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Abstract

The aim of this paper is to study the convergence of the solution

of the Fokker-Planck equation to the associated stationary state when

time goes to infinity. The force field which we consider here is of

a general structure, that is it may not derive from a potential. The

proof is based on an adequate splitting L = B+A of the Fokker-Planck

operator L and the use of Krein-Rutmann theory.
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1 Introduction and main results

In this paper we study the Fokker-Planck equation

{

∂tf = ∆f + div(Ef)
f(0, x) = f0.

(1.1) eq:1.1

We assume that (1 + |x|2)k/p f0 ∈ Lp(Rd) for some k ≥ 0 and E : Rd 7→ R
d.

Unlike previous works, we consider a general vector field E, which does not
derive necessarily from a potential. Under suitable assumptions on the vector
field we establish that f(t) → M(f0)G with exponential rate as time t goes
to infinity. The function G stands for the positive stationary solution of (

eq:1.1
1.1)

with total mass equal to 1, and the mass of a function is defined throughout
this paper by

M(g) :=

∫

Rd

g(x)dx, for all integrable function g

We thus generalise similar results obtained by M.P. Gualdani, S. Mischler
and C. Mouhot in

GMM
[6], where the force field E is assumed to be of the form

E = ∇ϕ+ U , with ϕ : Rd 7→ R is of class C2, and U : Rd 7→ Rd is of class C1

are such that, div(Ue−ϕ) = 0. In that case, it is noticed that µ := e−ϕ is a
stationary solution, and a Poincaré inequality

∫

Rd

|u−M(u)|2e−ϕdx ≤ C

∫

Rd

|∇u|2e−ϕdx

holds. For instance one may choose a function ϕ of the form

ϕ(x) =
1

γ
|x|γ + c0,

where γ ≥ 1 and c0 ∈ R is such that
∫

Rd

e−ϕ(x)dx = 1,
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that is µ = e−ϕ is a probability mesure. Thus under some appropriate
conditions on the function ϕ they prove that the solution f of (

eq:1.1
1.1) converges

to M(f0) µ, when t goes to infinity, where we denote

M(f0) :=

∫

Rd

f0(x)d(x) =

∫

Rd

f0(x)dx. (1.2) eq:1.2

1.1 Hypotheses

Throughout this paper, we assume that the following assumption (H0) holds:

(H0) The vector field E ∈ W 1,∞
loc (Rd,Rd).

Furthermore in the statement of our results we may require some of the
following assumptions:

(H1) For some constants α, α2 > 0 ≥ 0, and β, β2 ∈ R and exponents

1 < γ ≤ γ2 ≤ 2

and for all x ∈ Rd, the following holds

α|x|γ − β ≤ x · E ≤ α2|x|γ2 + β2. (1.3) eq:1.3

(H2) There exist β0 ∈ R and some k > 0 such that the following holds

− div(E) + k
x

1 + |x|2 · E ≥ β0. (1.4) eq:1.4

(H3) There exists ω⋆ > 0 and R > 0 large enough, such that for all k > 0,
p ∈ [2,+∞), and for all x ∈ R

d satisfying |x| > R, we have

− kd+ k(k + d− 2)|x|2
(1 + |x|2)2

− p

p′
div(E) + k

x

1 + |x|2 · E ≥ ω⋆. (1.5) eq:1.5

An example of such vector fields is given by

E := E0 + E1,

where

E0 :=
∇〈x〉γ
γ

and E1 ∈ C1(Rd;Rd), E1 → 0 when |x| → +∞.
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1.2 Main results

We shall denote by L2
k the space

L2
k := L2

k(R
d) :=

{

f ∈ L2(Rd) ;

∫

Rd

|f(x)|2〈x〉kdx <∞
}

and the linear operator (L,D(L)) by

Lu := div(∇u+ Eu), for u ∈ D(L) :=
{

u ∈ L2
k ; Lu ∈ L2

k

}

. (1.6) eq:1.6

We shall see that the linear operator L generates a C0-semigroup on L2
k. Now

we are in a position to state our first result regarding the stationnary solution
of (

eq:1.1
1.1).

thm:GS Theorem 1.1. Let (L,D(L)) be defined by (
eq:1.6
1.6). Assume that hypotheses

(H1) and (H2) hold with p = 2 in (H2). Then the equation (
eq:1.1
1.1) has a

stationary solution. More precisely there exists a unique function G ∈ L2
k,

strictly positive, such that

LG = 0 and

∫

Rd

G(x)dx = 1. (1.7) eq:1.8

The following is our main result regarding the evolution equation.

thm:Cv-GS Theorem 1.2. Assume that hypotheses (H1), (H2) and (H3) hold and let
f0 ∈ L2

k the initial datum of (
eq:1.1
1.1) be given. Then there exists a unique

function f ∈ C ([0,∞) ; L2
k) solution to (

eq:1.1
1.1). Moreover, there exist a real

number ω > 0 and a constant C > 0 such that

∀ t ≥ 0 ‖f(t)−M(f0)G‖L2

k
≤ C exp (−ωt) ‖f0 −M(f0)G‖L2

k
. (1.8) eq:1.9

2 Definitions and notations

We recall in this section some definitions and notations. We denote

〈x〉 := (1 + |x|2)1/2 and 〈x〉k :=
(

1 + |x|2
)

k
2 .

We define the Lebesgue spaces Lp
k(R

d) and the Sobolev spaces H1
k(R

d) as
follows:

Lp
k(R

d) :=
{

f ∈ Lp(Rd) ;

∫

Rd

|f(x)|p〈x〉kdx <∞
}

,
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for all p, k ∈ R such that k > 0 and p ≥ 1. We endow these spaces with their
natural norms. The scalar product of L2

k is defined by

(f |g)k :=
∫

Rd

f(x)g(x)〈x〉kdx,

for all f and g ∈ L2
k. We set

H1
k(R

d) :=
{

f ∈ L2
k(R

d) ; ∇f ∈ (L2
k(R

d))d
}

.

It is clear that the space C∞
c (Rd) is dense in Lp

k for p <∞, as well as in H1
k .

We recall that RL(λ) := (λ − L)−1 denotes the resolvent operator of L
for some given λ such that the operator (λ− L) has a bounded inverse and
SL(t) := exp(tL) denotes the semigroup generated by L.

To prove Theorems
thm:GS
1.1 and

thm:Cv-GS
1.2, our approach is based on the decom-

position of the operator L as follows: for an appropriately chosen bounded
operator B, we shall split L in the form L = B + A, where the operator A
is so that there is some τ0 ∈ R such that for all τ > τ0, the linear operator
A− τI is m-dissipative, (See J. Scher and S. Mischler

JM
[8]). With the above

assumptions we shall describe the appropriate splitting for L, and thereby
for SL(t). Indeed the mild solution of

df

dt
− Lf =

df

dt
−Af − Bf = 0,

is given by

f(t) = SL(t)f0 and also by f(t) = SA(t)f0 +

∫ t

0

SA(t− τ)BSL(τ)f0dτ.

