of ∆ j.

Proposition 2.
Let δ ∈ D∗(p) an extreme communication equilibrium of Γ(p). Then, for all j ∈ J with π j(δ) > 0
we have that,

(i ) Either p j = p implies that δk
j = 1 for all k ∈ K,

(ii ) or p j ∈ ∂∆ j.

Using a basic result from the theory of linear programming, it is possible to characterize the
cardinality of the support of any extreme communication equilibrium. A solution of a system
of linear inequalities is an extreme point of the corresponding feasible set if and only if it can
be obtained as the unique solution to a system of equations derived from equality constraints
by setting a subset of variables to zero. Therefore, the number of non-zero components in any
extreme point is no greater than the number of binding constraints. Thus, a way to identify an
upper-bound on the number of actions with positive probability in an extreme communication
equilibrium is to determine how many incentive constraints can be binding. For instance, Forges
(1994) shows that whenever the sender has only two types (i.e., |K| = 2), proposition 2 implies
that for every action with positive probability, there is a binding strategic incentive constraint.
Using this insight she establishes the following result.
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Corollary 1.
Assume |K| = 2 and let δ be an extreme communication equilibrium of Γ(p). Then, no more
than 4 actions can have positive probability in δ, i.e., |supp(δ)| ≤ 4.

According to this corollary, the cardinality of the support of any extreme communication equi-
librium is bounded by the number of types (|K| = 2) plus the maximum number of binding
informational incentive constraints. Unfortunately, the reasoning in the proof of corollary 1
relies strongly on the fact that |K| = 2. However, a similar result can be proved for the general
case |K| ≥ 2 by modifying the sender’s problem9. Given a solution of the primal problem for
p, δ̄, we replace each δ̄k

j by θ jδ̄
k
j, with θ j ≥ 0, and then we add the constraint

∑

j θ jδ̄
k
j = 1 for all

k ∈ K. By keeping fixed δ̄ and p, we obtain a linear programming problem on θ. For this prob-
lem, the strategic incentive constraints are redundant, thus applying the previous insights gives
us that at most |K| + |K|(|K| − 1) actions have positive probability. Given an optimal solution θ̃
of this linear program, the communication device δ̃ defined by θ̃ jδ̄

k
j is also an optimal solution

of the primal problem for p. Since, all actions j for which θ j = 0 have zero probability in δ̃, we
are able to find an upper bound on the number of signals.

Proposition 3.
Let p ∈ ∆(K) and assume that at most m informational incentive constraints can be binding at
any solution of the primal problem for p. Then, there is a solution of the primal problem for p
for which the number of actions with positive probability does not exceed |K| + m.

Since the number of informational incentive constraints is at most |K|(|K| − 1), the key implica-
tion of this proposition is that the minimum number of actions that can have positive probability
in a solution of the primal problem is bounded above by |K|2. We notice that this bound is uni-
form on the number of actions.

3.5. The Value of Private Information
The value of information for the sender at the prior p is the difference between the value of
persuasion at p and the non-revealing value at p, i.e., a∗(p) − â(p). We say that the sender
benefits from his private information at p if a∗(p) > â(p). Theorem 1 provides a necessary and
sufficient condition for the sender to benefit from his information.

Corollary 2.
Let γ∗(p) be an optimal solution to the dual problem for p. Then, the sender benefits from his
information at p if and only if

cav α̂(p; p, γ∗(p)) > â(p)

We say that there is information the sender would like to signal if â(p) < cav â(p). In words, if
the sender were not constrained by the incentive compatibility, he would prefer to persuade the
receiver to change his action rather than letting her to choose an action based on p. From the
inequalities in (3.5) we deduce the following observation.

9The same method is also applied by Bester and Strausz (2007).
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R 4. If there is no information the sender would like to signal, the sender does not benefit
from his information.

Hence, owning any information the sender would like to share is a necessary condition, yet not
sufficient for him to benefit from his information, as the following examples shows.

Example 3. Consider the following sender-receiver game due to Forges (1985). Player 1 has
a privately known type that may be H or L and player 2 must choose an action from the set
J = { j1, j2, j3}. Payoffs for both players depend on 1’s type and 2’s action as follows:

a, b j1 j2 j3

H 6,0 0,4 4,6
L 0,6 6,4 4,0

The receiver’s optimal actions at belief q is

F(q) =







































j1, if 0 ≤ q < 1
3

∆({ j1, j2}), if q = 1
3

j2, if 1
3 < q < 2

3
∆({ j2, j3}), if q = 2

3
j3, if 1

3 < q ≤ 1

The non-revealing value function â joint with its concavification cav â are depicted in figure 5.

q1
3

2
3 1

2

4

a

â

cav â

Figure 5: Value function

Let p be the prior probability of type H. Notice that for any prior p ∈ ( 0, 1/3 ) the sender has
information he would like to signal, i.e., cav â(p) > â(p). In particular, the sender would like
to chooses a communication device leading to the posteriors p1 = 0 and p2 =

1
3 with prob-

abilities 1 − 3p and 3p respectively, thus achieving the expected payoff cav â(p). However,
such a communication device cannot be constructed without violating the informational incen-
tive constraints. In fact, no communication equilibrium of Γ(p) can give the sender an expected
payoff larger than â(p). Because the receiver have difficulties to trust any claim about the unver-
ifiable sender’s private information, the sender cannot benefit from any information he would
like to transmit.
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For sake of completeness, let us show that for any communication equilibrium δ of Γ(p) with
p ∈ (0, 1/3), the ex-ante expected payoff of the sender is â(p). Let p j be the conditional
probability of type H that the receiver will infer after receiving the recommendation to play the
action j. Assume that δ is not NR. Then, pδH

1 + (1− p)δL
1 > 0. Suppose that pδH

2 + (1− p)δL
2 > 0.

