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Hyper-Algebras of Vector-Valued Modular Forms
Martin Westerholt-Raum1

Abstract: We define graded hyper-algebras of vector-valued Siegel modular forms, which allow us to study

tensor products of the latter. We also define vector-valued Hecke operators for Siegel modular forms at all

places of Q, acting on these hyper-algebras. These definitions bridge the classical and representation

theoretic approach to Siegel modular forms. Combining both the product structure and the action of

Hecke operators, we prove in the case of elliptic modular forms that all cusp forms of sufficiently large

weight can be obtained from products involving only two fixed Eisenstein series. As a byproduct, we

obtain inclusions of cuspidal automorphic representations into the tensor product of global principal

series.

Siegel modular forms � Vector-valued Hecke operators � Automorphic representations
MSC Primary: 11F40 � MSC Secondary: 11F60, 11F70

PRODUCTS of scalar-valued modular forms can be used to construct new ones, and in special

situations they reveal deep arithmetic information. For example, Rankin showed in [Ran52]

that the Petersson scalar product of an elliptic cusp form f and the product Ek El of two Eisen-

stein series, can be expressed in terms of special L-values attached to f . This very relation reap-

peared in [KZ84], where Kohnen and Zagier define aQ-structure on elliptic modular forms that is

different from the one originating in Fourier expansions. The product of scalar-valued modular

forms naturally leads to the definition of the graded algebra M(• ) of modular forms.

Vector-valued modular forms in the elliptic case can be associated with any representationρ of

the modular group SL2(Z). As opposed to scalar-valued ones, their product structure has mostly

been neglected. Instead, one considers graded modules M(• ⊗ρ) over M(• ). For example, Marks

and Mason proved in [MM10] that M(• ⊗ρ) is free over M(• ) and that its rank relates directly to

the eigenvalues of ρ(−I (2)) for I (2) the 2×2 identity matrix.

It is possible to define tensor products of vector-valued modular forms by means of the tensor

product of smooth functions from the Poincaré upper half plane H = {τ ∈ C : Imτ > 0} to the

representation spaces V (ρ) and V (ρ′) of ρ and ρ′.

⊗ : C∞(
H→V (ρ)

)×C∞(
H→V (ρ′)

)−→ C∞(
H→V (ρ⊗ρ′)

)
, ( f ⊗ g )(τ) 7−→ f (τ)⊗ g (τ).

Tensor products of vector-valued modular forms have seldom been studied. In [WR14], we em-

ployed them to express elliptic cusp forms of any level as tensor products of at most two Eisen-

stein series. Tensor products can be conveniently subsumed under the concept of hyper-algebras.

Our description of tensor products of and differential operators on almost holomorphic Siegel

modular forms that we gave in [Kle+15], for example, employed the hyper-algebras to classify
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almost holomorphic Siegel modular forms. In this work, we further develop the theory of hyper-

algebras of modular forms.

Hyper-algebras mimic algebras but they have multivalued multiplication. In particular, they

are natural analogues of hyper-groups [Wal37]. Note that we suppress Wall’s assumption of di-

mensionality of hyper-groups, which does not hold for examples that we treat. Hyper-groups

arise naturally in the context of double cosets in group theory. The definition of a group G in-

cludes the product a ·b ∈G of a,b ∈G . Given a sufficiently nice subgroup H—that is, if (G , H) is

a Gelfand pair—one can define commutative Hecke algebras, making thus sense of the product

of double cosets H aH · HbH . For instance, if G = GSpg (Q) and K = GSpg (Z), then the Hecke

algebra with integral coefficients is free as a Z-module and has basis HcH , c ∈ G . Every prod-

uct of double cosets can be written a sum
∑

c∈G mc HcH , where 0 ≤ mc ∈ Z and mc 6= 0 for only

finitely many c. We rephrase this to arrive at a notion of multivalued multiplication of double

cosets. One can decompose H aH = ⋃
c∈L(H ,a) Hc and HbH = ⋃

c∈L(H ,b) Hc as a disjoint union of

left cosets with coset representatives L(H , a),L(H ,b) ⊆ G . By definition of the multiplication in

Hecke algebras, the multiset {{H(da ·db) : da ∈ L(H , a),db ∈ L(H ,b)}} has a decomposition into

the disjoint union of {{Hdc : dc ∈ L(H ,c)}} where each L(H ,c) occurs with multiplicity mc that

occurred before. A more detailed explanation can be found in [Kri90]. Summarizing, we obtain

a multiplication of double cosets that takes values in multisets of double cosets:

H\G/H ×H\G/H −→ Multiset(H\G/H).

