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Crossing the bridge: From a constructionist 
learning environment to formal algebra

Eirini Geraniou and Manolis Mavrikis

Institute of Education, University College London, UK, e.geraniou@ioe.ac.uk, m.mavrikis@ioe.ac.uk 

In the digital era, it is crucial to explore how digital tech-
nologies can be successfully integrated in the mathe-
matics classroom and what their potential impact on 
learning is. This paper presents some reflections based 
on data gathered as part of the MiGen project (www.mi-
gen.org1) from studies aimed to investigate ways to sup-
port the transition to formal Algebra, through the use of 
a constructionist learning environment and carefully 
designed ‘bridging’ activities that consolidate, support 
and sustain students’ algebraic ways of thinking. Our 
claim is that explicit links need to be made to Algebra 
through those specially designed activities so that such 
a digital tool can support students’ learning of formal 
Algebra in order to be successfully integrated in the 
mathematics classroom.

Keywords: Generalisation, microworlds, transition, algebra.

INTRODUCTION

In the last few decades, the number of appearances of 
digital technologies designed for mathematics learn-
ing keeps growing. Relevant research (e.g., EACEA 
Eurydice Report, 2011), though, has shown that these 
technologies are not always used to their full or in-
tended potential and also, students rarely use ideas, 
concepts or strategies they seem to have acquired 
through their interactions with such technologies. For 
example, Gurtner (1992), referring to the Logo environ-
ment, demonstrated that the tool’s features which are 
designed to support students when faced with complex 
mathematical problems may impede them from making 

1  The MiGen project was funded by the ESRC/EPSRC Technology 

Enhanced Learning Programme (RES-139-25-0381 2007–

2011). Part of the research reported here was in the context 

of an ESRC ‘Follow-on’ project (ES/J02077X/1) and the M C 

Squared project, which was co-funded by the EU, under FP7 

Strategic Objective ICT-2013.8.1 “Technologies and scientific 

foundations in the field of creativity” (Project No. 610467).

connections between their work in Logo and any math-
ematical or geometrical ideas they are already familiar 
with and use when problems seem less complex. Also, 
the lack of information on why and how to build bridges 
to formal mathematics, which were not often made in 
standard Logo situations, led to the lack of connections 
to formal mathematics (Gurtner, 1992). In this paper, we 
discuss our approach to support students’ transition of 
moving back and forth from paper-and-pencil to inter-
acting with digital tools and therefore consider ways 
of facilitating the integration of digital technologies 
in mathematics classrooms. In particular, our focus is 
on the transition to formal Algebra and how students 

‘transfer’ their knowledge from their interactions with 
a digital tool, namely eXpresser, specially designed to 
support and address students’ difficulties with learning 
algebra, to paper-and-pencil (PaP) activities.

There is a lot of research on the issue of ‘transfer’ (e.g., 
DiSessa & Wagner, 2005). Our interpretation is closely 
aligned with Beach (2003) who has argued that the 
metaphor should be viewed as transition instead of 
transfer. Crossing boundaries from one location to 
another is in fact a process of transition and there-
fore people are the ones who move and not knowledge 
or learning. In the case of Logo, Gurtner (1992) con-
sidered “the type of connections generally expected, 
and very seldom observed, between Logo practice and 
mathematics” (p. 247) as transfer and suggested that 
there is a need for a long period of practicing in Logo, 
especially one which is rich in reflection, so that some 
transfer to mathematics can happen. 

Going back to our focus on Algebra, the transition to 
formal Algebra has been investigated by various au-
thors (e.g., Radford, 2014) and the literature is replete 
with examples of student difficulties (e.g., Stacey & 
MacGregor, 2002). Students struggle to understand 
the idea behind using letters to represent any value 
(Duke & Graham, 2007) and are inexperienced with 
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mathematical vocabulary. Even students capable of 
expressing a general rule through the use of words, 
like ‘always’ or ‘every’, struggle to use letters and sym-
bols and form algebraic expressions.