Then, incentive compatibility for the receiver requires that p1 ≤
1
3 ≤ p2, which implies that

2pδH
1 ≤ (1 − p)δL

1

2pδH
2 ≥ (1 − p)δL

2

Subtracting the first inequality from the second, we have that

δH
1 − δ

H
2 =

1 − p
2p

(

δL
1 − δ

L
2

)

< δL
1 − δ

L
2

However, incentive compatibility for the sender implies that

δH
1 − δ

H
2 ≥ δ

L
1 − δ

L
2

Then, δH
2 = δ

L
2 = 0. Now suppose that pδH

3 + (1 − p)δL
3 > 0. Then, incentive compatibility for

the receiver requires that p3 ≥
2
3 , implying that

δL
3 ≤

p
2(1 − p)

δH
3 < δ

H
3

However, incentive compatibility for the type L of the sender requires that δL
3 ≥ δ

H
3 . Therefore

δH
3 = δ

L
3 = 0. Thus, only j1 is recommended with positive probability in equilibrium. Hence,

the unique communication equilibrium is δH
1 = δ

L
1 = 1. We conclude that a∗(p) = â(p) for any

p ∈ [ 0, 1/3 ).

On the other hand, for any p ∈ [ 1/3, 2/3 ), it can be easily seen that the communication device

δH
2 = 1 − δH

3 =
2 − 3p

3p
, δL

2 = 1 − δL
3 =

2(2 − 3p)
3(1 − p)

is a communication equilibrium inducing the posteriors p2 =
1
3 and p3 =

2
3 with probabilities

2 − 3p and 3p − 1, respectively, hence achieving the expected payoff cav â(p).

Finally, for any p ∈ [ 2/3, 1 ], cav â(p) = â(p) = a∗(p). Summarizing,

a∗(p) =
{

â(p), if 0 ≤ p < 1
3

cav â(p), if 1
3 ≤ p ≤ 1

The problem of determining whether the sender benefits from his private information can be
equivalently formulated as the existence of solutions to a system of linear inequalities. Most of
the results on the feasibility of linear inequalities are based on linear duality theory. It exploits
the geometry of the linear inequalities and it is equivalent to separation theorems, theorems of
linear alternative inequalities or the well known Minimax theorem. Theorem 1 (and a fortiori
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corollary 2) makes use of these results for establishing the positive value of private information.
Without more specific assumptions on the components of the game Γ(p), it would be difficult to
find general sufficient conditions for the sender to benefit from his information at p. In the next
section we focus on a model of information transmission in which informational and strategic
incentive constraints can be easily characterized by some monotonicity conditions. In such
a framework, we derive necessary and sufficient conditions under which the value of private
information is strictly positive.

4. Persuasion in a Simple Model à la Crawford-Sobel

In this section we study the value of private information in a discrete model of information
transmission with the same qualitative features as the one of Crawford and Sobel (1982)10.
Consider a setting in which the actions of the receiver can be ranked, so we can write J =
{1, 2, ..., J}. The payoffs for both players depend on the action implemented by the receiver and
on the sender’s private information about his type. For simplicity, we assume that the type of
the sender can take one of two possible values11 on K = {H, L}. With probability p he is of type
H and with probability 1 − p he is of type L.

We assume that both players have type-dependent single-peaked preferences, so that each player
has a unique most preferred action in J given every type L or H of the sender. Formally, let j k

S
be the most preferred action for the type k ∈ K of the sender. Likewise, we denote j k

R the most
preferred action of the receiver given the type k ∈ K of the sender. Then, for every k ∈ K, the
preferences of both players satisfy

i < j ≤ j k
S ⇒ ak

i < ak
j and i > j ≥ j k

S ⇒ ak
i < ak

j

i < j ≤ j k
R ⇒ bk

i < bk
j and i > j ≥ j k

R ⇒ bk
i < bk

j

We suppose that j H
R , j L

R , so that the information the receiver can acquire from the sender is
useful. Additionally, we assume the following sorting condition:

aL
j − aL

j−1 < aH
j − aH

j−1, ∀ j ≥ 2

This condition is similar to the usual single crossing property (or Spence-Mirrlees condition)
assumed in models of screening and signaling. It implies the following result.

Lemma 1.
For any two actions i, j ∈ J with j < i, we have that aH

j ≥ aH
i implies that aL

j > aL
i .