We thus obtain a commutative hyper-group in this way. Note that every group can be naturally

viewed a hyper-group. Vice versa, a hyper-group whose multiplication takes values in multisets

of size 1 is a group.

It is possible to extend the definition of hyper-groups to hyper-algebras. Addition is axioma-

tized as in the case of algebras. Multiplication takes values in the set of all subspaces and com-

patibility relations that mimic those for algebras are imposed on it. We give a precise definition

of hyper-algebras in Section 2. Given an algebra A we obtain a hyper-algebra by assigning to two

elements the module spanned by their product. In general, it is not possible to recover the alge-

bra form this, because the hyper-algebra product a ·b associated with a,b ∈ A and (r a) · (r ′b) is

the same for all units r,r ′ in the base ring R.

Siegel modular forms are assigned to a weight σ and a type ρ, which are representations of

GLg (C) and Spg (Z), respectively. Given Siegel modular forms f and g of weights and types σ f ,

ρ f , σg , and ρg , then their tensor product f ⊗ g has weight σ f ⊗σg and type ρ f ⊗ρg . Even if

the weights and types of f and g are irreducible, their tensor products can be reducible. On the

other hand, to avoid redundancies, graded modules of Siegel modular forms are preferably build

from irreducible weights and types. As a consequence, tensor products do not yield an algebra

structure of such modules.

Since weights and types behave similarly with respect to the construction that we discuss now,

we focus on the former. To remedy the lack of algebra structures on the graded module of Siegel
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modular forms, we have previously suggested to attach to f and g the span

f ⊗g = span
{
φ◦ ( f ⊗ g ) : φ ∈ Hom

(
σ f ⊗σg , σ

)} ⊂ ⊕
σ

M(g )(σ)
,

whereσ runs through a fixed set of representatives of isomorphism classes of irreducible weights,

and M(g )(σ) denotes the corresponding space of Siegel modular forms. In [Kle+15], we identified

the resulting structure as a hyper-algebra. It is a special case of hyper-algebras of Siegel modular

forms, defined in Section 2.1.

In [Kle+15], we also defined the concept of differential hyper-algebras to subsume the action

of covariant differential operators. In Section 2.4, we revisit this definition and reinterpret it in

terms of a Hecke operator T∞ at the infinite place of Q. Returning to the case of general weights

and types, we also study vector-valued Hecke operators Tv at all places v ofQ. If v = p is a prime,

then Tp generalizes classical Hecke operators for Siegel modular forms. It extends the vector-

valued Hecke operators for elliptic modular forms that we have already defined in [WR14]. The

polynomial algebra T generated by formal elements Tv acts by means of these Hecke operators

on the hyper-algebra of Siegel modular forms. Specifically, at the infinite place, the Hecke oper-

ator acts as a hyper-derivation. At the finite places, Hecke operators respect the hyper-product

structure. A precise description can be found in Section 2.6.

Section 3 contains a more detailed study of tensor products and the action of T on modular

forms is studied in more detail in the genus 1 case. Let S(1)(k ) be the space of genus 1 cusp forms

of weight k and level 1. Write E (1)(l ) for the level 1 Eisenstein series of weight l .

Theorem I. Let l , l ′ ≥ 4 be even integers and ρ a finite dimensional representation of SL2(Z) whose

kernel is a congruence subgroup. Then for every k ≥ l + l ′, we have

S(1)(k ⊗ ρ
) ⊂ T

(
TE (1)(l )⊗TE (1)(l ′)

)
. (0.1)

Vector-valued Hecke operators defined in this paper can be related to adelic automorphic rep-

resentations. Covariant differential operators correspond to the action of an appropriate Lie al-

gebra on Harish-Chandra modules. Hecke operators at finite places arise directly from a repre-

sentation of a group overQp . We make these relations precise and determine some constituents

in the tensor product of principal series. Specifically, we consider automorphic representations

for PGL2. We let $(k − 1,1) be the principal series that is unramified at the finite places and

has Harish-Chandra parameter k −1 at infinity. Let $∞(k −1) be the discrete series with Harish-

Chandra parameter k −1.