Where SA(t) = exp(tA). This means that we can write the semigroup SL(t)
split as follows:

SL(t) = SA(t) + (SA ∗BSL)(t), (2.1) eq:Rel-Conv

where the convolution ∗ is defined by

(SA ∗ (BSL))(t) :=

∫ t

0

SA(t− τ)BSL(τ)f0dτ.

Analogously we may consider the equation

dv

dt
− Av = 0 with initial data v(0, x) = v0(x),
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and since we have Av := Lv − Bv, we conclude that

dv

dt
− Lv = −Bv with v(0, x) = v0(x).

This implies that

SA(t)v0 = SL(t)v0 −
∫ t

0

SL(t− τ)BSA(τ)v0dτ.

and then one sees again that (
eq:Rel-Conv
2.1) can also be written as follows:

SL(t) = SA(t) + (SL ∗BSA)(t). (2.2) eq:Rel-Conv-bis

The remainder of this paper is organized as follows. In section 3, we state
preliminary results wich are used in the sequel. In section 4, existence of
a the stationary solution will be investigated. And in the last section 5,
we explore the stability issue for the evolution equation (

eq:1.1
1.1) and prove our

second main result, Theorem
thm:Cv-GS
1.2.

3 Preliminary results

In this section we discuss the existence of a solution for the evolution equation
(
eq:1.1
1.1) in some Banach spaces. To this end we study some properties of the
linear operator (L,D(L)).

thm:Exist-SG Proposition 3.1. Assume that (H2) holds with p = 2. Consider (L,D(L))
defined by (

eq:1.6
1.6). Then there exists λ0 := λ0(2) ∈ R such that for all λ ≥ λ0

and for f ∈ L2
k we have

((λ− L)f |f)k ≥ (λ− λ0)‖f‖L2

k
.

That is, the linear operator (L,D(L)) is the generator of a C0-semigroup of
contraction on L2

k. Moreover if f0 ∈ L2
k is the initial data of (

eq:1.1
1.1), there exists

f ∈ C ([0, T ];L2
k) solution of (

eq:1.1
1.1) associated to f0 and f(t) := SL(t)f0.

Proof. We aim to show that there exists λ0 ∈ R such that for any λ ≥ λ0,
the operator L− λI is m-dissipative, more precisely

((λ− L)f |f)k ≥ (λ− λ0)‖f‖L2

k
.
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For f0 ∈ L2
k, consider the following problem: find a function f ∈ D(L) such

that
− Lf + λf = f0. (3.1) eq:2.1

We begin by showing that for an appropriate choice of λ, the operator−L+λI
is coercive. Indeed for, ϕ ∈ C∞

c , we have

(−Lϕ|ϕ)k = −
∫

Rd

div(∇ϕ(x) + E(x)ϕ(x))ϕ(x) 〈x〉kdx.

Thus integrating by parts we botain

(−Lϕ|ϕ)k =

∫

Rd

(∇ϕ(x) + E(x)ϕ(x)) · ∇(ϕ(x) 〈x〉k)dx.

Now computing ∇(ϕ(x) 〈x〉k) = ∇ϕ(x) 〈x〉k + ϕ(x)∇〈x〉k, and using this
expression in the identity above, we get

(−Lϕ|ϕ)k = I1 + I2 + I3 + I4,

where for convenience we denote

I1 :=

∫

Rd

|∇ϕ(x)|2〈x〉kdx, I2 :=

∫

Rd

ϕ(x)∇ϕ(x) · E(x) 〈x〉kdx,

I3 :=

∫

Rd

ϕ(x)∇ϕ(x) · ∇〈x〉kdx, and I4 :=

∫

Rd

ϕ(x)2E(x) · ∇〈x〉kdx.

We rewrite I2 as

I2 =
1

2

∫

Rd

∇(ϕ2) · E〈x〉kdx,

and then we integrate by parts to obtain

I2 = −1

2

∫

Rd

ϕ2div(E〈x〉k)dx.

Since div(E〈x〉k) = div(E)〈x〉k + E · ∇〈x〉k, then I2 becomes:

I2 = −1

2

∫

Rd

ϕ2div(E)〈x〉k − 1

2

∫

Rd

ϕ2E · ∇〈x〉kdx.

Summing I2 and I4 we obtain

I2 + I4 = −1

2

∫

Rd

ϕ2div(E)〈x〉kdx+ 1

2

∫

Rd

ϕ2E · ∇〈x〉kdx.
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The term I3 can be also rewritten as

I3 =
1

2

∫

Rd

∇(ϕ2) · ∇〈x〉kdx,

which, integrated by parts, yields

I3 = −1

2

∫

Rd

ϕ2∆〈x〉kdx.

Summing together I1, I2, I3 and I4 we obtain

(−Lϕ|ϕ)k =
∫

Rd

|∇ϕ|2〈x〉kdx+ 1

2

∫

Rd

ϕ2Ψk(x)

〈x〉k 〈x〉kdx, (3.2) eq:2.2

where we have set

Ψk(x) := −∆〈x〉k − div(E) + E · ∇〈x〉k. (3.3) eq:2.3

Using the expressions

∇〈x〉k := k
x

1 + |x|2 〈x〉
k, (3.4) eq:nabla-x

and

∆〈x〉k := (kd+ k(k + d− 2)|x|2) 1

(1 + |x|2)2 〈x〉
k, (3.5) eq:laplacian-x

we obtain

Ψk(x)

〈x〉k = −kd+ k(k + d− 2)|x|2
(1 + |x|2)2 − div(E) +

kx

1 + |x|2 · E.

Thus using hypothesis (H2) with p = 2 we find

Ψk(x)

〈x〉k ≥ β0 −
kd+ k(k + d− 2)|x|2

(1 + |x|2)2 .

now setting

λ0 := max
x∈Rd

[
kd

1 + |x|2 +
k(k − 2)|x|2
(1 + |x|2)2 − β0]. (3.6) eq:2.4

One obtains the following inequality

(−Lϕ|ϕ)k ≥
∫

Rd

|∇ϕ|2〈x〉kdx− λ0

∫

Rd

ϕ2〈x〉kdx ≥ 0. (3.7) eq:2.5
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This inequality, together with a density argument, implies that λ − L is
coercive for all λ > λ0. This means that for all λ > λ0 we have

((λ− L)ϕ|ϕ) ≥
∫

Rd

|∇ϕ|2〈x〉kdx+ (λ− λ0)

∫

Rd

ϕ2〈x〉kdx.