An immediate consequence of lemma 1 is that the ideal choices of both types of the sender
satisfy the ordering j H

S ≥ j L
S .

10It is worth mentioning that a continuous (in actions) version of the present model is also analyzed by Mitusch
and Strausz (2005) in order to study mediation in a situation in which a principal needs information from an agent
to implement an action.

11We restrict attention to two types as in Mitusch and Strausz (2005); this substantially simplifies the results
while conveying all the main insights.
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Lemma 2.
Given any belief p ∈ [ 0, 1 ], we have that for all j ∈ F(p)

min{ j L
R , j H

R } ≤ j ≤ max{ j L
R , j H

R }

Because the sender has only two possible types, the prior distribution is fully described by the
probability p. Moreover, the set of beliefs for which any action j ∈ J is optimal for the receiver
(as defined in (3.10)) can be described by an interval ∆ j = [ p−j , p

+
j ], where p−j ≤ p+j . Then, the

family of sets {∆ j} j∈J define a partition of the interval [ 0, 1 ]. In particular, lemma 2 implies that
∆ j , ∅ only if min{ j L

R , j H
R } ≤ j ≤ max{ j L

R , j H
R }.

When the ideal points of the receiver exhibit the ordering j H
R > j L

R , the sets ∆ j are increasingly
ordered, so that, for any two actions i, j ∈ J such that j < i, we have that p+j ≤ p−i . Therefore,
incentive compatibility for the receiver implies that any revealing communication equilibrium
δ induces increasing posterior probabilities, namely, p j < pi for any j < i with πi(δ) > 0 and
π j(δ) > 0. It can be easily seen that this is equivalent to the following monotone likelihood ratio
property:

δH
i δ

L
j ≥ δ

H
j δ

L
i , ∀ i > j

with strict inequality for all i, j ∈ supp(δ). This in turn implies that the distribution δH (first-
order) stochastically dominates the distribution δL, i.e.,

j
∑

l=1

δL
l ≥

j
∑

l=1

δH
l , ∀ j ∈ J (4.1)

with strict inequality for all j ∈ supp(δ). The inequality in (4.1) is reversed in case the ideal
points of the receiver satisfy the ordering j H

R < j L
R .

On the other hand, observe that the gains to the sender from reporting any type L or H when he
is actually of type k can be expressed as

∑

j∈J

(

δL
j − δ

H
j

)

ak
j =

|J|−1
∑

j=1

















j
∑

l=1

δL
l −

j
∑

l=1

δH
l

















[ak
j − ak

j+1] (4.2)

Hence, the order of the receiver’s ideal points plays an important role in the alignment of the
incentives of both players. Using this insight we are able to prove the following proposition.

Proposition 4.
Assume that j H

R < j L
R . Then the sender does not benefit from his private information at any prior

p. If j H
R > j L

R , any communication equilibrium inducing some revelation of information leaves
at most one informational constraint binding.

When j H
R < j L

R the incentives of both players are diametrically opposed, so that any revelation
of information is ineffective. According to proposition 4, a necessary condition for the value of
information to be positive is that j H

R > j L
R . Thus, in the remainder of this section we will focus

on this ordering. Then, in view of lema 2, we can assume without loss of generality that the
lowest action is j L

R and the highest action is j H
R . We consider the following assumption.
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Assumption 1 (A.1). The ideal actions of the receiver satisfy j L
R = 1 and j H

R = J.

Also, we will asume that all actions are “essential” in the sense that for any action j ∈ J there
exist an open set Q j ⊆ [ 0, 1 ] such that j ∈ F(q) for all q ∈ Q j.

Assumption 2 (A.2). For any action j, the interior of ∆ j is not empty.

We notice that under assumption A.1, propositions 3 and 4 imply that at most 3 actions have
positive probability in any solution of the primal problem.

Another extreme case in which the incentives of both players are antipodal is when j L
S = J. In

such circumstances, type L of the sender will always like to persuade the sender that he is type
H. Then, incentive compatibility for type L cannot be satisfied unless both types send the same
message. A similar situation is reproduced when j H

S = 1.

Proposition 5.
Suppose that A.1-A.2 hold. If either j L

S = J or j H
S = 1, the sender does not benefit from his

private information at any prior p.

Proposition 5 implies that a necessary condition for the value of private information to be posi-
tive is that j L

S < J and j H
S > 1. We thus consider the following assumption.

Assumption 3 (A.3). The ideal actions of the sender satisfy j L
S < J and j H

S > 1.

Because preferences are single-peaked, whenever a prior probability p leads the receiver to
choose an action j ∈ [ j L

S , j H
S ], the incentives of both players are aligned: the sender would

like to induce the receiver to choose a higher (resp. lower) action in state H (resp. L), the
recommendation is truthful since the preferences of both types are opposed, and the receiver
will find optimal to follow the recommendation. Thus, informational incentive constraints are
not essential and the optimal value of the primal problem for p is precisely cav â(p).

Proposition 6.
Suppose that A.1-A.3 hold and let p ∈ [p−

j L
S
, p+

j H
S

]. Then a∗(p) = cav â(p). Hence, the sender
benefits from his private information at p if and only if cav â(p) > â(p).