Theorem II. Given even integers l , l ′ ≥ 4, then

$ ,−→ $(l −1,1)⊗$(l ′−1,1)

for every cuspidal automorphic representation $ =$∞(k −1)⊗ $f with k ≥ l + l ′ and $f a repre-

sentation of PSL2(Af).

– 3 –



Hyper-Algebras of Vector-Valued Modular Forms M. Westerholt-Raum

In Section 1, we collect preliminaries on Siegel modular forms. In Section 2, we define hyper-

algebras of Siegel modular forms. In Sectoin 3, we show that products of certain Eisenstein series

yield cusp forms. In Section 4, we give an interpretation of our results in terms of adelic auto-

morphic representations.

1 Modular forms
§1.1 The classical setup. The Siegel upper half space

{
τ ∈ Matg (C) : tτ= τ, Imτ> 0

}
of genus g

is denoted byH(g ). It carries an action of the real symplectic group

Spg (R) = {
γ ∈ Mat2g (R) : tγJ (g )γ= J (g )}, J (g ) =

(
0 −I (g )

I (g ) 0

)
,

where I (g ) is the g × g identity matrix. This action is explicitly given by γτ = (aτ+b)(cτ+d)−1,

where we employ the block decomposition of γ= (
a b
c d

)
. The subgroup Γ(g ) = Spg (Z) of symplec-

tic transformation matrices with integral entries is called the Siegel modular group of genus g .

Generally, a complex representation σ of GLg (C) is called a weight. For the purpose of this

paper, we restrict to representation that factor through GLg (C)/{±I (g )}. A finite dimensional rep-

resentation ρ of Spg (Z) is called a type. Throughout this note, we focus on types whose kernel is

a congruence subgroup that contains −I (g ). The representation spaces of σ and ρ are denoted

by V (σ) and V (ρ). A weight and a type together determine a slash action(
f |σ,ρ γ

)
(τ) =σ(cτ+d)−1ρ(γ)−1 f (γτ)

on functions f :H(g ) →V (σ)⊗V (ρ).

The space of genus g Siegel modular forms of weight σ and type ρ is defined as the space of

holomorphic functions f : H(g ) → V (σ)⊗V (ρ) such that f |σ,ρ γ = f for all γ ∈ Γ(g ) and which

satisfy f (x + i y) =O(1) as y →∞, if g = 1. We write

M(g )(σ⊗ρ )= E(g )(σ⊗ρ )⊕S(g )(σ⊗ρ )
for this space, the space of Eisenstein series, and the space of cusp forms, respectively.

§1.2 The symplectic group and its Lie algebra. We write G = PGSpg for the Q-split algebraic

group of projective symplectic similitudes. Throughout we work with the model

PGSpg (Z) = {
γ ∈ Mat2g (Z) : tγJ (g )γ= s(γ)J (g ), s(γ) ∈Z} / {

sI (g ) : s ∈Z}
.

Compact subgroups K (g )
∞ and K (g )

p of G(R) and G(Qp ) are Ug (R)/{±I (g )} and PGSpg (Zp ), where the

former is embedded into G(R) by ai+b 7→ (
a −b
b a

)
. Weights correspond to complex representations

of K (g )
∞ by means of the restriction along Ug (R)/{±I (g )} → GLg (C)/{±I (g )}.

We let Rep(K (g )
∞ ) be a fixed set of representatives of isomorphism classes of finite dimensional,

complex representations of K (g )
∞ . For all g , the representation detk : Ug (R) → C, k 7→ det(k) with

k ∈ Z, 2 |g k yields an irreducible representation of K (g )
∞ via the above isomorphism of K (g )

∞ and
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Ug (R)/{±I (g )}. In the context of spaces of modular forms, we will occasionally write k instead of

detk to match more closely the classical notation. For example,

M(g )(k ⊗ρ) = M(g )(detk ⊗ρ)
We denote the l-th symmetric power of the standard representation by syml . The dual of a rep-

resentation is indicated by a superscript ∨: σ∨ is the dual of σ.

We let Rep(K (g )
p ) be a fixed set of representatives of isomorphism classes of finite dimensional,

complex representations of K (g )
p . To simplify notation, we let Rep(K (g )

f ) be the set of restricted

tensor products of the representations in Rep(K (g )
p ). That is, it consists of exterior tensor products

of representations of K (g )
p which are trivial for all but finitely many p. There is a correspondence

between Rep(K (g )
f ) and finite dimensional, complex representations of Γ(g ) with a congruence

subgroup and the matrix −I2g in their kernel.

