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Learning mathematics through programming: 
An instrumental approach to potentials and pitfalls

Morten Misfeldt and Stine Ejsing-Duun

Aalborg University, Research Lab: ICT and Design for Learning, Copenhagen, Denmark, misfeldt@learning.aau.dk

In this paper, we explore the potentials for learning 
mathematics through programming by a combination 
of theoretically derived potentials and cases of practi-
cal pedagogical work. We propose a model with three 
interdependent learning potentials as programming 
which can: (1) help reframe the students as producers 
of knowledge and artifacts, (2) support abstraction and 
encapsulation, and (3) promote thinking in algorithms. 
Programming is a topic that has recently gained inter-
est in primary and lower secondary education levels 
in various countries, and hence a specific analysis of 
the potentials in relation to mathematics is paramount. 
Analyzing two cases, we suggest a number of ways in 
which didactical attention to epistemic mediation can 
support learning mathematics.

Keywords: Programming, Constructionism, APOS theory, 

Algorithmic thinking, instrumental approach.

INTRODUCTION 

Programming and mathematics are often thought of 
as strongly connected activities. Partly because of 
their shared genes – the first computers were con-
ceptualized and build by mathematicians – but also 
because programmers attend to logic, procedures, 
and functions in order to obtain their goals. Over 
the years a number of projects in mathematics ed-
ucation aimed at utilizing programming to obtain 
mathematical learning goals with the students. The 
earliest of these projects tended to collapse in main-
stream implementation due a complex combination of 
lacking technological readiness of the school system, 
teacher competences, and more principal didactical 
difficulties with connecting programming activities 
to accepted mathematical curricular goals. 

Recently, several countries have included basic pro-
gramming in the national curriculum. In some of these 

countries (such as Estonia and France) programming 
is placed in direct curricular connection to mathe-
matics, whereas in others (England, and Sweden) 
programming is related more to a design and engi-
neering agenda. However, in all cases the focus is not 
on developing general “humanistic” skills with tech-
nology, rather it is on thinking in algorithms, writing 
programs, and developing technology. In other coun-
tries such curricular changes are being discussed and 
tested on a small scale. Hence, it makes sense to take 
a closer look at the arguments that have previously 
been proposed for utilising programming in mathe-
matics education. In this paper, we will modestly at-
tempt to describe these arguments, however in order 
to compare and combine previous thoughts on this 
topic we will employ the instrumental approach to the 
use of Information and Communication Technology 
(ICT) in mathematics education. The instrumental ap-
proach was developed in a French didactical tradition 
to meet the challenge that computer algebra systems 
posed to mathematics education and it has in the last 
decade become a European mainstream framework 
for addressing ICT in mathematics education. 

In this paper, we investigate the mathematical learn-
ing potentials in programming activities by a com-
bination of literature and empirical observations in 
classroom settings. Furthermore we explore if the 
instrumental approach can be activated in order to 
study these potentials empirically. We will describe 
some of the main intellectual projects and frameworks 
in mathematics education that used programming as 
a means to obtain mathematical learning goals. We 
suggest classifying these projects in three clusters; 
(1) viewing students as producers, (2) supporting ab-
stract thinking, and (3) developing algorithmic think-
ing. Using the instrumental approach as theoretical 
framework we describe two educational situations 
utilizing pupils’ programming activities in order to 
learn mathematics.
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WAYS OF THINKING ABOUT TEACHING 
MATHEMATICS WITH PROGRAMMING

Investigation the intersection between mathematics 
and programming has many aspects. Mathematics 
and logic gave birth to programming with the pio-
neering work of Turing and others. Furthermore 
computing is influencing mathematical work in many 
areas of society. However the interaction between pro-
gramming and mathematics that we focus on here, 
relates to curricular activities in primary and lower 
secondary school and we aim at understanding the 
potential synergies between learning mathematics 
and learning programming. 

The tools that we choose to bring to mathematics stu-
dents do influence the learning of mathematics that 
becomes likely or possible (Guin et al., 2005, Ainley, 
Pratt, & Hansen, 2006). And in that sense bringing pro-
gramming into mathematics teaching does support 
certain types of learning. Bringing programming into 
the classroom with the purpose of learning mathemat-
ics easily leads to a version of the planning paradox; 
the more detailed the teacher articulates the mathe-
matical learning goal, the more difficult it can be for 
pupils to appropriate programming as a personal 
instrument (Ainley et al., 2006).