Then an elementary application of Lax-Milgram lemma in the space H1
k(R

d)
implies that for any λ > λ0 and any f0 ∈ L2

k, equation (
eq:2.1
3.1) has a unique

solution f ∈ H1
k .

Now, for µ > 0 given and f0 ∈ L2
k the equation

[I + µ(λ0 − L)]f = f0 f ∈ D(L) (3.8) eq:2.6

has a unique solution, since it is equivalent to

(
1

µ
+ λ0)f − Lf =

1

µ
f0

and as we have λ := λ0 +
1
µ
> λ0. Multiplying (

eq:2.6
3.8) by f yields

‖f‖2L2

k
≤ (f0|f)k,

from wich we deduce that the unique solution of (
eq:2.6
3.8) satisfies

‖f‖2L2

k
≤ ‖f0‖2L2

k
,

that is the operator (L−λ0I) is m-dissipative. This means that the operator
(L− λI) generates a C0-semigroup of contraction on L2

k:

‖e−t(λ0−L)f0‖L2

k
≤ ‖f0‖L2

k
.

From this it is classical to deduce that the solution of (
eq:1.1
1.1) is given by

f(t) := etLf0 = SL(t)f0

and that f ∈ C([0,+∞);L2
k). Moreover we have

‖etLf0‖L2

k
≤ eλ0t‖f0‖L2

k
.

This completes the proof of the Proposition
thm:Exist-SG
3.1.
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It is useful to note that for any f0 ∈ L2
k with f0 ≥ 0, when the hypothesis

(H3) is satisfied and λ > −ω⋆/2 the solution of

λf − Lf = f0, f ∈ D(L), (3.9) eq:Weak-Max

satisfies f ≥ 0.

Lemma 3.2. (Weak maximum principle). Assume that the hypotheses
(H0) and (H3) are satisfied. We have

(Lf |f−) ≥
∫

Rd

|∇f−(x)|2 〈x〉k dx+ ω⋆

2

∫

Rd

|f−(x)|2 〈x〉k dx, (3.10) eq:Coercive-1

where ω⋆ is given by (
eq:1.5
1.5). If f0 ∈ L2

k and f0 ≥ 0, then for any λ > −ω⋆/2
the solution of (

eq:Weak-Max
3.9) exists and satisfies f ≥ 0.

Proof. Indeed, to see this, we note that for f ∈ D(L) we clearly have f− ∈ H1
k

and thus

(Lf |f−)k = −
∫

Rd

∇f(x) · ∇f−(x) 〈x〉k dx−
∫

Rd

f(x)E(x) · ∇(f−(x) 〈x〉k) dx.

Now, since we have

f = f+ − f−, ∇f = ∇f+ −∇f− and f+∇f− = 0,

in a first step this allows us to see that

(Lf |f−)k =

∫

Rd

|∇f−|2〈x〉kdx+
∫

Rd

f−(x)∇f−(x) · ∇〈x〉kdx

+

∫

Rd

f−(x)E · ∇f−(x) 〈x〉kdx+
∫

Rd

|f−(x)|2E · ∇〈x〉kdx.

Now integrating by parts in the second and the third terms of the identity
above we obtain

(Lf |f−)k =

∫

Rd

|∇f−|2〈x〉kdx− 1

2

∫

Rd

|f−|2∆〈x〉kdx

− 1

2

∫

Rd

|f−|2div(E)〈x〉kdx+ 1

2

∫

Rd

|f−|2E · ∇〈x〉kdx.
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Using the expressions of ∇〈x〉k and that of ∆〈x〉k on the one hand, and the
fact that ω⋆ satisfies (

eq:1.5
1.5), we conclude that

(Lf |f−) ≥
∫

Rd

|∇f−(x)|2 〈x〉k dx+ ω⋆

2

∫

Rd

|f−(x)|2 〈x〉k dx,

which is precisely (
eq:Coercive-1
3.10).

Also, proceeding as above one can see that for any f ∈ H1
k we have

(−Lf |f) ≥
∫

Rd

|∇f(x)|2 〈x〉k dx+ ω⋆

2

∫

Rd

|f(x)|2 〈x〉k dx. (3.11) eq:Coercive-H3

Therefore, thanks to the Lax-Milgram theorem equation (
eq:Weak-Max
3.9) has a unique

solution when λ > −ω⋆/2. Moreover, when f0 ≥ 0, multiplying (
eq:Weak-Max
3.9) by f−

and integrating by parts we have

0 ≤ (f0|f−) = −λ‖f−‖2L2

k
− (Lf |f−)L2

k
.

Using (
eq:Coercive-1
3.10) it follows that

0 ≤ −
∫

Rd

|∇f−(x)|2 〈x〉k dx−
(

λ+
ω⋆

2

)
∫

Rd

|f−(x)|2 〈x〉k dx,

which, since λ+ (ω⋆/2) > 0 implies f− ≡ 0, that is f ≥ 0.

Our next useful result is the fact that the semigroup SL(t) is positivity
preserving.

lem:Positif Lemma 3.3. Let f0 ∈ D(L) be nonnegative and assume that the hypotheses
(H0) and (H3) hold. Then SL(t)f0 ≥ 0, that is the solution f of (

eq:1.1
1.1)

associated to the initial data f0 is nonnegative.

Proof. Assume that f0 ∈ D(L) with f0 ≥ 0, and consider the equation

∂tf = Lf, f(0) = f0. (3.12) eq:2.7

We aim to show that f(t) ≥ 0 for all t ≥ 0. To this end we consider f−

the negative part of f. It is clear that since f ∈ C1
(

[0,∞);L2
k), we have

f ∈ D(L) and f− ∈ H1
k . Therefore we may multiply (

eq:2.7
3.12) by −f−, to get

−
∫

Rd

∂tff
−〈x〉kdx = −(Lf |f−)k ≤ −ω

⋆

2
‖f−‖2L2

k
,
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thanks to (
eq:Coercive-1
3.10). Since f−∂tf = −∂t((f−)2)/2 we see that

1

2

d

dt

∫

Rd

|f−(x)|2 〈x〉kdx ≤ −ω
⋆

2
‖f−‖2L2

k
,

and using Gronwall’s lemma we conclude that

∫

Rd

|f−(x)|2〈x〉kdx ≤ exp(−ω⋆t)

∫

Rd

|f−
0 (x)|2 〈x〉k dx,

from which, since f−
0 ≡ 0, we infer that f− ≡ 0, that is f ≥ 0.

lem:SG-Lp Lemma 3.4. Assume that the hypotheses (H0)–(H3) hold for some p ∈
[2,∞). Then there exists λ0(p) ∈ R such that for any λ ≥ λ0(p), the semi-
group SL(t) generated by (L,D(L)) is also a C0-semigroup on Lp

k.