Similarly to Radford (2014), who claimed that there is a 
need for specially designed classroom activity to sup-
port students’ developmental path to formal Algebra, 
and to Gurtner (1992), who suggested presenting 
structured tasks, using appropriate microworlds 
and making explicit interventions during students’ 
interactions, we claim that a digital tool specially de-
signed to support the development of algebraic ways 
of thinking (AWOT) together with carefully designed 
bridging activities should ‘smoothen’ the transition 
to formal algebra without rendering it impossible for 
students to reach the mathematical ‘bank of algebra’. 
Besides ‘learning’ the tool and developing expertise 
in using it, students should make the connections to 
mathematics. The issue is to find out ways for sup-
porting students to make such connections.

EXPRESSER AND THE 
TRANSITION TO ALGEBRA

The MiGen system is a pedagogical and technical envi-
ronment that improves 11–14 year-old students’ learning 
of algebraic generalisation. Its core component consists 
of a microworld, eXpresser, which has been specially de-
signed to help students develop AWOT through a series 
of generalisation tasks (Noss et al., 2012). In eXpresser, 
students construct figural patterns by expressing their 
structure through repeated building blocks of square 

tiles, and articulating the rules that underpin the calcu-
lation of the number of tiles in the patterns. A typical 
activity in eXpresser asks students to reproduce a dy-
namic model (or part of it) presented in a window that 
appears on the side of the activity screen.

Figure 1 shows a model where a row of red tiles is 
surrounded by grey tiles. Students are asked to 
construct a model that works for any number of red 
tiles, and find a rule for the total number of tiles sur-
rounding the red tiles. They can test generality by 
animating the model: that is, by letting the computer 
change the number of red tiles at random. The design 
of eXpresser capitalises on animated feedback and 
on the simultaneous representation of a specific and 
general model (‘My Model’ and ‘Computer’s Model’ 
in Figure 2), built by combining patterns and on the 
close alignment of the symbolic expression, the Model 
Rule and the structure of the model. All numbers in 
eXpresser are constants by default, referred to as 

‘locked’ numbers. When the user ‘unlocks a number’, 
it is possible to change its value; it becomes a varia-
ble. In the Computer’s Model, a value of the variable 
(‘Num of Red Tiles’ in this example) is chosen auto-
matically at random (it is ‘10’ in Figure 2) which will 
generally be different from that in the specific model 
(‘6’ in Figure 2). So the Computer’s Model indicates to 
students whether their constructions are structural-
ly correct for the different values of the variable(s). 
Students also construct a model rule for the total num-
ber of tiles, and validation of its correctness is made 
evident by colouring: tilings are only coloured if the 
rule for the number required is correct.

Figure 1: A model for 8 red tiles surrounded by grey 

tiles. Students must construct a general model and 

find the general rule

Figure 2: The eXpresser screen showing the general and specific models 

(Computer’s Model on the left, and My Model on the right), and a correct rule 

for the total number of surrounding tiles. The task goals are shown in the “Activity 

window” (lower left-hand corner)
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To make connections to formal Algebra feasible and 
support the transition from interactions with the eX-
presser tool to PaP Algebra, we had to consider what 
characterizes formal Algebra and more specifically 
AWOT. Algebra involves a number of mathematical 
concepts, from numbers, to variables, from numeri-
cal expressions to expressions that involve the use of 

‘unknown’ numbers and functions. Various authors 
have characterised algebra as ‘generalised arithmetic’ 
(e.g., Kieran & Chalouh, 1993). For example, Sfard and 
Linchevksi (1994) distinguished between the operation-
al phase, where “the focus is on numerical processes 
and there is no hint of abstract objects rather than num-
bers” (p. 197) and the structural phase, which involves 
processes of manipulations of symbols. They argued, 
therefore, that there are “two crucial transitions: from 
the purely operational algebra to the structural algebra 

‘of a fixed value’ (of an unknown) and then from here to 
the functional algebra (of a variable)” (p. 191). Leading 
on from these distinctions, Radford (2014) considered 
three conditions that characterise algebraic thinking: 
(i) indeterminacy, which is about recognising the use 
of ‘unknown’ values in the form of variables, parame-
ters, etc.; (ii) denotation, involving the symbolisation 
of the undetermined values of the problem in question 
that can include the use of natural language, gestures, 
signs, as well as a mixture of these or symbols and (iii) 
analyticity, involving the skill of manipulating the in-
determinate quantities like known values.