Students as producers: Constructionism 
and a different mathematics 
Serious attempts to use programming in teaching 
mathematics in primary and lower secondary school 
started with Seymour Papert. Papert’s idea was sim-
ple–to create an interactive universe (microworld) 
that children access through mathematics, which 
prompts them to think mathematically by embed-
ding nuggets of mathematical knowledge into the 
microworld that the pupils playfully stumble upon 
while developing projects.

As a means to obtain this goal, Seymour Papert devel-
oped the programming language LOGO, where the 
child steers a small turtle around the screen with 
commands such as “forward 10” and “right 90”. The 
turtle can leave a trace allowing the child to create 
various geometrical figures. Papert’s pedagogical 
strategy, constructionism, suggests that children 
learn in a particularly efficient way when they are 
engaged in developing constructs such as beautiful 
patterns, interactive art, computer games, etc., and in 
his bestseller, Mindstorms (1980), he describes LOGO 

as a ‘mathematical microworld’ that allows children 
to engage in such projects. The teacher’s role in such 
work is to connect the children’s work and intentions 
to “powerful ideas” from our mathematical heritage 
(Papert, 2000). 

During the 1980s there was great enthusiasm and 
confidence that LOGO and similar programming lan-
guages would radically reform mathematics teach-
ing in primary schools, and the first ICMI study on 
technology in mathematics education was focussed 
on how technology influenced mathematics as a 
topic (Churchhouse & International Commission on 
Mathematical Instruction, 1986). However, the results 
in mainstream implementation did not entirely live 
up to the expectations. There are a number of reasons 
for the disappointing results; for instance, students 
easily overlook the nuggets of mathematical knowl-
edge (Noss & Hoyles, 1992, Ainley et al., 2006), making 
their work in the microworld non-mathematical. 

Abstraction and concept 
formation: APOS theory 
The idea that programming could be helpful in math-
ematics education in the late 1980s also developed in 
the context of teaching mathematics in high school 
and college. Here the geometric and artistically 
framed LOGO program was less popular. On the con-
trary, teachers often utilized common programming 
languages   such as BASIC, COMAL and PASCAL to 
support learning. One of the outspoken hopes was 
to create a process-oriented approach to abstract 
mathematics, basing abstract constructions in con-
crete numerical computations. The arguments for 
this approach were often based in constructivism and 
radical constructivism, which claims that all abstract 
learning has a concrete starting point, as well as in 
the and in the discussions of process-object duality 
(Sfard, 1991). Ed Dubinsky’s work is probably the 
clearest description of the learning potential of pro-
gramming (see Breidenbach et al., 1992). His theory is 
often referred to as APOS theory and it is situated in a 
radical constructivist framework (Glasersfeld, 1995). 
APOS is an acronym for action, process, object, and 
scheme. The theory describes mathematical concept 
formation as beginning with performing actions on 
well-understood mathematical objects; these actions 
can be organized in processes and encapsulated into 
objects. These objects can be related to one another 
in schemas. The encapsulation stage is, as famously 
described by Sfard (1991), crucial and hard. And the 
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schematic aspects of concept formation is similar to 
Skemp’s relational understanding (1971).  This rather 
general learning theory of mathematical concept for-
mation relates to the use of computers because they 
can significantly empower and enrich the concrete 
numerical calculations that are – in this conception – 
the necessary foundation for concept formation. 

Process approach to mathematics: 
Algorithmic thinking 
The ability to think in algorithms and procedures is 
promoted as an important learning goal in mathemat-
ics. Algorithmic thinking describes students’ ability 
to work with algorithms understood as systematic 
descriptions of problem-solving and construction 
strategies, cause-effect relationships, and events. 
A recipe is a good example of an algorithm: (1) Add 
all dry ingredients together. (2) Stir. (3) Add 2/3 cup of 
the water and stir. (4) If the dough is steady, then stir 
for 2 minutes. Otherwise, go to step (3) and add more 
water. Algorithmic thinking is about being able to 
develop, execute, and make machines to perform such 
algorithms. Donald Knuth (1985) views algorithms 
as a crucial phenomenon constituting the intersec-
tion between computer science and mathematics. He 
traces the study of algorithms to the mathematical 
masterpiece Al Kwarizm from the 9th century (Katz, 
1993). Knuth defines algorithms as follows (Knuth, 
1985, p. 170): 

I tend to think of algorithms as encompassing 
the whole range of concepts dealing with well-de-
fined processes, including the structure of data 
that is being acted upon as well as the structure 
of the sequence of operations being performed; 
some other people think of algorithms merely 
as miscellaneous methods for the solution of 
particular problems, analogous to individual 
theorems in mathematics. 