Proof. Let f0 ∈ Lp
k and assume that f0 ≥ 0. We aim to show that for

λ > λ0(p) the equation (
eq:1.1
1.1) has a unique solution ϕ ∈ Lp

k such that Lϕ ∈ Lp
k.

To this end we consider the following problem: find ϕ ∈ Lp
k such that,

− Lϕ+ λϕ = f0. (3.13) eq:2.9

We begin by observing that for f0 ∈ C∞
c and f0 ≥ 0, the above equation

has a unique solution ϕ ∈ D(L) provided λ > λ0(p), where λ0(p) will be
precised later. We are going to show that when λ > λ0(p), where λ0(p) is
large enough, we have

‖ϕ‖Lp
k
≤ C‖f0‖Lp

k

for a constant C independant of f0. Then a standard density argument shows
that for any f0 ∈ Lp

k and f0 ≥ 0 equation (
eq:2.9
3.13) has a unique solution ϕ ∈ Lp

k

such that Lϕ ∈ Lp
k and ϕ ≥ 0.

Let ζ0 ∈ C∞
c

(

[0,∞)
)

such that

ζ0(s) =
{

1 if 0 ≤ s ≤ 1
0 if s ≥ 2,

where 0 ≤ ζ0 ≤ 1 and −2 ≤ ζ ′0(s) ≤ 0. For any integer n ≥ 1 we define

ζn(x) := ζ0

( |x|
n

)

. (3.14) eq:Def-zeta-n
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Since f0 ∈ L2
k, we know that for λ > λ0(2), where λ0(2) is given by Propo-

sition
thm:Exist-SG
3.1, there exists a unique solution ϕ ∈ D(L) of (

eq:2.9
3.13). Thus we may

multiply the latter equation by ϕp−1ζn and integrate by parts to obtain:

λ

∫

ϕp ζn 〈x〉k dx+
∫

∇ϕ · ∇(ϕp−1ζn 〈x〉k) dx+
∫

ϕE · ∇(ϕp−1ζn 〈x〉k) dx

=

∫

f0 ϕ
p−1ζn 〈x〉k dx (3.15)

In order to make the proof more clear, we are going to treat the second and
third integrals of the first line of the above equality separately, and show the
Lemma in several steps.
Step 1. The second term in the first line of the identity (

eq:Identity-1
3.15) can be written

as
∫

∇ϕ · ∇(ϕp−1ζn 〈x〉k) dx = A1 + A2 + A3, (3.16) eq:Identity-2

where we have set

A1 := (p− 1)

∫

Rd

|∇ϕ|2ϕp−2ζn 〈x〉k dx, A2 :=

∫

Rd

ϕp−1∇ϕ · ∇ζn 〈x〉k dx,
(3.17) eq:Def-A1A2

and

A3 :=

∫

Rd

ϕp−1∇ϕ · ζn∇〈x〉kdx. (3.18) eq:Def-A3

Regarding A2, writing ϕ
p−1∇ϕ as ∇(ϕp)/p and integrating by parts we have

A2 = −1

p

∫

Rd

ϕp (∆ζn) 〈x〉kdx−
1

p

∫

Rd

ϕp ∇ζn · ∇〈x〉kdx. (3.19) eq:A2

Using the expressions

∇ζn(x) := ζ ′0

( |x|
n

)

x

n|x| and ∇〈x〉k =
kx

1 + |x|2

in (
eq:A2
3.19) we obtain finally

A2 = −1

p

∫

Rd

ϕp (∆ζn) 〈x〉kdx−
1

p

∫

Rd

ϕp ζ ′0

( |x|
n

)

k|x|
n(1 + |x|2)〈x〉

kdx. (3.20) eq:A2-bis
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Analogously the term A3 can be also rewritten and one may check that

A3 =
1

p

∫

Rd

∇(ϕp) · ζn∇〈x〉kdx

= −1

p

∫

Rd

ϕp∇ζn · ∇〈x〉kdx− 1

p

∫

Rd

ϕpζn∆〈x〉kdx

= −1

p

∫

Rd

ϕpζ ′0

( |x|
n

)

k|x|
n(1 + |x|2)〈x〉

kdx

− 1

p

∫

Rd

ϕpζn
kd+ k(k + d− 2)|x|2

(1 + |x|2)2 〈x〉kdx. (3.21) eq:A3

Summing the equalities (
eq:A2-bis
3.20) and (

eq:A3
3.21) we obtain

A2 + A3 = −1

p

∫

Rd

ϕp (∆ζn) 〈x〉k dx−
2

p

∫

Rd

ϕp ζ ′0

( |x|
n

)

k|x|
n(1 + |x|2)〈x〉

kdx

− 1

p

∫

Rd

ϕpζn
kd+ k(k + d− 2)|x|2

(1 + |x|2)2 〈x〉kdx. (3.22) eq:A2A3

The facts that

0 ≤ ζn(x) ≤ 1, −2 ≤ ζ ′0(s) ≤ 0, |ζ ′′0 (s)| ≤ C,

and

−∆ζn =
−1

n2
∆ζ0

( |x|
n

)

≥ −C
n2

1[n≤|x|≤2n],

allow us to conclude first that

−
∫

Rd

ϕp ζ ′0(
|x|
n
)

k|x|
n(1 + |x|2)〈x〉

kdx ≥ 0,

and then from (
eq:A2A3
3.22) we infer that, since there exists a constant C > 0 such

that
kd+ k(k + d− 2)|x|2

1 + |x|2 ≤ C,

we finally have

A2 + A3 ≥ −C
∫

[n≤|x|≤2n]

ϕp 〈x〉k
n2

dx− C

∫

Rd

ϕp 〈x〉k
1 + |x|2dx. (3.23) eq:Minor-A2A3
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Step 2. The third term in the first line of the identity (
eq:Identity-1
3.15) can be written

as
∫

ϕE · ∇(ϕp−1ζn 〈x〉k) dx = A4 + A5 + A6, (3.24)

where we have set

A4 := (p−1)

∫

Rd

ϕp−1∇ϕ ·ζnE(x) 〈x〉kdx, A5 :=

∫

Rd

ϕp∇ζn ·E(x) 〈x〉kdx
(3.25) eq:A4A5

and

A6 :=

∫

Rd

ϕpE(x) · ζn∇〈x〉kdx. (3.26) eq:A6

Proceeding as above A4 can be rewritten as

A4 =
p− 1

p

∫

Rd

∇(ϕp) · ζn(x)E(x) 〈x〉k dx

= −p− 1

p

∫

Rd

ϕpζn div(E(x)) 〈x〉kdx−
(p− 1)

p

∫

Rd

ϕp∇ζn · E(x) 〈x〉kdx

− p− 1

p

∫

Rd

ϕp ζnE(x) · ∇〈x〉kdx.