In the case of the eXpresser tool in our previous work 
(Mavrikis et al., 2013), we have identified two AWOT. 
The first one is:(i) Perceiving structure and exploiting 
its power, which is about noticing what stays the same 
and what is repeated in a figural sequence so as to un-
derstand how the sequence is ‘structured’, supporting 
therefore “the development of structural reasoning” 
and the habits of “breaking things into parts” by iden-
tifying “the building blocks of a structure” (Cuoco, 
Goldenberg, & Mark, 1996, p. 69). This AWOT, espe-
cially as it is operationalized in eXpresser that en-
courages students to construct what they perceive and 
manipulate the various properties of their construc-
tions, could relate to Radford’s (2014) indeterminacy 
and analyticity conditions, but also to the initial tran-
sition from the operational to the structural algebra 
of a fixed value of an unknown as described by Sfard 
and Linchevski (1994) above. The second AWOT is: (ii) 
Recognising and articulating generalisations, including 
expressing them symbolically, which is the process of 
translating the observed structure in an algebraic 

expression, using formal algebraic notation to write 
general rules for numerical sequences. This AWOT 
can be linked to Radford’s (2014) denotation condition 
as well as the second transition from the structural 
algebra to the more functional algebra of a variable 
(Sfard & Linchevski, 1994), as its focus is on the pro-
duction of formal algebraic expressions. 

BRIDGING ACTIVITIES

We designed a sequence of activities both to help stu-
dents become familiar with the tool but also to facili-
tate the transition to algebra. The sequence starts with 
introductory and practice tasks that ask students to 
construct figural models. It continues with individual 
activities, such as the one described above (see Figure 1). 
Students were asked to construct the task model in eX-
presser using different patterns and combinations of 
patterns, depending on their perceptions of the task 
model’s structure and derive a general rule for the num-
ber of square tiles needed for any Model Number. In our 
initial studies, students were presented with off-com-
puter tasks, immediately after the final eXpresser task 
in an effort to reveal their strategies on solving similar 
tasks on paper and whether eXpresser had an impact on 
those strategies or not. In later studies, though, and af-
ter close collaboration with teachers, we recognised the 
need of activities, which promote students’ reflections 
upon mathematical concepts and problem-solving strat-
egies they used throughout their interactions with eX-
presser and not just at the end. These we referred to as 
consolidation tasks. So, throughout their interactions 
with eXpresser and immediately afterwards, students 
were presented with four types of bridging activities 
(examples are given in Figure 3), which are designed 
to support their transition to paper-and-pencil tasks: 
(i) Consolidation tasks, which are usually short tasks 
that are used to intervene and encourage students to 
reflect on their interactions with eXpresser throughout 
a sequence of eXpresser tasks, (ii) Collaborative tasks, 
which are presented at the end of an eXpresser task and 
focus on students’ justification strategies regarding 
rule equivalence, (iii) eXpresser-like paper tasks, which 
are figural pattern generalisation tasks on paper, and 
(iv) text-book or exam like tasks, which are the traditional 
generalisation tasks given to students on paper.