Kamenica and Gentzkow (2011) provide sufficient conditions for cav â(p) to be strictly larger
than â(p). In particular, the sender benefits from his information at any p in (p−

j L
S
, p+

j H
S

) if â is

convex on this interval. Notice also that if j L
S = j H

S ≡ jS , so that [p−
j L
S
, p+

j H
S

] = ∆ j S , the optimal
action of the receiver given any p ∈ ∆ j S is to choose j S . Hence, it is optimal for the sender
not to modify the receiver’s belief. The unique solution of the primal problem is thus the non-
revealing communication equilibrium δH

j S
= δL

j S
= 1. Therefore, in view of proposition 6, for

any p ∈ ∆ j S , we have that a∗(p) = cav â(p) = â(p).

When a prior probability p leads the receiver to choose an action j < j L
S , both types of the sender

would like to persuade the receiver to change her action to a higher action. But then, the receiver
will have difficulties preventing type L from claiming to be type H. Because the receiver will
only move to play a higher action in state H, then type L of the sender jeopardizes type H. Thus,
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according to the virtual utility hypothesis, type H of the sender should adopt a behavior that
exaggerates the difference from type L. This new payoff maximization compromise generates
ex-post inefficiencies (signaling costs) which are reflected in a value of persuasion a∗(p) which
is strictly lower than cav â(p). A symmetric reasoning also holds in the case the prior p leads
the receiver to choose an action j > j H

S . We will study these two cases under the simplifying
assumption that jH

S = jH
S ≡ jS . The conclusions remain the same when jL

S < jH
S .

Lemma 3.
Suppose A.1-A.3 hold. Let δ be a solution of the primal problem for p. Then,

(i ) If p < p−jS type L jeopardizes type H at δ.
(ii ) If p > p+jS type H jeopardizes type L at δ.

In any of the two cases enumerated in lemma 3, according to the virtual utility hypothesis,
incentive compatibility forces the sender to adopt a behavior that magnifies the difference be-
tween his true type and the type that jeopardizes him. For this new compromise to be effective
in separating his both types, he needs to find an action that contributes little or nothing to the
welfare of his true type (he gains only virtual utility) and that results costly enough to the other
type, so that this latter would not be tempted to impersonate the true type.

Proposition 7.
Assume A.1-A.3 are satisfied. The following assertions hold12:

(i ) Let j < jS and suppose that aL
j ≥ aL

J
. Then, for any p ∈ [p−j , p

+
j ], the optimal value of the

primal problem for p is13

a∗(p) = ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂−j − ρ̂
+
j ) aH

J

where

ρ̂+j =
(p − p−j )(1 − p)

[

aL
j − aL

J

]

(p+j − p−j )(1 − p)
[

aL
j − aL

J

]

+ (p+j − p)(1 − p−j )
[

aL
j+1 − aL

j

] ,

and
ρ̂+j (1 − p+j ) + ρ̂−j (1 − p−j ) = 1 − p

Furthermore, the sender benefits from his information at any p ∈ (p−j , p
+
j ).

(ii ) Let j > jS and suppose that aH
j ≥ aH

1 . Then, for any p ∈ [p−j , p
+
j ], the optimal value of the

primal problem for p is14

a∗(p) = ρ̃−j â(p−j ) + ρ̃+j â(p+j ) + (1 − ρ̃−j − ρ̃
+
j ) aL

1

where

ρ̃−j =
p(p+j − p)

[

aH
j − aH

1

]

p(p+j − p−j )
[

aH
j − aH

1

]

+ p+j (p − p−j )
[

aH
j−1 − aH

j

] ,

12Explicit formulas for the optimal communication device can be found in the proof of the proposition.
13In case aL

j = aL
J
, p is restricted to [p−j , p

+
j ). This is to avoid the denominator in the definition of ρ̂+j to vanish.

14In case aH
j = aH

1 , p is restricted to (p−j , p
+
j ]. This is to avoid the denominator in the definition of ρ̂−j to vanish.
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and
ρ̃+j p+j + ρ̃

−
j p−j = p

Furthermore, the sender benefits from his information at any p ∈ (p−j , p
+
j ).

In order to interpret the previous result, consider the case in which p ∈ (p−j , p
+
j ) for some

j < jS . Observe that in state H the preferences of both players are aligned; both the sender and
the receiver would prefer jS rather than j. However, in state L the sender would like to persuade
the receiver that he is type H (see lemma 3). Therefore, the receiver will have difficulties to
trust in any claim coming from type H. In an effort to distinguish himself from type L, type H
can commit himself to recommend the action J, with some positive probability. This separating
strategy may be moderately pleasant (if a j < aH

J
< aH

j S
) or unpleasant (if a j > aH

J
) for type

H, but in any case it is hurtful for type L (aL
J
≤ aL

j < aL
j S

). Thus any recommendation to play
J cannot come from type L, so that the receiver will able to discriminate between both types.
Incentive compatibility compels type H to incur in a costly signal (from which he only gets
virtual utility) in order to reduce the misrepresentation of type L. The idea behind the proof
of proposition 7 is as follows: by inducing a splitting of the prior probability p ∈ (p−j , p

+
j ) into

posterior beliefs ρ̂, the sender can guarantee the same expected payoff in both the real game
and the (p, γ)-virtual game with γ(H | L) > 0 and γ(L | H) = 0. Because this split is incentive
compatible (by construction of ρ̂), weak duality implies that such split is an optimal solution of
the primal problem for p. A symmetric reasoning applies for any p ∈ (p−j , p

+
j ) with j > jS .