Hence algorithms, according to Knuth, consist of both 
a recipe and the actual objects dealt with by the recipe. 
Knuth analyzes the difference between mathematical 
thinking and algorithmic thinking. He finds that a 
first approximation algorithmic thinking relates to 
(1) representation, (2) reduction, (3) abstract reason-
ing, (4) information structures, and (5) algorithms. 
Mathematical thinking can, according to Knuth, relate 
to all of these, however other aspects are also pres-
ent such as (a) formula manipulation, (b) behavior of 
functions, (c) dealing with infinity, and (d) generaliza-

tion. Hence algorithmic thinking is strongly related 
to mathematical thinking but emphasizes specific and 
slightly different aspects than other types of mathe-
matical thinking. 

Before we introduce classroom examples exemplify-
ing these learning potentials, we will introduce the 
instrumental approach that we use as a general theo-
retical framework for the use of ICT for mathematics 
teaching. This framework will be used to analyze the 
cases and create a connected description of the differ-
ent learning potentials. 

THE INSTRUMENTAL APPROACH  

The instrumental approach (Guin, Ruthven, & 
Trouche, 2005) addresses students’ use of technology 
when learning mathematics from the perspective of 
appropriating digital tools for solving mathematical 
tasks. It builds on (Verillon & Rabardel, 1995), and 
views computational artifacts as mediating between 
user and goal (Rabardel & Bourmaud, 2003). The 
approach presupposes a continuation and dialectic 
between design and use, in the sense that a pupil’s 
goal-directed activity is shaped by his use of a tool (this 
process is often referred to as instrumentation), and 
simultaneously the goal-directed activity of the pupil 
reshapes the tool (this process is often referred to as 
instrumentalization) (Rabardel & Bourmaud, 2003, p. 
673). In students’ work with technology the distinction 
between epistemic mediations and pragmatic media-
tions (Guin et al., 2005; Rabardel & Bourmaud, 2003) 
operationalize the difference between learning with 
technology and just using technology to solve tasks. 
Epistemic mediations relate to goals internal to the 
user – affecting his or her conception of, overview of, 
or knowledge about something Rabardel & Bourmaud 
(2003) use the example of a microscope, and Lagrange 
(in Guin et al., 2005, ch. 5) refers to experimental uses 
of computers) and pragmatic mediations related to 
goals outside of the user – making a change in the 
world (Rabardel & Bourmaud use the example of a 
hammer, Lagrange (in Guin et al., 2005, ch. 5) refers 
to the mathematical technique of “pushing buttons”). 
Finally, Rabardel & Bourmaud (p. 669) introduce sensi-
tivity to a broader conception of the orientation of the 
mediation. Instrumented mediations can be directed 
towards (a combination of ) the objects of an activi-
ty (the solution of a task), other subjects (classmates, 
the teacher), and oneself (as a reflective or heuristic 
process). Hence the theoretical framework consists of 
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the concepts: instrumental genesis, as consisting of in-
strumentation and instrumentalization, the concepts 
epistemic and pragmatic mediations, as well as a sen-
sitivity towards the orientation of an instrumented 
mediation. The orientation of the mediation can be 
towards oneself, external objects, and other subjects. 

EXAMPLES OF LEARNING MATHEMATICS 
WITH PROGRAMMING 

These classroom observations are taken from the pro-
ject Children as Learning Designers in a Digital School. 
The project is the realization of a research call from 
the Danish Ministry of Education. The research pro-
ject is directed toward the area students own produc-
tion and student involvement (Levinsen et al., 2014) 
and it explores: 

1) How students’ digital production impact on learn-
ing processes and the qualification of learning 
results regarding subjects and trans-disciplines; 
and 

2) How ICT involves designs for learning that al-
low students to act as learning designers of their 
own learning practice in terms of form, framing, 
and content on their learning, engagement, and 
motivation. 