STUDENT DATA

Over the past 7 years, we have carried out studies in 
6 different schools in London, worked with 11 mathe-
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matics teachers and collected data from 553 students 
aged 11–14 years old. Each study was carried out over 
the course of four consecutive lessons, during which 
students became familiarised with the tool through 
some simple tasks, worked on one or two main activ-
ities and then were given bridging activities. A sam-
ple of students was interviewed at the end of their 
interactions with eXpresser. All students had been 
introduced to Algebra at school before their interac-
tions with eXpresser, but of course their experience 
varied based on their age. Our data comprise one-to-
one and small groups of students’ and teachers’ in-
terviews and transcripts, video and audio files from 
interviews, one-to-one, small groups and classroom 
observations, detailed logs from students’ interac-
tions in the form of a database and bridging activities. 
Results from our studies are presented in a number 
of papers (e.g., Mavrikis et al., 2013; Noss et al., 2012; 
Geraniou et al., 2011). In this paper, we focus on the 
data collected from the bridging activities students 
worked on independently (or in pairs/groups of 3 
for the collaborative tasks) during, but mostly after 
their final interaction with eXpresser. Using the two 
AWOT described in Mavrikis and colleagues (2013), 
as an analytical framework for interpreting students’ 
strategies, we present our initial results under those 
two headings.

(i) Perceiving structure and exploiting its power. For the 
consolidation tasks, which were used with 175 stu-
dents as their necessity was identified later in our 
studies, most of the 175 students demonstrated on the 
model figures presented on paper how they visualised 
the structure of the given model. In Figures 4, 5, 6 
and 7, we present some examples of students’ answers 
on the four bridging activities presented in Figure 3. 
Students clearly marked the different parts that would 
remain the same in any instance of the pattern and the 
parts, which, repeated every time, create the different 
instances of the pattern. Especially for the collabora-
tive task, students verbally identified their building 
blocks in their models and rules and compared them 
to conclude about their equivalence. An example of 
two students’ collaboration and its outcome is pre-
sented in Figure 5. Students demonstrated a variety of 
ways to visualise the task patterns and it was evident 
how influenced they were by the eXpresser’s features 
as they were using the eXpresser terminology, e.g., 
number of building blocks or models. For example, in 
Figure 6 [F], [G] and [H], students drew the 2 building 
blocks that they could use if they were solving this task 
in eXpresser, that of a column of 3 square tiles and 
that of an ‘L’- shaped one of 5 tiles. For example, Janet 
named her independent variable as “number of red 
BBs” (BBs stands for Building Blocks), and even though 

Figure 3: Examples of Bridging Activities
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Nancy, named hers as ‘Nancy’, she used eXpresser’s 
terminology in her discussions with Janet. 

(ii) Recognising and articulating generalisations, ex-
pressing them symbolically. Students seemed to rely 
on the structure of the given task model in order to 
articulate a general rule. Most of them provided clear 
explanations to justify their derived rules.

Their work revealed some fluency in using the formal al-
gebraic language. They identified what stayed the same 
and translated that into a constant in their rule. For ex-
ample, in Figure 6 [H], the student annotated their rule 
(5xM)+3 and showed that the coefficient 5 is the number 
of repeated building blocks in their second building 
block. The constant 3 is the number of tiles in their first 
building block, which is not repeated. Similarly, the stu-
dent in Figure 6 [G] successfully identified 2 building 
blocks, that produce the task model, and indicated which 
building block stays the same and which is repeated. 

Students’ answers revealed their ability to articulate 
general statements, such as “with every new model, 
another 7 is added and if there’s ‘M’ amount of models, 
it should be (7xM)+5” (Figure 4[A]) or “there is always 
2 chairs to the ends of the single tables, then 2 chairs 
on the end of all tables put together” (Figure 7[I]). But 
the crucial step was their ability to translate that gen-
eralisation in parallel to their visualised structures 
into general rules and argue about similarities (or 
differences) between their models and derived gen-
eral rules, when discussing rule equivalence (e.g., 
Figure 5). Most students used the eXpresser language 
and terms such as ‘model number’ to represent the 
variable in their rule (e.g., “5xwhatever model number 
n is+3”, Figure 6[D]), as an intermediate step before 
expressing their derived rules in a formal algebra-
ic expression (e.g., “(5xM)+3”, Figure 6[H]). During 
collaboration, most students seemed to reach similar 
conclusions. Janet and Nancy for example recognized 
that the simplified general rule for their models is 7n+5 

Figure 4: 13 year-old students’ answers on the Train-track consolidation activity

Figure 5: 12 year-old students’ discussion on the Collaborative bridging activity
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and that ‘n’ represents any model number. eXpresser 
seems to have played a crucial role in this outcome, as 
it encourages students to name their variables (‘un-
locked’ numbers) based on what their values represent 
and therefore allows students to give meaning to that 
variable, thus easing students’ transition to formal 
algebraic language.