The following corollary is deduced immediately.

Corollary 3.
Suppose that A.1-A.3 hold.

(i ) Assume that aH
J
≥ aH

JS−1 and aL
1 ≥ aL

J
. Then the sender benefits from his information at

almost any prior p < p−j S
.

(ii ) Assume that aH
1 ≤ aH

J
and aL

1 ≥ aL
j S+1. Then the sender benefits from his information at

almost any prior p > p+j S
.

Example 4. The general behavior of the value of persuasion in this model will be illustrated in
the following example. Payoffs for both players are:

a, b j1 j2 j3 j4 j5

H 2,0 5,4 9,7 10,9 8,10
L 1,10 3,9 6,7 4,4 1,0

For any p ∈ [0, 1/5), the receiver will optimally play action j1. According to proposition 7-(i ),
the optimal distribution of posteriors is given by ρ̃ −1 = 1 − p and ρ̃+1 = 0, thus the value of
persuasion is

a∗(p) = 1 + 7p

Similarly, for any prior p ∈ [1/5, 2/5) the receiver’s optimal action is j2. Again, by proposition
7-(i ), the optimal distribution of posteriors is given by

ρ̃−2 =
25(2 − 5p)(1 − p)

2(17 − 35p)
, ρ̃+2 =

10(5p − 1)(1 − p)
2(17 − 35p)
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Hence, the value of persuasion is

a∗(p) =
535p2 − 197p − 50

70p − 34

For any prior p ∈ [2/5, 4/5], the receiver optimally chooses an action in [ jL
S , jH

S ]. Then, propo-
sition 6 implies that the value of persuasion equals cav â(p). We have that

a∗(p) =
4 − 5p

2
â
(

2
5

)

+
5p − 2

2
â
(

4
5

)

=
28
5
+ 4p

Finally, for any p ∈ (4/5, 1] the receiver’s optimal action is j5. Proposition 7-(ii ) implies that
the optimal distribution of posteriors is given by

ρ̃−5 =
15p(1 − p)
4(2p − 1)

, ρ̃+5 =
p(5p − 4)

2p − 1

Then, the value of persuasion is

a∗(p) =
23p2 + 13p − 4

8p − 4

q1
5

2
5

3
5

4
5 1

1

17/5

36/5
8

44/5
a

â

a∗

Figure 6: Functions a∗ and â for example 4

Figure 6 depicts the non-revealing function â together with the value of persuasion a∗. We
notice the following general facts:

• a∗ is linear increasing (resp. decreasing) in ∆ j for any j < jL
S (resp. j > jH

S ), whenever
aL

j = aL
J

(resp. aH
j = aH

1 ).

• a∗ is increasing (resp. decreasing) and strictly convex in ∆ j for any j < jL
S (resp. j > jH

S ),
provided that aL

j > aL
J

(resp. aH
j > aH

1 ).

• a∗ is linear and equals cav â on the interval [p−
j L
S
, p+

j H
S

].

• a∗ may fail to be continuous, but it is always upper-semicontinuous.
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5. Concluding Remarks

This paper provides an analytical framework for studying Bayesian persuasion problems in
which the sender cannot commit himself to truthfully communicate the signal to the receiver,
so that incentive compatibility becomes one of the major issues for communication to be mean-
ingful. We demonstrate that by allowing the players to communicate through a neutral trust-
worthy mediator who makes non-binding recommendations to the receiver, on can transform
the sender’s problem into a simplified problem without incentive constraints. The key idea is
that under mediated communication incentive compatibility is characterized by a system of lin-
ear inequalities. The duals of these constraints are used to define virtual utility scales which
incorporates into the sender’s utility function the signaling costs associated with incentive com-
patibility. With this mathematical insight, we are able to extend Kamenica and Gentzkow’s
(2011) original persuasion framework to problems with limited commitment on the part of the
sender. This is not new. Indeed, this virtual utility approach has proved to be very fruitful for ex-
tending cooperative solution concepts to general games with incomplete information (Myerson
(1984a,b, 2007) and Salamanca (2016)). The rationale for the virtual utility in these coopera-
tive solutions is complex, which blurs its significance. In our approach, however, virtual utility
arises in a simpler and more intuitive way.