The project comprises of a number of interventions 
in different schools. The examples in this paper come 
from a mathematics class where children in 5th grade 
(approximately 11 years old) program games for peer 
pupils to play and discuss using iPads and the soft-
ware program Hopscotch. We present two activities 
that we suggest are related to the three different learn-
ing potentials described earlier.  

Creating a good game: “It has to be fun”
The first example relates directly to the students’ po-
tential as artifacts producers. Oliver is trying to solve 
a problem–he wants to move his figure using tilt (i.e., 
by tilting the iPad). He asks the others for help. Instead 
of suggesting a solution, Ally asks him, “Why aren’t 
you just tapping it?” Oliver answers, “Because it’s a 
game, Ally. It should be fun.”

The motivation for Oliver is obviously that the game 
he creates should be fun.  Programming is merely a 
means for obtaining that goal. Throughout the course 
of the intervention Oliver gets really far in the process 

of making games. He is very independent and on his 
own he examines other games in order to, e.g., make 
points. 

For the same reason – wanting to develop good games – 
more pupils want to make countdowns, scoring sys-
tems, control with arrows, etc. They know the game 
genre well and what is needed to make a good game. 
These elements can only be done using variables. 
Despite the lack of algebra knowledge (algebra is con-
sidered “above their level” in the school), half the class 
voluntarily and with a high level of focus attends as the 
teacher demonstrates how to use algebraic concepts 
(variable and coordinate systems) to make an arrow 
control. In order to move one object (e.g., the avatar) 
by touching another object (e.g., an arrow) the pupils 
need to make a move-variable. Despite the emergence 
of this rapid algebra course, the pupils are not working 
with a task defined by the teacher. The teacher has 
merely defined a frame, “make a game”, and the pupils 
themselves start defining tasks within it.

From an instrumental perspective the pupils’ inter-
est in understanding the mathematical concepts that 
the teacher are oriented towards can be viewed as a 
pragmatic end of creating a good game. Such an end is 
indirectly oriented towards peer students as players 
of their games. Obtaining the pragmatic goal of creat-
ing a game does require students to obtain epistemic 
goals – in this case about variables and the coordinate 
system – as sub-goals along the way. But understand-
ing and acknowledging that there are mathematical 
sub-goals might not be so easy. In this case, mathemat-
ical sub-goals are strongly supported by the teacher’s 

Figure 1: Oliver’s first game, “Eat them all”. The player controls the 

parrot by tilting the iPad. The goal is to eat the toasts and avoid 

the purple devils
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choice to create a “what kind of math do I need in order 
to make my game” crash course, deliberately focusing 
the pupils’ attention on the mathematical aspects of 
creating arrow control and scoring systems.  

Thinking in algorithms
The second example we initially see as relating to al-
gorithmic thinking, but also to using programming 
as a way to support later abstraction and reification. 
The activity is introductory (just after the teacher has 
introduced the course structure and learning objec-
tives). In plenary, the pupils and the teacher program 
a small cardboard figure that the teacher has set up 
on the whiteboard. They decide to call him ‘Puff ’. The 
teacher challenges the pupils by asking how to make 
Puff do various things and the following dialogue 
happened (translated from field notes): 

Teacher: Puff can only speak mathematics. How 
can I make him go right? 

Zack: Go right. 
Teacher:  He does not know how far he should go.
Marc: Go 2 centimeters to the right.
Teacher:  Yes, but unfortunately he does not know 

centimeter on the screen. 
Austin:  Displace two units to the right. 
Teacher:  Yes, units he understands. But he does 

not know what right is.
Ann:  You must move to a coordinate.
Oliver:  If he should go to the left, then: Go -3.
Ann:  Could you get him to go to a coordinate? 
Teacher:  Yes, he would go there–but he would 

then fly around.

The teacher demonstrates her point by moving the 
cardboard figure from one point to another instead of 
sliding between points. She then shows how moving 
with a positive number makes Puff go right and neg-
ative number, as suggested by Oliver, will make him 
move left. After some discussion the teacher raises 
another issue:

Teacher: They [the sprites in Hopscotch] are ego–
they see the world from their own noses. 
How do you think he can go downwards? 

Girl:  I am just guessing...can he rotate de-
grees?

Teacher:  Yes he can. 
Zack:  Rotate 90° clockwise.
Teacher:  Now, you have to try programming each 

other. Give each other a rule and a signal. 

Use rotation and units. Make a square 
by controlling the other orally.