Even though the bridging activities have been care-
fully designed to prevent students from looking for 
the term-to-term rule in a sequence, there were some 
students, especially in the text-book like bridging ac-
tivities, who reverted to their past experiences and 
worked out the answers for each consecutive term in 
a sequence. For example, in Figure 7 [L], the student 
calculates the number of chairs when having 1 table, 
2 tables, 3 tables, etc. Despite, their focus on the term-
to-term rule, they spotted the correct general rule and 
wrote “Chairs=tablesx2+4”. Such an outcome though 
may be ephemeral and more work is needed to sup-

port the sustainability and longevity of any AWOT 
formed soon after interacting with eXpresser.

CONCLUSION

When solving problems, mathematicians do not need 
to stop and think, but instead get into a “mechanical 
mode” (Sfard & Linchevski, 1994). Similarly, students 
who become experts in a digital tool may learn how to 
interact with it procedurally and provide right answers, 
but not necessarily reflect on and consolidate their 
knowledge during their interactions. Consequently, 
they may fail in developing a robust understanding of 
the mathematical concepts (and procedures) the tool 
was designed to help them with and may not be able 
to offer mathematically valid justifications for their 
actions. Such an outcome can discourage teachers 
from using digital tools in their mathematics lessons, 
as they are not convinced of their value.

Figure 6: 12 year-old students’ work on the eXpresser-like Bridges bridging activity

Figure 7: 12 year-old students’ work on Tables and Chairs textbook-like activity
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In the case of eXpresser, the examples presented 
above reveal how students seem to successfully cross 
the ‘bridge’ from eXpresser algebra to formal algebra. 
Students demonstrated a conceptual understanding 
behind the development of general rules and general-
ised and adopted AWOT when solving PaP generalisa-
tion tasks. eXpresser, through the use of its language, 
supported students in their transition from numbers 
to ‘unknown’ numbers and variables and made the 
transition to symbolic thinking successful. In our ex-
perience, for such transitions to be successful, there 
is a need for bridging activities making the connec-
tions to algebra explicit. Their need and value have 
been mentioned by Gurtner (1992) too, who argued 
that ‘the do-math-without-noticing-it’ philosophy of 
Logo can be abandoned in favour of techniques that 
explicitly present looking for connections” (p. 253). We 
also recognised, similarly to Gurtner’s (1992) research 
that “In contrast to the more classical transfer model 
[…] useful bridges can be built from the beginning, 
as soon as work has started in both domains” (p. 265). 
This was addressed by the consolidation tasks. There 
also seems to be the need for a long period of practice 
with eXpresser, rich in reflection and consolidation, 
before transfer to mathematics can be possible.

We have investigated the initial transition from a 
constructionist learning environment to the PaP al-
gebraic generalisation tasks, and we have only started 
looking at the further transition to tasks that focus on 
abstract algebra, as described by Sfard and Linchevski 
(1994). The main concern is to identify and make more 
explicit the residual knowledge that gets noticed 
particularly by the interaction with constructionist 
learning environments. A successful integration in 
our view involves the successful transition from in-
teracting with a digital tool to the awareness of the 
knowledge that can potentially be transferred to PaP 
activities and identifying ways to encourage the sus-
tainability of such knowledge. Our aim remains to in-
vestigate further the issues of ‘Transfer’ and ‘Bridging’ 
and support the implementation of digital tools in the 
classroom through carefully designed and innovative 
bridging activities that consolidate and sustain stu-
dents’ mathematical ways of thinking.
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