6. Proofs

6.1. Lemmas
Proof of Lemma 1. The result follows from the following inequality:

aL
i − aL

j =

i
∑

l= j+1

(

aL
l − aL

l−1

)

<

i
∑

l= j+1

(

aH
l − aH

l−1

)

= aH
i − aH

j

�

Proof of Lemma 2. Assume j H
R > j L

R . Notice that for any j < j L
R we have that bH

j < bH
j L
R

because

preferences are single-peaked. Also, bL
j < bL

j L
R

since j L
R is the receiver’s most preferred action in

state L. Then, action j L
R strictly dominates any action j < j L

R for the receiver given any belief.
In a like manner, we can also see that any action j > j H

R is strictly dominated by j H
R for the

receiver given any belief. A similar reasoning applies for the case j H
R < j L

R . �

Proof of Lemma 3. Fix p < p−j S
and let δ be a solution of the primal problem for p. Suppose

that both informational incentive constraints are slack. Then, δ cannot be NR, since at any NR
communication equilibrium both informational constraints are binding. Hence, |supp(δ)| > 1.
By the complementary slackness condition (3.8) γ(H | L) = γ(L | H) = 0 and thus a∗(p) =
cav â(p). Therefore, δH

j = δ
L
j = 0 for all j > jS . Notice that

∑

j∈J

(

δL
j − δ

H
j

)

ak
j =

|J|−1
∑

j=1

















j
∑

l=1

δL
l −

j
∑

l=1

δH
l

















[ak
j − ak

j+1]

=

jS−1
∑

j=1

















j
∑

l=1

δL
l −

j
∑

l=1

δH
l

















[ak
j − ak

j+1] < 0
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where the inequality follows from (4.1), since jL
R < jH

R , and the fact that ak
j < ak

j+1 for all j < jS .
Thus, incentive compatibility for the type L is not satisfied, which contradicts the fact that δ
is a solution of the primal problem for p. Therefore, by proposition 3 only one informational
incentive constraint is active at δ, and it must be the constraint claiming that type L should not
gain by reporting H. A similar reasoning applies for p > p+j S

. �

6.2. Proof of Theorem 1
The Lagrangian of primal problem for p is

L(δ, p, γ) =
∑

k∈K

pk
∑

j∈J

δk
ja

k
j +
∑

k∈K

∑

k′∈K

γ(k′ | k)

















∑

j∈J

δk
ja

k
j −
∑

j∈J

δk′
j ak

j

















=
∑

k∈K

pkαk(δ; p, γ) (6.1)

where γ ≥ 0 and δ ∈ D(p).

Then, the dual problem for p, associated to the primal problem for p, is given by

min
α≥0

max
δ∈D(p)

L(δ, p, γ) = min
α≥0

max
δ∈D(p)

∑

k∈K

pkαk(δ; p, γ)

= min
α≥0

cav α̂(p; p, γ)

Thus, strong duality implies that a∗(p) = minα≥0 cav α̂(p; p, γ).

6.3. Propositions
Proof of Proposition 1. This follows from standard results in optimization theory (using the
duality theorem of linear programming). �

Proof of Proposition 3. Let p ∈ ∆(K) and assume that at most m(≤ |K|(|K| − 1)) informational
incentive constraints can be binding at any solution of the primal problem for p. Then, there
exist a set M ⊆ K × K such that |M| = m and any solution of the programming problem

max
δ≥0

∑

k∈K

pk
∑

j∈J

δk
ja

k
j (6.2)

s.t.
∑

j∈J

δk
ja

k
j ≥
∑

j∈J

δk′
j ak

j, ∀(k, k′) ∈ M

∑

k∈K

δk
j p

kbk
j ≥
∑

k∈K

δk
j p

kbk
i , ∀i, j ∈ J

∑

j∈J

δk
j = 1, ∀k ∈ K

is a solution of the primal problem for p, and viceversa. Let δ̄ be a solution of (6.2). Let
N = supp(δ̄) and n = |N |. If n ≤ |K| + m, there is nothing to prove. Then, assume that
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n > |K| + m. Consider the linear programming problem

max
θ≥0

∑

k∈K

pk
∑

j∈J

θ j δ̄
k
ja

k
j (6.3)

s.t.
∑

j

θ j δ̄
k
ja

k
j ≥
∑

j

θ j δ̄
k′
j ak

j, ∀k, k′ ∈ M

∑

j∈J

θ j δ̄
k
j = 1, ∀k ∈ K

Because δ̄ is a solution of (6.2), the vector θ̄ ≥ 0 defined by θ̄ j = 1 for all j ∈ N and θ̄ j = 0 for
all j ∈ J \N solves the linear program (6.3). By a fundamental result of linear programming, we
can always find a solution of (6.3) among the extreme points of its feasible set. Therefore, since
(6.3) has |K| + m constraints, it has a basic feasible solution θ̃ ≥ 0 with no more than |K| + m
strictly positive components. For every j ∈ J and k ∈ K, we define δ̃k

j = θ̃ j δ̄
k
j ≥ 0. Then, δ̃

satisfies |supp(δ̃)| ≤ |K| + m,
∑

j∈J

δ̃k
j =
∑

j∈J

θ̃ j δ̄
k
j = 1, ∀k ∈ K

a(δ̃) =
∑

k∈K

pk
∑

j∈J

θ̃ j δ̄
k
ja

k
j =
∑

k∈K

pk
∑

j∈J

θ̄ j δ̄
k
ja

k
j = a(δ̄)

and
∑

k∈K

δ̃k
j p

kbk
j = θ̃ j

∑

k∈K

δ̄k
j p

kbk
j ≥ θ̃ j

∑

k∈K

δ̄k
j p

kbk
i =
∑

k∈K

δ̃k
j p

kbk
i , ∀i, j ∈ J

In summary, δ̃ is a solution of the primal problem for p with |supp(δ̃)| ≤ |K| + m. �

Proof of Proposition 4. We start by proving the first statement. Assume that j H
R < j L

R and let δ
be a communication equilibrium inducing some revelation of information. Then, |supp(δ)| > 1.
Since j H

R < j L
R ,
∑ j

l=1 δ
L
l ≤
∑ j

l=1 δ
H
l for all j ∈ J, with strict inequality for every j ∈ supp(δ).

Therefore, the sorting condition implies that

∑

j∈J

(

δL
j − δ

H
j

)

aL
j =

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aL
j+1 − aL

j ]

<

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aH
j+1 − aH

j ]

=
∑

j∈J

(

δL
j − δ

H
j

)

aH
j

Thus, incentive compatibility for type H implies that incentive compatibility for type L cannot
be satisfied. Therefore, the unique communication equilibria are non-revealing.

Now we prove the second statement. Assume that j H
R > j L

R and let δ be a communication
equilibrium inducing some revelation of information. Again, because |supp(δ)| > 1, the sorting
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condition together with (4.1) imply that

∑

j∈J

(

δL
j − δ

H
j

)

aL
j =

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aL
j+1 − aL

j ]

>

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aH
j+1 − aH

j ]

=
∑

j∈J

(

δL
j − δ

H
j

)

aH
j

Hence, whenever one incentive constraint is binding, the other is slack. �

Proof of Proposition 5. We prove the statement only for the case j L
S = J. The other case

is analogous but using the preferences of the type H. Let δ be a communication equilibrium
inducing some revelation of information, so that |supp(δ)| > 1. Because preferences are single-
peaked, aL

j < aL
j+1 for all j ∈ J. A.1 implies (4.1). Then,

∑

j∈J

(

δL
j − δ

H
j

)

aL
j =

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aL
j+1 − aL

j ] < 0

Hence, any communication equilibrium is non-revealing. �

Proof of Proposition 6. Let δ be a communication device solving the problem (3.2) for p. Then,
paH(δ)+ (1− p)aL(δ) = cav â(p) (recall that (3.2) has no information incentive constraints). If δ
is NR, there is nothing to prove. Hence, assume that δ induces some revelation of information,

so that |supp(δ)| > 1. Since p ∈
[

p−
j L
S
, p+

j H
S

]

, δH
j = δ

L
j = 0 for any action j < j L

S or j > j H
S . Thus

we have that

∑

j∈J

(

δL
j − δ

H
j

)

aL
j =

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aL
j+1 − aL

j ]

=

j H
S
∑

j= j L
S

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aL
j+1 − aL

j ] > 0

since j H
R > j L

R implies (4.1) and aL
j+1 < aL

j for all j > j L
S . Similarly,

∑

j∈J

(

δL
j − δ

H
j

)

aH
j =

|J|−1
∑

j=1

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aH
j+1 − aH

j ]

=

j H
S
∑

j= j L
S

















j
∑

l=1

δH
l −

j
∑

l=1

δL
l

















[aH
j+1 − aH

j ] < 0

because aH
j+1 > aH

j for all j < j H
S . We conclude that δ is incentive compatible for the sender, and

thus it is a communication equilibrium achieving cav â(p). �

29



Proof of Proposition 7. We start proving the first assertion. Fix j < jS and p ∈ [p−j , p
+
j ].

Consider the communication device δ̂ defined by

δ̂H
j =

p−j ρ̂
−
j

p , δ̂
H
j+1 =

p+j ρ̂
+
j

p , δ̂
H
j H
R
=

1−ρ̂−j −ρ̂
+
j

p

δ̂L
j =

(1−p−j )ρ̂−j
1−p , δ̂

L
j+1 =

(1−p+j )ρ̂+j
1−p , δ̂

L
j H
R
= 0

This communication device induces posterior beliefs p j = p−j , p j+1 = p+j and p j H
R
= 1, with

probabilities ρ̂−j , ρ̂+j and 1 − ρ̂+j − ρ̂
−
j , respectively. Clearly, δ̂ is incentive compatible for the

receiver. By the definition of (ρ̂−j , ρ̂
+
j ), the incentive constraint asserting that type L should not

gain by reporting H is binding at δ̂. Then, proposition 3 implies that the constraint asserting that
type H should not gain by reporting L is slack. Therefore, δ̂ is a communication equilibrium of
Γ(p).

Notice that
a(δ̂) = ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂+j − ρ̂

−
j ) aH

J

Then, we have to show that δ̂ is an optimal solution of the primal problem for p.