Summing A4, A5, A6 we get

A4 + A5 + A6 = − 1

p′

∫

Rd

ϕp ζn div(E(x)) 〈x〉kdx

+
1

p

∫

Rd

ϕp∇ζn · E(x) 〈x〉kdx

+
1

p

∫

Rd

ϕp ζnE(x) · ∇〈x〉kdx. (3.27)

Since 0 ≤ −ζ ′0 ≤ 2, using the assumption (
eq:1.3
1.3) one checks that for n large

enough so that x · E(x) ≥ 0 for |x| ≥ n,

∇ζn(x) · E(x) = ζ ′0

( |x|
n

)

x

n|x| · E ≥ ζ ′0

( |x|
n

)

α2|x|γ2 + β2
n|x| 1[n≤|x|≤2n]

and so for n large enough we have

∇ζn(x) · E(x) ≥ −2
α2|x|γ2 + β2

|x|2 1[n≤|x|≤2n]. (3.28) eq:E-gradzeta

15



Then using hypothesis (H2) and the inequality (
eq:E-gradzeta
3.28) we obtain

A4 + A5 + A6 ≥
β0
p

∫

Rd

ϕpζn〈x〉kdx−
2

p

∫

Rd

ϕpα2|x|γ2 + β2
|x|2 〈x〉kdx.

Thus, setting

Ψk,p

〈x〉k :=
1

p

[ C

1 + |x|2 +
2k

1 + |x|2 +
C

1 + |x|2 + 2
α2|x|γ2 + β2

|x|2
]

,

and using (
eq:Minor-A2A3
3.23), we have that

A2 + A3 + A4 + A5 + A6 ≥ −1

p

∫

Rd

ϕpΨk,p

〈x〉k 〈x〉
kdx. (3.29) eq:A2-A6

Step 3. Now if we define

λ0(p) := max
x∈Rd

[Ψk,ζ

〈x〉k − β0
p

]

we obtain, thanks to (
eq:A2-A6
3.29), (

eq:Def-A1A2
3.17), (

eq:Identity-2
3.16) and (

eq:Identity-1
3.15), that

∫

Rd

f0ϕ
p−1ζn〈x〉kdx =

∫

Rd

(λ− L)ϕ ϕp−1ζn〈x〉kdx

≥ (λ− λ0(p))

∫

Rd

ϕpζn〈x〉kdx+ (p− 1)

∫

Rd

|∇ϕ|2ϕp−2ζn〈x〉kdx.

We may fix λ such that λ − λ0(p) ≥ 1 and upon using Young’s inequality,
that is the fact that ab ≤ εap/p + bp

′

/p′ for a, b ≥ 0, and choosing a := f0
and b := ϕp−1, we conclude that we have

p(p− 1)

∫

Rd

|∇ϕ|2ϕp−2 ζn 〈x〉kdx+
∫

Rd

ϕp ζn 〈x〉kdx ≤
∫

Rd

|f0|p ζn 〈x〉kdx,
(3.30)

It is clear now that letting n tend to ∞, we deduce that ϕ, the solution of
(
eq:2.9
3.13), belongs to Lp

k and
‖ϕ‖Lp

k
≤ ‖f0‖Lp

k
,

and that moreover
∫

Rd

|∇ϕ|2ϕp−2ζn〈x〉kdx <∞.

16



To finish the proof of the Lemma, when f0 ≥ 0 belongs only to Lp
k we

consider a sequence f0n ∈ C∞
c such that f0n ≥ 0 and f0n → f0 L

p
k and we

conclude by verifying easily that the corresponding solutions ϕn converge to
ϕ as n→ ∞.

Indeed we have also ‖ϕ‖Lp
k
≤ ‖f0‖Lp

k
and Lϕ ∈ Lp

k, which means that the
operator L− λI is m-dissipative on Lp

k.

Next we prove the following Nash type inequality which is going to be
useful later.

lem:Nash-k Lemma 3.5. Let f ∈ L1
k/2(R

d) ∩ H1
k(R

d), assume that k > 0 when d ≥ 2
and k ≥ 2 when d = 1. Then there exists a constant C > 0 such that the
following inequality holds

‖f‖2+
4

d

L2

k
≤ C‖f‖

4

d

L1

k/2

· ‖∇f‖2L2

k
. (3.31) eq:2.11

Proof. Let f ∈ L1
k/2(R

d) ∩H1
k(R

d), we write

∫

Rd

|f(x)|2〈x〉kdx =

∫

Rd

|f(x) 〈x〉 k
2 |2dx.

Therefore
‖f‖2+

4

d

L2

k
= ‖f 〈·〉 k

2 ‖2+
4

d

L2 .

Let us set ϕ(x) := f(x)〈x〉 k
2 , then by the Nash’s classical inequality (J. Nash

JFN
[10]) we have

‖ϕ‖2+
4

d

L2 ≤ C‖ϕ‖
4

d

L1‖∇ϕ‖2L2 ,

since f 〈·〉 k
2 ∈ H1. With simple calculations we can see that

∇ϕ = 〈x〉 k
2 ∇f +

k

2
f(x) 〈x〉 k

2
−2 x.

Thus we have

‖∇ϕ‖2L2 =

∫

Rd

|∇f |2〈x〉kdx+ k2

4

∫

Rd

|f |2|x|2〈x〉k−4dx.

+
k

2

∫

Rd

2f(x)∇f(x) · x〈x〉k−2dx

17



Integrating by parts the third integral on the right hand side above, we obtain

‖∇ϕ‖2L2 =

∫

Rd

|∇f |2〈x〉kdx−k
2

∫

Rd

f 2div(〈x〉k−2 x)dx+
k2

4

∫

Rd

|f |2|x|2〈x〉k−4dx.

Since we have

div(〈x〉k−2x) = (d+ (d+ k − 2)|x|2)〈x〉k−4.

We get

‖∇ϕ‖2L2 = ‖∇f‖2L2

k
+

∫

Rd

|f |2
[

k2

4
|x|2 − k

2
(d+ (d+ k − 2))|x|2

]

〈x〉k−4dx.

Note that
[

k2

4
|x|2 − k

2
(d+ (d+ k − 2))|x|2

]

= −k
2

[

d+ (d+
k

2
− 2)|x|2

]

.

Therefore when d ≥ 2 we have

d+
k

2
− 2 > 0

and
‖∇ϕ‖2L2 ≤ ‖∇f‖2L2

k

Otherwise if d = 1, we assume that k ≥ 2 and thus, in this case also

‖∇ϕ‖2L2 ≤ ‖∇f‖2L2

k

Replacing ϕ by f 〈x〉 k
2 , we obtain the lemma.