Subsets of irreducible representations are denoted by

IrrRep
(
K (g )
∞

)⊂ Rep
(
K (g )
∞

)
and IrrRep

(
K (g )

f

)⊂ Rep
(
K (g )

f

)
.

§1.3 Covariant differential operators. We call a differential operator D covariant from |σ,ρ to

|σ′,ρ if for all g ∈ G(R) and all smooth functions f : H(g ) →V (σ)⊗V (ρ) , we have

D
(

f |σ,ρ g
)= D( f )|σ′,ρ g .

If D is covariant for the trivial type then it yields differential operator that is covariant for all types.

A theorem of Helgason [Hel62], allows us to classify order 1 differential operators. For each σ

there is a lowering operator L = Lσ that is covariant from σ to Lσ= sym2∨σ and a raising opera-

tor R = Rσ that is covariant form σ to Rσ = sym2σ. We only fix normalization in the case g = 1,

setting

L =−2i y2∂τ and R = 2i∂τ+k y−1 .

In [Kle+15], we gave explicit expressions for all g . The normalization employed there, however,

does not coincide with the one we choose here.

Covariant differential operators allow us to define almost holomorphic Siegel modular forms.

A function f : H(g ) →V (σ)⊗V (ρ) that vanishes under the (d +1)-th tensor power of the lowering

operator, i.e. Ld f = 0, that is invariant of weight σ and type ρ, i.e. f |σ,ρ γ= f for all γ ∈ Γ(g ), and

that satisfies f (τ) =O(1) as y →∞, if g = 1, is called an almost holomorphic Siegel modular form

of weight σ, type ρ, and depth d . The space of such functions is denoted by

[d ]M(g ) (σ⊗ρ )
.

§1.4 Hecke operators. We extend the definition of vector-valued Hecke operators in [WR14]

for elliptic modular forms to Siegel modular forms. Many of the proofs in op. cit. apply to the

general case word by word. For this reason, we skip several arguments in this subsection.
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Hecke operators on representations. For a positive integer M , we let

∆M =
{(

a b
0 d

) ∈ GSpg (Q) : tad = M I (g ), a,b,d ∈ Matg (Z), d upper triagonal,

∀i < j : 0 ≤ di , j < d j , j , ∀i : 0 ≤ bi , j ,< d j , j

}
,

where GSpg is the group of symplectic similitude transformations. We have a right action of

Spg (Z) on ∆M defined by (m,γ) 7→ mγ with γ′ mγ= mγ for some γ′ ∈ Spg (Z). This, in particular,

defines a cocycle Im(γ) = γ′; That is, we have Im(γ1γ2) = Im(γ1)Imγ1 (γ2).

To every type ρ we associated the type TM ρ defined by

V (TM ρ) :=V (ρ)⊗C[
∆M

]
and (TM ρ)(γ) (v ⊗ em) := ρ(

I−1
m (γ−1)

)
(v)⊗ emγ−1 (1.1)

The cocycle property of Im(γ) implies that it is a representation of Spg (Z). Given a scalar prod-

uct 〈 · , · 〉ρ on V (ρ), we obtain one on V (TM ρ) by

〈v ⊗ emv , w ⊗ emw 〉 =
〈v, w〉ρ , if mv = mw ;

0, otherwise.

Hecke operators on representations are compatible with homomorphisms between types and

with tensor products. Specifically, the following are homomorphism of Spg (Z)-representations:

TM φ : TM ρ −→ TM ρ′, v ⊗ em 7−→φ(v)⊗ em ; (1.2)

1 ,−→ TM 1, c 7−→ c
∑

m∈∆M

em ; (1.3)

(TM ρ)⊗ (TM σ) −� TM (ρ⊗σ), (v ⊗ em)⊗ (w ⊗ em′) 7−→
(v ⊗w)⊗ em , if m = m′;

0, otherwise;
(1.4)

whereφ ∈ Hom(ρ,ρ′). Ifψ : ρ→ ρ′′ is a further homomorphism, then TM (ψ◦φ) = (TM ψ)◦(TM φ).

For later reference, we denote the morphism in (1.4) by πM ,ρ,ρ′ .

Hecke operators on modular forms. For m = (
a b
0 d

) ∈ GSpg (R) of similitude M , and for f : H→
V (σ), we define (

f |σm
)
(τ) =σ(

d/
p

M
)−1 f

(
(aτ+b)d−1).