Now, let γ̂ be a solution of the dual for p. By lemma 3, γ∗ ≡ γ̂(H | L) > 0. Because the
incentive constraint of the type H is slack, complementary slackness implies that γ̂(L | H) = 0.
Therefore, the virtual utilities of the sender are

αH
i (p, γ∗) = aH

i −
γ∗

p aL
i , αL

i (p, γ∗) = aL
i +

γ∗

1−p aL
i

Consider the (p, γ∗)-virtual persuasion game. By inducing posterior beliefs p j = p−j , p j+1 = p+j
and pJ = 1, with probabilities ρ̂−j , ρ̂+j and 1 − ρ̂+j − ρ̂

−
j , respectively, the sender guarantees an

expected virtual payoff equal to

ρ̂−j α̂(p−j ; p, γ∗) + ρ̂+j α̂(p+j ; p, γ∗) + (1 − ρ̂+j − ρ̂
−
j )αH

J
(p, γ∗)

= ρ̂−j

[

p−j α
H
j (p, γ∗) + (1 − p−j )αL

j (p, γ∗)
]

+ ρ̂+j

[

p+j α
H
j+1(p, γ∗) + (1 − p+j )αL

j+1(p, γ∗)
]

+(1 − ρ̂+j − ρ̂
−
j )αH

J
(p, γ∗)

= ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂+j − ρ̂
−
j ) aH

J

+γ∗
[

ρ̂−j
p−p−j

p(1−p) a
L
j + ρ̂

+
j

p−p+j
p(1−p) a

L
j+1 −

1−ρ̂+j −ρ̂
−
j

p aL
J

]

= ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂+j − ρ̂
−
j ) aH

J

+γ∗
∑

i∈J

[

δ̂L
i − δ̂

H
i

]

aL
i

= ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂+j − ρ̂
−
j ) aH

J

Then, the sender guarantees a(δ̂) in both the primal problem and the dual problem. Thus, by the
optimality property of weak duality

a∗(p) = ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂+j − ρ̂
−
j ) aH

J
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Therefore, δ̂ satisfies the complementary slackness condition (3.8) and the optimality condition
(3.9) for the dual variables γ̂. We conclude that δ̂ is an optimal solution of the primal problem
for p.

Assume that aL
j = aL

J
and consider p ∈ (p−j , p

+
j ]. Then, ρ̂+j = 0 and ρ̂−j < 1. Hence, by lemma 1,

aH
J
> aH

j . Therefore, we have

a∗(p) = ρ̂−j â(p−j ) + (1 − ρ̂−j ) aH
J

> ρ̂−j â(p−j ) + (1 − ρ̂−j ) aH
j

= paH
j + (1 − p)aL

j

= â(p)

Assume now that aL
j > aL

J
and consider p ∈ (p−j , p

+
j ), so that, 0 < ρ̂+j < 1. Observe that

a∗(p) = ρ̂−j â(p−j ) + ρ̂+j â(p+j ) + (1 − ρ̂+j − ρ̂
−
j ) aH

J

= â(p) + ρ̂+j
[

p+j
(

aH
j+1 − aH

j

)

+ (1 − p+j )
(

aL
j+1 − aL

j

)]

+ (1 − ρ̂+j − ρ̂
−
j )
(

aH
J
− aH

j

)

= â(p) + ρ̂+j
[

p+j
(

aH
j+1 − aH

j

)

+ (1 − p+j )
(

aL
j+1 − aL

j

)

+

(

p−p−j
ρ̂+j (1−p−j ) −

p+j −p−j
1−p−j

)

(

aH
J
− aH

j

)

]

= â(p) + ρ̂+j
[

p+j
(

aH
j+1 − aH

j

)

+ (1 − p+j )
(

aL
j+1 − aL

j

)

+
p+j −p

1−p

aL
j+1−aL

j

aL
j −aL

J

(

aH
J
− aH

j

)

]

> â(p) + ρ̂+j
[

p+j
(

aH
j+1 − aH

j

)

+ (1 − p+j )
(

aL
j+1 − aL

j

)

+
p+j −p

1−p

aL
j+1−aL

j

aL
j −aL

J

(

aL
J
− aL

j

)

]

= â(p) + ρ̂+j
[

p+j
(

aH
j+1 − aH

j

)

+ (1 − p+j )
(

aL
j+1 − aL

j

)

−
p+j −p

1−p

(

aL
j+1 − aL

j

)

]

> â(p) + ρ̂+j
[

p+j
(

aL
j+1 − aL

j

)

+ (1 − p+j )
(

aL
j+1 − aL

j

)

−
p+j −p

1−p

(

aL
j+1 − aL

j

)

]

= â(p) + ρ̂+j
1−p+j
1−p

(

aL
j+1 − aL

j

)

> â(p)

We proceed in a similar fashion for (ii ), this time using the communication device

δ̃H
j−1 =

p−j ρ̃
−
j

p , δ̃
H
j =

p+j ρ̃
+
j

p , δ̃
H
J
= 0

δ̃L
j−1 =

(1−p−j )ρ̃−j
1−p , δ̃

L
j =

(1−p+j )ρ̃+j
1−p , δ̃

L
J
=

1−ρ̃−j −ρ̃
+
j

1−p

�
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