4 Existence of a stationary solution

In this section we are interested in the existence and uniqueness of a sta-
tionary solution. To find this solution we want to use the Krein-Rutmann’s
theorem revisited by J. Scher and S. Mischler

JM
[8]. For this we need some

notions of Banach lattices, which we are going to recall. Let us consider the
L2
k space equipped with its natural partial order ≥ . We set

(L2
k)+ :=

{

f ∈ L2
k ; f ≥ 0

}

(4.1)
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thm:Kat Lemma 4.1 (Kato’s inequality). For all f ∈ D(L) we have

L|f | ≥ sgn(f)Lf, (4.2) eq:Kato

in the sense of distributions.

For more details on kato’s inequality, one can refer to W. Arendt
WA
[1], T.

Kato
TK
[5] R.Nagel and H. Ulig

NU
[9] and B. Simon

BS
[13]. For more convenience we

give the following proof.

Proof. Let f ∈ D(L), by definition of D(L) we have f ∈ L2
k and Lf ∈ L2

k.
This implies in particular that f ∈ H1

k , that is ∇f ∈ L2
k and we have also

∆f ∈ L2
loc. Now consider the function

jε(s) := (ε2 + s2)1/2 − ε

for s ∈ R. A simple calculation gives

j′ε(s) =
s√

ε2 + s2
and j′′ε (s) =

ε2

(ε2 + s2)3/2
.

Note that j′′ε (s) ≥ 0. For f ∈ D(L) we compute ∇jε(f) and ∆jε(f) that is

∇jε(f) = j′ε(f)∇f (4.3)

and
∆jε(f) = j′′ε (f)|∇f |2 + j′ε(f)∆f. (4.4)

Then for all ϕ ∈ C∞
c such that ϕ ≥ 0, since j′′(f) ≥ 0 we have

〈∆jε(f), ϕ〉 ≥ 〈j′ε(f)∆f, ϕ〉. (4.5)

Since jε(f) → |f | in L2
k and ∆ϕ ∈ L∞ ∩ L1, we have in particular

∆jε(f) → ∆|f | in D
′(Rd).

Therefore
〈∆jε(f), ϕ〉 → 〈∆|f |, ϕ〉.

On the other hand using the definition of L we obtain the following inequality

〈Ljε(f), ϕ〉 ≥ 〈j′ε(f)∆f + div(jε(f)E), ϕ〉.
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The right hand side term of the above inequality can be rewritten as follows:

〈j′ε(f)∆f + div(jε(fE)), ϕ〉 = 〈j′ε(f)∆f + j′ε(f)∇f · E+ jε(f)div(E), ϕ〉.

Due to the fact that j′ε(f) → sgn(f) a.e. on Rd, one sees that

〈j′ε(f)∆f, ϕ〉 =
∫

Rd

j′ε(f)∆fϕdx→
∫

Rd

sgn(f)∆fϕdx.

On the other hand, since E and div(E) belong to L∞
loc(R

d), and using the
fact that ∇f · E ∈ L2

loc, as ε→ 0, we have

〈j′ε(f)∇f · E, ϕ〉 =
∫

Rd

j′ε(f)∇f ·Edx→
∫

Rd

sgn(f)∇f · Eϕdx.

So finally we infer that

〈j′ε(f)∆f + j′ε(f)∇f ·E, ϕ〉 → 〈sgn(f)∆f + sgn(f)∇f · E, ϕ〉,
when ε goes to 0. Analogously we have

〈jε(f)div(E), ϕ〉 =
∫

Rd

jε(f)div(E)ϕdx→
∫

Rd

|f |div(E)ϕdx,

when ε goes to 0, since |jε(f)| ≤ |f | ∈ L2
loc. Now we remind that |s| =

sgn(s) · s. Therefore we have

〈|f |div(E), ϕ〉 = 〈sgn(f) fdiv(E), ϕ〉,
and thus we obtain

〈L|f |, ϕ〉 = lim
ε→0

〈Ljε(f), ϕ〉 ≥ 〈sgn(f)∆f +∇|f | · E+ |f |div(E), ϕ〉.

However one may check that

∇|f | · E+ |f |div(E) = sgn(f)∇f ·E+ sgn(f)fdiv(E)

= sgn(f)
[

∇f · E+ fdiv(E)
]

,

from which we conclude that

sgn(f)∆f +∇|f | · E+ |f |div(E) = sgn(f)Lf,

and finally that for all ϕ ∈ D(Rd) such that ϕ ≥ 0 we have

〈L|f |, ϕ〉 ≥ 〈sgn(f)Lf, ϕ〉,
which is precisely the Kato’s inequality (

eq:Kato
4.2).
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The Kato’s inequality will stay true if we replace |f | by the positive part
of f , that is f+ := (|f |+ f)/2. In this case we have

Lf+ ≥ (1 + sgn(f))

2
Lf = 1{f>0} · Lf.

Remark 4.2. It is well known that if L satisfies Kato’s inequality then this
is equivalent to say that the semigroup which is generated by L is a positivity
preserving semigroup, in the sense that if f0 ≥ 0 then SL(t)f0 ≥ 0. See for
instance B. Simon

BS
[13], R. Nagel and H. Uhlig

NU
[9] [theorem 4.1 page 121])

or W. Arendt (
WA
[1][ theorem 1.6 page 159]).

Remark 4.3. The Kato’s inequality implies also the weak maximum princi-
ple: in other words, if f ∈ D(L) and Lf ≤ 0, then f ≥ 0.

thm:Str-MP Lemma 4.4 (Strong maximum principle). Let f ∈ D(L) ∩W 2,∞(Rd), then
the linear operator L satisfies a strong maximum priciple. i.e

(

f ≥ 0, f 6≡ 0 and Lf ≤ 0
)

⇒ f > 0. (4.6)

Proof. Let f ∈ D(L) be such that f 6≡ 0 and Lf ≤ 0 on Rd. By the weak
maximum principle, which is a consequence of Kato’s inequality Lemma

thm:Kat
4.1,

we know that f ≥ 0, and actually for any R > 0 we have

M(R) := inf
|x|≤R

f(x) ≥ 0.

If there exists R0 > 0 and x0 ∈ B(0, R0) such that f(x0) = 0, then M(R0) =
0, and consequently for any R > R0 we have also M(R) = 0. Therefore,
according to Hopf maximum principle (see for instance Theorem 5, chapter
2, section 3 of the classical book of M.H. Protter & H.F. Weinberger

Protter-Weinberger
[12]) we

have f ≡ 0 in B(0, R), for all R, and this contradicts the fact that f 6≡ 0 on
Rd.

thm:M-Cons Lemma 4.5 (Mass conservation for the semigroup). Let (L,D(L)) be defined
by (

eq:1.6
1.6). Then we have the following identity.