Fixing a type ρ and a positive integer M , we define the vector-valued Hecke operator TM acting

on f ∈ M(g )
(
σ⊗ρ)

by (
TM f

)
(τ) = ∑

m∈∆M

(
f |σm

)
(τ)⊗ em ∈ M(g )(σ⊗TM ρ

)
. (1.5)

The above homomorphism πM ,ρ,ρ′ is compatible with Hecke operators. Specifically, we have

πM ,ρ,ρ′
(
(TM f )⊗ (TM g )

)= TM
(

f ⊗ g
)
.
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2 Hyper-algebras
We start with the formal definition of hyper-groups, which is the blueprint to our Definition 2.2

of hyper-algebras. Given a set S, let Multiset(S) ∼= { f : S → Z≥0} be the set of all multisubsets

of S. Multisets are throughout denoted by double curly brackets {{· · · }}. The union of multisets

corresponds to the sum of functions S → Z≥0. As a shorthand notation, for the binary operator

appearing in the next definition, we set a · {{bi }}i =⋃
bi

a · bi and similarly {{ai }}i · b =⋃
ai

ai · b.

Definition 2.1. A pair (G , · ) of a set G and a binary operator · : G ×G → Multiset(G) is called a

hyper-group if the following axioms are satisfied:

(i) (Finite image) For any a,b ∈G , the multiset a · b is finite.

(ii) (Associativity) For any a,b,c ∈G , we have (a · b) · c = a · (b · c), that is,⋃
h∈a · b

h · c = ⋃
h∈b · c

a · h.

(iii) (Identity) There is an element e ∈G such that for every a ∈G we have a ∈ a · e and a ∈ e · a.

(iv) (Inverse) For every element a ∈ G there is element a−1 ∈ G such that e ∈ a · a−1 and e ∈
a−1 · a.

Extending this notion to hyper-algebras is straightforward. However, the reader should be

warned that the word “hyper-algebra” is used in the context of algebraic groups [Sul78], too, and

these two notations should not be confused.

Given a commutative ring R (with identity), and an R-module M , we let SubModR (M) be the

set of all R-submodules of M . In analogy with the definition of multisets, we extend the binary

operator · in the following definition to submodules by a · N =⋃
b∈N a · b and N · b =⋃

a∈N a · b

for N ∈ SubModR (M).

Definition 2.2. Let R be a ring. A triple (A,+, · ) with (A,+) an R-module and binary operator

· : A× A −→ SubModR (A)

is called a hyper-algebra (with identity) if

(i) (Linearity) Given a,b ∈ A and r ∈ R, we have (r a) · b = r
(
a · b

)= a · (r b)

(ii) (Identity) There is e ∈ A such that we have e · a = a · e = spanR a for all a ∈ A.

(iii) (Associativity) Given a,b,c ∈ A, we have a · (b · c) = (a · b) · c.

(iv) (Distributivity) for a,b,c ∈ A, we have a · (b + c) ⊆ a · b +a · c.
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Concepts like commutativity, grading, and derivation extended to hyper-algebras. Fixing a

hyper-algebra A, we call it commutative if for all a,b ∈ A, we have ab = ba. We say that it is graded

by a hyper-group G if A = ⊕
g Ag as an R-module and Ag Ag ′ ⊆ ⋃

h∈g g ′ Ah . A hyper-derivation d

on A is an R-module endomorphism such that d(a ·b) ⊆ (d a) ·b +a · (db).

Note that for a hyper-algebra A, we can define a (left) hyper-module M as an R-module with

binary operator · : A×M → SubModR (M) satisfying the analogue of the axioms in Definition 2.2.

§2.1 Hyper-algebras of modular forms. Recall the various sets of representations defined in

Section 1.2. The hyper-algebra of holomorphic Siegel modular forms as a vector space is

M(g )( • ⊗ • )=⊕
σ,ρ

M(g )(σ⊗ρ )
, σ ∈ IrrRep

(
K (g )
∞

)
, ρ ∈ IrrRep

(
K (g )

f

)
(2.1)

with product f g = f ⊗g ⊂ M(g )
( • ⊗ • )

defined as

span
{

(φσ⊗φρ)◦ ( f ⊗ g ) :σ ∈ IrrRep
(
K (g )
∞

)
, φσ : σ f ⊗σg →σ,

ρ ∈ IrrRep
(
K (g )

f

)
, φρ : ρ f ⊗ρg → ρ

}
.