Pupils work together in pairs. They try to control each 
other. Zack and his teammate come over to the teacher 
and are frustrated. Zack says that he does not know 
which way to turn when she just says “turn 90° de-
grees”. His teammate complains that he “just lies down 
on the floor” instead of moving around. The teacher 
talks with them about being precise and setting an 
x- and y-axis on the floor. 

This example shows how pupils struggle with trans-
lating programming the figure on the whiteboard, 
which has two dimensions, to programming each 
other in three dimensions. Zack understood that the 
language should be precise, but he also teases on pur-
pose. Several pupils have this kind of negotiation with 
mathematical concepts (turning, coordinate system, 
etc.), but some are also getting away with just saying 

“turn 90 degrees right/clockwise” without their part-
ners correcting them. Those who are being controlled 
sometimes find that if they follow the instructions 
they end up walking into things, especially as the 
units are not precisely specified. Most use one step 
as a unit, some are using one foot as a unit.

By having pupils translate the programming activi-
ty to a classroom situation the teacher promotes re-
flection on the relationship between spatiality and 
algorithms. Another consequence of having pupils 
mediate programs by playing roles is that they get an 
understanding of what precision means. After this 
introduction the pupils described programming as 
a mathematical language that you ‘speak’. From an 
instrumental perspective, the pupils here aim at af-
fecting other subjects directly through programming 
and it has the effect that they negotiate what a good 
algorithm is and what it means to be precise in such 
instructions. It is a classical point that learning to 
program can benefit from attempting both to act as 
the creator of algorithms and as the performer (this is 
described as “playing turtle” by Papert, 1980). But it is 
interesting that the pupils’ negotiation of the instruc-
tions is resolved by the teacher through introducing 
mathematical concepts (the 2-dimensional coordinate 
system). The teacher consistently introduces the solu-
tions to pupils’ problems in mathematical terms; this 
seems like a strong didactical strategy that supports 
the pupils talking and thinking about mathematics 
when they work.  
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THE CHALLENGE OF MAINTAINING 
AN EPISTEMIC FOCUS

In this section, we will discuss whether the mathe-
matics learning potentials that have previously been 
suggested in the literature about programming and 
mathematics education can be viewed as genuine 
mathematics learning potentials in the sense that they 
involve epistemic mediations towards mathematical 
concepts. It is obvious from the cases that the pupils 
need help with mathematical concepts when they try 
to appropriate a programming language to develop 
their games. The two examples show how such situ-
ations can facilitate the engagement with classical 
mathematical concepts such as numbers, the coordi-
nate system, and orientation/angles. In both cases the 
pupils interact with the teacher, each other, and games 
developed by others in order to handle the challenges. 
But one can discuss whether the overall pragmatic 
purpose of improving their skills with Hopscotch and 
potentially making a better game support or hinder 
the pupils’ epistemic focus on mathematical concepts. 
The analysis shows that it is – in these specific cases – 
not reasonable to disregard this as only a pragmatic 
mediation with little educational value. But this could 
very well have been the case if the teacher had not 
been so careful in attracting the pupils’ attention to 
explicit and relevant mathematical ideas. However, 
the pupils also bring in mathematical ideas (for in-
stance, about angles) without being prompted by the 
teacher. Hence it would be meaningful to investigate 
further how the classroom norms and shared ideas 
about mathematics (the sociomathematical norms 
discussed by Cobb, Stephan, McClain, & Gravemeijer, 
2001) affect the mathematical value of introducing 
programming. 

By using the instrumental approach it is apparent 
that pupils’ epistemic relation to mathematics is nec-
essary for programming to be successful in mathe-
matics education. We see several ways that this epis-
temic relation can be strengthened or hindered. The 
teacher did acknowledge and talk about the different 
goal-levels of an activity; this allowed her to talk di-
rectly about mathematical goals, even though these 
where sub-goals of the larger goal of creating a good 
game. Constantly focusing attention on mathemati-
cal concepts as problem solvers and conflict settlers 
were also actively applied by the teacher, especially 
when the pupils programmed each other. When the 
pupils are either negotiating or in cognitive conflict, 

this teacher turns to mathematical concepts and prin-
ciples as part of the way forward for the pupils. In 
that sense our analysis suggest that the potentials for 
learning mathematics through programming, as pre-
viously described in the literature, depends largely 
on the teacher’s approach and didactical principles. 
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