L∗1 = 0, in D(Rd), (4.7)

where L∗ is the formal adjoint:

L∗ϕ = ∆ϕ−E · ∇ϕ, ∀ ϕ ∈ C∞
c (Rd).
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thm:adj Proposition 4.6. Let (L,D(L)) be defined by (
eq:1.6
1.6) and. Assume that hy-

pothesis (H1) holds. Then there exists b ∈ R and a function ψ ∈ D(L∗),
ψ > 0, such that

L∗ψ ≥ bψ, in D
′(Rd). (4.8) eq:3.9

Proof. Let α0 > 0 and consider the function

ψ(x) := 〈x〉−α0 = (1 + |x|2)−α0/2.

One checks that if α0 is large enough, then ψ ∈ D(L∗). Using the expressions
(
eq:nabla-x
3.4) and (

eq:laplacian-x
3.5), where k is replaced with −α0, one checks that

L∗ψ

ψ
=
α0(α0 + 2− d)|x|2 − α0d

(1 + |x|2)2 +
α0 x ·E
1 + |x|2 .

Now using the fact that according to (
eq:1.3
1.3) the function x 7→ x · E has a

growth more than α|x|γ + β with γ ≤ 2 it is clear that

L∗ψ

ψ
≥ b := inf

x∈Rd

[

α0(α0 + 2− d)|x|2 − α0d

(1 + |x|2)2 +
α0(α|x|γ + β)

1 + |x|2
]

> −∞.

Thus we have proved the Proposition.

We will set

ω(L) := inf
{

b ∈ R , L− bI is m-dissipative
}

,

s(L) := sup
{

Re(z), z ∈ Σ(L)
}

and Σ(L) is the spectrum of L.

Now we will recall a result of S. Mischler and J. Scher
JM
[8, Theorem 4.3,

page 39] which reads :

thm:SM-JC Theorem 4.7. We consider an operator L, wich is a generator of a semi-
group SL(t) on a Banach lattice of functions X and we assume that:

(1) we have L = A+B, where B is a bounded linear operator and A is such
that there exists τ ∈ R, such that A− τI is m-dissipative.
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(2) There exist b ∈ R and ψ ∈ D(L∗) ∩X+\{0}, such that we have

L∗ψ ≥ bψ.

(3) SL is a positivity preserving semigroup.

(4) L satisfies the strong maximum principle.

Then we have s(L) = ω(L), and denoting this common value by λ, there
exists G ∈ D(L) such that

G > 0, LG = λG with λ := s(L).

The originality of this theorem is the fact that, it establishes a spectral
theory result like Krein-Rutmann’s in a non compact framework. It allows
us to circumvent the lack of compactness of the linear operator. It keeps the
philosophy of Krein-Rutman theorem while weakening itsassumptions.

Proof. (of Theorem
thm:GS
1.1)

Let (L,D(L)) be defined by (
eq:1.6
1.6). From Theorem

thm:Exist-SG
3.1 applied to the operator

L we have the existence of a real number λ, such that L−λI bem-dissipative,
and generates a semigroup on the space X := L2

k.We are going to verify that
the conditions of Theorem

thm:SM-JC
4.7 are satisfied.

(1) We know that the operator L can be split in the following way: for all
f ∈ D(L),

Lf := Bf + Af,

where B is a bounded operator, and defined as follows there exists M > 0
and n ≥ 1, such that for ζn gigen by (

eq:Def-zeta-n
3.14)

Bf :=Mζnf and f ∈ D(L).

And the linear operator A is such that there exists a real number τ , such
that A− τ is m-dissipative and

Af := Lf − Bf, for all f ∈ D(L).

The Proposition
thm:adj
4.6 applied to L leads to the following:
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(2) There exists b0 ∈ R, such that for some b > b0, we have a function ψ > 0,
ψ ∈ D(L∗), such that

L∗ψ ≥ bψ.

An application of Lemma
thm:Kat
4.1 to the operator L allows us to deduce that

L satisfies Kato’s inequality. This means that:

(3) For all f ∈ D(L) we have L|f | ≥ sgn(f)Lf. Therefore the semigroup
generated by (L,D(L)) is positivity preserving semigroup.

Using Lemma
thm:Str-MP
4.4 one can assert that the linear operator L satisfies the

strong maximum principle. i.e

(4) If (f 6≡ 0, f ≥ 0 and Lf ≤ 0), then f > 0 in Rd.

Then applying Theorem
thm:SM-JC
4.7 we conclude that , there exists G > 0, such

that
LG = 0.

This completes the proof of the Theorem
thm:GS
1.1.

5 Exponential stability

In this section we want to prove Theorem
thm:Cv-GS
1.2. And this proof will be based

on the decomposition of the operator L = A + B, with a regular bounded
operator B and a linear operator A, such that A−τI is m-dissipative. Before
starting the proof of Theorem

thm:Cv-GS
1.2, we state the following results which will

be useful for the sequel.

thm:Contract Proposition 5.1. Let f0 ∈ D(L) be the initial data of (
eq:1.1
1.1). Assume that

hypotheses (H0)—(H3) hold for p = 2. For M > 0 and n ≥ 1, let ζn be
gigen by (

eq:Def-zeta-n
3.14), set

Bf :=Mζnf and for all f ∈ D(L).

Af := Lf −Bf, for all f ∈ D(L) (5.1) eq:4.1

Then we may fix n ≥ 1 and M > 0 large enough so that there exists ω0 > 0
satisfying the following property: for all f0 ∈ L2

k we have

‖SA(t)f0‖L2

k
≤ e−ω0t‖f0‖L2

k
. (5.2) eq:4.2
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Proof. Let f0 ∈ D(L). We consider the following equation

{

∂tf − Af = 0
f(0, x) = f0(x)

. (5.3) eq:4.3

There exists τ ∈ R such that A − τI is m-dissipative, according to the
definition of the linear operator A. Then there exists f ∈ C1([0, T ];L2

k)
solution of (

eq:4.3
5.3). To simplify notations, let us set f(t, x) := SA(t)f0(x). As

the function f ∈ C1([0, T ];L2
k) it makes sense to write

d

dt

∫

Rd

|f(t, x)|2〈x〉kdx =

∫

Rd

(Af(t, x))f(t, x)〈x〉kdx

Using (
eq:4.1
5.1), we have

∫

Rd

(Af)f〈x〉kdx =

∫

Rd

Lff〈x〉kdx−M

∫

Rd

f 2ζn〈x〉kdx.

Simple computations give us the following formula

d

dt

∫

Rd

f 2〈x〉kdx = −2

∫

Rd

|∇f |2〈x〉kdx+
∫

Rd

f 2∆〈x〉kdx

+

∫

Rd

f 2div(E)〈x〉kdx−
∫

Rd

f 2E · ∇〈x〉kdx

−M

∫

Rd

f 2ζn〈x〉kdx.