(2.2)

Note that both IrrRep
(
K (g )
∞

)
and IrrRep

(
K (g )

f

)
are hyper-groups, and the hyper-algebra of Siegel

modular forms is graded by both. Our notation for submodules, for example M(g )
( • ⊗ρ)

, has

obvious meaning.

We will also work with the hyper-algebras of almost holomorphic Siegel modular forms

[•]M(g ) ( • ⊗ • )= ⋃
0≤d

⊕
σ,ρ

[d ]M(g ) (σ⊗ρ)
, σ ∈ IrrRep

(
K (g )
∞

)
, ρ ∈ IrrRep

(
K (g )

f

)
(2.3)

with product as in (2.2).

§2.2 Computing the hyper-algebra product in Sage. In the case of elliptic modular forms, all

irreducible weights are 1-dimensional. Types can, however, be arbitrary dimensional. We adopt

an example from [WR14], which illustrates how to compute products in M(g )
( • ⊗ • )

of modular

forms with nontrivial type. For convenience, we give Sage code [Sage]2, which the reader can

modify to perform his or her own computation—The code is not optimized for performance, but

for clarity.

We consider the representation ρ3, which we realize as a matrix representation by

ρ3(T ) =

 1 0 0

0 0 1

−1 −1 −1

 , ρ3(S) =

 0 1 0

1 0 0

−1 −1 −1

 .

The space of Eisenstein series of weight 12 and type ρ3 has dimension one. A basis element E12,ρ3

can be obtained from vector-valued Hecke operators that are discussed in Section 1.4. We let ζ

be a third root of unity. The image of T3 on the level 1 Eisenstein series of weight 12 is

2computations make implicit use of the libraries [Flint; Pari] and possibly further ones that are less obvious from

the source code of Sage
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K.< zeta> = C y c l o t o m i c F i e l d (3 )
R.<q3> = K [ [ ] ]

E12 = E i s e n s t e i n F o r m s ( 1 , 1 2 ) . b a s i s ( ) [ 0 ]
E12T3 = lambda n : v e c t o r ( [

3∗∗ 6 ∗ E12 . qexp ( n//3+1). subs ( q=q3 ∗∗9 ) . add_bigoh (3∗ n )
, 3∗∗−6 ∗ E12 . qexp (3∗ n ) . subs ( q=q3 )
, 3∗∗−6 ∗ E12 . qexp (3∗ n ) . subs ( q=ze t a ∗q3 )
, 3∗∗−6 ∗ E12 . qexp (3∗ n ) . subs ( q=ze t a ∗∗2∗ q3 )
] )

Fourier expansions are computed in terms of q3 = e(τ/3). The components of an Eisenstein

series of type ρ3 can be found by applying a homomorphism from T31 to ρ3, which can be com-

puted by the method that we describe below when decomposing ρ3ρ3.

E12rho3 = lambda n : mat r i x (3 , [ 1 ,−1/3 ,−1/3 ,−1/3
, −1/3 ,1 ,−1/3 ,−1/3
, −1/3 ,−1/3 ,1 ,−1/3
] ) ∗ E12T3 ( n )

To compute E12,ρ3 ⊗E12,ρ3 , we have to decompose the 9-dimensional representation ρ3 ⊗ρ3,

by exhibiting the trivial representation in (ρ3 ⊗ρ3)∨⊗ρ for various representations ρ. For a sys-

tematic decomposition of ρ3 ⊗ρ3, one could apply the MeatAxe algorithm [HEO05]. We start by

defining the representation matrices of the trivial representation 1, ρ3, and ρ3 ⊗ρ3.

s _ t r i v = t _ t r i v = i d e n t i t y _ m a t r i x (QQ, 1)
s3 = mat r i x (QQ, 3 , [ 0 , 1 , 0 , 1 ,0 ,0 , −1 ,−1 ,−1])
t3 = mat r i x (QQ, 3 , [ 1 , 0 , 0 , 0 ,0 ,1 , −1 ,−1 ,−1])
s33 = s3 . t en so r_p roduc t ( s3 )
t33 = t3 . t en so r_p roduc t ( t3 )

We compute homomorphisms between representations by employing the isomorphism of vec-

tor spaces Hom(ρ,ρ′) ∼= (
ρ∨⊗ρ′)(1). Representation matrices of the dual representation ρ∨ are

given by the transpose inverses of those of ρ. We can immediately compute homomorphisms

from ρ3ρ3 to 1 and ρ3.

dua l = lambda m: m. t r a n s p o s e ( ) . i n v e r s e ( )
hom = lambda s1 , t1 , s2 , t2 : \

( dua l ( s1 ) . t en so r_p roduc t ( s2 ) −1) . r i g h t _ k e r n e l ( ) \
. i n t e r s e c t i o n ( ( dua l ( t1 ) . t en so r_p roduc t ( t2 ) −1) . r i g h t _ k e r n e l ( ) )

hom_tr iv = hom( s33 , t33 , s _ t r i v , t _ t r i v )
hom_rho3 = hom( s33 , t33 , s3 , t3 )

There is one copy of 1 and two copies of ρ3 in ρ3ρ3. We are facing the problem of decomposing

their complement. In our case, it turns out that it consists of two inequivalent one-dimensional
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representations with representation matrices

ρζ(S) =
(
1
)

, ρζ(T ) =
(
ζ
)

and ρζ2 (S) =
(
1
)

, ρζ2 (T ) =
(
ζ2

)
.

In Sage, we implement them by means of

K.< zeta> = C y c l o t o m i c F i e l d (3 )

s z e t a = i d e n t i t y _ m a t r i x (K, 1 )
t z e t a = mat r i x (K, 1 , [ z e t a ] )

s z e t a 2 = i d e n t i t y _ m a t r i x (K, 1 )
t z e t a 2 = mat r i x (K, 1 , [ z e t a ∗∗2 ] )

First, we determine the kernel of the homomorphism that we have determined so far.

bm = reduce ( lambda s , l : s . i n t e r s e c t i o n ( mat r i x ( [ l ] ) . r i g h t _ k e r n e l ( ) )
, [ hom_tr iv . b a s i s ( ) [ 0 ] ]

+ [ b [ i x : : 3 ] f o r b i n hom_rho3 . b a s i s ( ) f o r i x i n range ( 3 ) ]
, VectorSpace (QQ, 9 ) ) \

. b a s i s _ m a t r i x ( ) . t r a n s p o s e ( )
s r e s t = bm. s o l v e _ r i g h t ( s33 ∗bm)
t r e s t = bm. s o l v e _ r i g h t ( t33 ∗bm)

Second, we observe that S acts trivially on that kernel, so that it suffices to decompose the ac-

tion of T into eigenspaces. In the present case they are defined over a third order cyclotomic

extension of the rationals. In fact, they are isomorphic to ρζ and ρζ2 given above.

hom_zeta = hom( s33 , t33 , s z e ta , t z e t a )
hom_zeta2 = hom( s33 , t33 , s ze ta2 , t z e t a 2 )

We construct matrices from the homomorphism spaces that we previously determined.

ph i_ze ta = mat r i x ( hom_zeta . b a s i s ( ) [ 0 ] )
ph i_ze ta2 = mat r i x ( hom_zeta2 . b a s i s ( ) [ 0 ] )
phi_rho3_1 = mat r i x ( [ hom_rho3 . b a s i s ( ) [ 0 ] [ i x : : 3 ] f o r i x i n range ( 3 ) ] )
phi_rho3_2 = mat r i x ( [ hom_rho3 . b a s i s ( ) [ 1 ] [ i x : : 3 ] f o r i x i n range ( 3 ) ] )

Assembling the results that we have computed via Sage, we find that with respect to the given
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bases, we have homomorphisms

φ1 :ρ3 ⊗ρ3 −→1,
(
1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

)
,

φζ :ρ3 ⊗ρ3 −→ ρζ,
(
1 ζ+1 −ζ ζ+1 ζ −1 −ζ −1 −ζ−1

)
,

φζ2 :ρ3 ⊗ρ3 −→ ρζ2 ,
(
1 −ζ ζ+1 −ζ −ζ−1 −1 ζ+1 −1 ζ

)
,

φρ3,1 :ρ3 ⊗ρ3 −→ ρ3,

 1 0 −1 −1 −1 −2 0 1 −1

−1 0 1 −1 1 0 −2 −1 −1

−1 −2 −1 1 −1 0 0 −1 1

 ,

φρ3,2 :ρ3 ⊗ρ3 −→ ρ3,

0 1 −1 −1 0 −3 1 3 0

0 1 3 −1 0 1 −3 −1 0

0 −3 −1 3 0 1 1 −1 0

 .