Using the fact that
∫

Rd |∇f |2〈x〉kdx and M
∫

Rd f
2ζn〈x〉kdx are positive, one

can deduce that

d

dt

∫

Rd

f 2〈x〉kdx ≤
∫

Rd

f 2∆〈x〉k +
∫

Rd

f 2div(E)〈x〉kdx−
∫

Rd

f 2E · ∇〈x〉kdx.

Using the expressions (
eq:nabla-x
3.4) and (

eq:laplacian-x
3.5), we can write

d

dt

∫

Rd

f 2〈x〉kdx ≤
∫

Rd

f(x)2
kd+ k(k + d− 2)|x|2

(1 + |x|2)2 〈x〉kdx

+

∫

Rd

f 2div(E)〈x〉kdx−
∫

Rd

f(x)2
kx · E
1 + |x|2 〈x〉

kdx.
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Then hypothesis (H3) allows us to write that

d

dt

∫

Rd

f 2〈x〉kdx ≤ −2ω⋆

∫

Rd

f 2〈x〉kdx.

Integrating in time between 0 and t, or using Gronwall’s lemma, we find that
∫

Rd

f 2〈x〉kdx ≤ ‖f0‖2L2

k
e−2ω⋆t.

Thus
‖SA(t)f0‖2L2

k
≤ ‖f0‖2L2

k
e−2ω⋆t.

This completes the proof of the proposition.

For the reader’s convenience we give the proof wich follows S. Mischler-J.
Scher

JM
[8].

Proof. (of Theorem
thm:Cv-GS
1.2). By iterating the formula (

eq:1.2
1.2), one has

SL(t) = SA(t) + (SA ∗BSA)(t) + (SL ∗BSA ∗BSA)(t). (5.4) sdp

Since SL(t) is a C0-semi group, there exists ω1 ∈ R and C0 ≥ 1, such that
‖SL(t)‖ ≤ C1e

ω1t. Now we choose a1 a real number, such that a1 > ω1.
Thus using the inverse Laplace transform formula we obtain the following
representation:

(SL ∗BSA ∗BSA)(t) :=
1

2iπ

∫ a1+i∞

a1−i∞

eztRL(z)(BRA(z))
2dz.

Since 0 is a simple eigenvalue of L one can define the projection operator Π
on the space generated by G, wich is the eigenfunction associated to 0. The
projection operator Π is defined as follows: for all f ∈ D(L)

Πf =M(f)G, where M(f) :=

∫

Rd

f(x)dx.

Using Proposition
thm:Contract
5.1 we can easily establish that

‖(SA ∗BSA)(t)‖ ≤ C2‖B‖ t e−ω⋆t. (5.5) eq:sdp1

It has been shown in
JM
[8, Theorem 2.1] that if there exist two linear operators

A and B such that L = A + B, where A and B are given as in Proposition
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thm:Contract
5.1 and such that (

eq:sdp1
5.5) holds, then a spectral gap exists, that is we can find

a⋆ > 0 such that the spectrum

Σ(L) ⊂
{

z ∈ C | Re(z) < −a⋆
}

∪
{

0
}

.

Now we choose a such that 0 < a < a⋆ and we define

Ja(t) :=
1

2iπ

∫ −a+i∞

−a−i∞

eztRL(z)(BRA(z))
2dz.

Using (
sdp
5.4) we have

SL(t)(I − Π) = SA(t)(I − Π) + (SA ∗BSA)(t)(I − Π)

+
1

2iπ

∫ −a+i∞

−a−i∞

eztRL(z)(BRA(z))
2(I − Π)dz,

Choose ω2 ∈ (a, a⋆), and consider z = −a+ is, for s ∈ R. Since

(zI −A)RA(z) = I,

then

RA =
1

z
(I − ARA(z)) =

1

−a+ is
(I −ARA(−a+ is)).

Thus we have

‖Ja(t)‖ ≤ C

∫ +∞

−∞

|ezt|‖RL(−a + is)‖‖(BRA(−a + is))‖2ds

≤ Ce−a t

∫ +∞

−∞

‖RL(−a + is)‖‖BRA(−a + is)‖2ds

≤ Ce−a t

∫ +∞

−∞

1

(a2 + s2)
‖RL(−a + is)‖‖B(I −ARA(−a + is))‖2ds.

We know that since the operator B(I−ARA(−a+ is)) is bounded uniformly
in s, then there exists a constant C > 0 such that

∀s ∈ R, ‖B(I − ARA(−a + is))‖ ≤ C.

Since L generates a C0-semigoup. One has

‖RL(−a + is)‖ ≤ C0

ω2 − a
.
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Consequently we obtain

‖Ja(t)‖ ≤ Ce−a t C0

−a+ ω2

∫ +∞

−∞

1

(a2 + s2)
ds,

as t→ +∞, therefore we have

‖Ja(t)‖ ≤ C0

ω2 − a
e−at. (5.6) eq:ja

Using the identity (
sdp
5.4) we have

SL(t)(I −Π)f0 = SA(t)(I − Π)f0 + (SA ∗BSA)(t)(I −Π)f0

+ (SL ∗BSA ∗BSA)(t)(I −Π)f0.

Thus we have

‖SL(t)(I − Π)f0‖L2

k
≤ ‖SA(t)(I −Π)f0‖L2

k
+ ‖(SA ∗BSA)(t)(I − Π)f0‖L2

k

+ ‖(SL ∗BSA ∗BSA)(t)(I −Π)f0‖L2

k
.

Since we know that

‖(SL ∗BSA ∗BSA)(t)(I −Π)f0‖L2

k
≤ ‖Ja(t)‖ · ‖(I −Π)f0‖L2

k

and that thanks to (
eq:ja
5.6) we have

‖(SL ∗BSA ∗BSA)(t)(I − Π)f0‖L2

k
≤ C0

ω2 − a
e−at · ‖(I − Π)f0‖L2

k
.

On the other hand we have prove that

‖(SA ∗BSA)(t)(I − Π)f0‖L2

k
≤ C‖B‖ t e−ω⋆t‖(I −Π)f0‖L2

k
.

We may use Proposition
thm:Contract
5.1 to obtain that

‖SA(t)(I − Π)f0‖L2

k
≤ Ce−ω⋆t‖(I −Π)f0‖L2

k
.

Now we choose 0 < ω < min(w⋆, a) and then we have

‖SL(t)(I − Π)f0‖L2

k
≤ C(ω, t)e−ω t‖(I −Π)f0‖L2

k
.

This completes the proof of Theorem
thm:Cv-GS
1.2.
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