Summarizing, we find that E12,ρ3 ⊗E12,ρ3 is supported on1, ρζ, ρζ2 , and ρ3. The corresponding

subspaces are spanned by elements whose Fourier coefficients are too large to display them all.

We confine ourselves to the trivial type:

564856947200
1594323 − 1894333004462080000

84584326707 q − 1261863434802833408000
28194775569 q2 +O(q3) ∈ E12,ρ3 ⊗E12,ρ3 ∩M

(
24⊗1)

.

Beyond this, we illustrate how to compute the remaining Fourier expansions with Sage. The

tensor square of E12,ρ3 with precision at least n is given by the following function Esq(n).

Esq = lambda n : v e c t o r (R , [ c1∗ c2 f o r c1 i n E12rho3 ( n )
f o r c2 i n E12rho3 ( n ) ] )

p r i n t p h i _ t r i v ∗ Esq (3 )
p r i n t ph i_ze ta ∗ Esq (3 )
p r i n t ph i_ze ta2 ∗ Esq (3 )
p r i n t ( phi_rho3_1 ∗ Esq ( 3 ) , phi_rho3_2 ∗ Esq ( 3 ) )

§2.3 From weights to isomorphism classes of irreducible weights. We have defined weights as

complex, finite dimensional representations of K (g )
∞ without any further restriction. If we wished

to construct a graded algebra of modular forms whose grading includes all these weights, this

would not be possible. All representations of K (g )
∞ together do not constitute a set, but rather they

are objects in a category Rep(K (g )
∞ ). Given this fact, one might be inclined to pass from weights to

isomorphism classes of weights—the skeleton of Rep(K (g )
∞ ). Alternatively, we can and will focus

on a fixed set Rep(K (g )
∞ ) of representatives of isomorphism class. For every σ ∈ Rep(K (g )

∞ ) the

space of modular forms M(g )(σ ) of weight σ is a vector space.

Let us consider to what extend we can define a multiplication. Given f ∈ M(g )(σ f ) and g ∈
M(g )(σg ) with σ f ,σg ∈ Rep(K (g )

∞ ), we find that

f g = f ⊗ g ∈ M(g )(σ f ⊗σg
)
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for their tensor product. Its weight, in general, is not in Rep(K (g )
∞ ). Denote by σ f σg the corre-

sponding representative. A priori, f g lies in C∞(
H(g ) → V (σ f σg )

)
. We have to obtain from it

an element in C∞(
H(g ) → V (σ f σg )

)
. The most naive way is to choose an endomorphism φ in

Hom
(
σ f σg , σ f σg

)
and compose it with f g . The resulting function φ◦ f g depends on φ. More

precisely, it depends on f and g up to automorphisms of σ f σg .

Except in the case g = 1, there seems to be no natural choice of endomorphisms for all tensor

products. For instance, syml syml ′ contains syml+l ′ in a natural way by realizing syml and syml ′

as a representation on polynomials of degree l and l ′ in g variables. But, for example if g = 2,

there is no natural inclusion of syml+l ′−2 into syml syml ′ for l , l ′ ≥ 2. The situation becomes even

more difficult for g ≥ 3, because then irreducible representations can occur with multiplicities

greater than 1 in tensor products of irreducible representations.

Since there is no natural choice of a single homomorphism from σ f σg to σ f σg , we retrieve to

taking the span over all of them. The product of f and g in this setting is defined as the space

span
{
φ◦ f g : φ ∈ Hom

(
σ f σg , σ f σg

)} ⊂ ⊕
σ∈Rep(K (g )

∞ )

M(g )(σ ).

This product yields a hyper-algebra of modular forms whose weights run through all isomor-

phism classes of representations. Since at this point, we have already lost the algebra struc-

ture and arrived at hyper-algebras, there is no additional harm in considering only irreducible

weights. This motivates our definition in Subsection 2.1.

§2.4 Covariant differential operators on hyper-algebras. As in the case of tensor products the

image of lowering and raising operators has, in general, reducible weight. For example, in the

case g = 2 and if l ≥ 2, the weight Rdetk syml = detk sym2syml allows for a decomposition into

irreducible weights detk−2syml−2, detk−1syml , and detk syml+2. It is therefore natural to define a

vector space valued action of covariant differential operators.

Let C
[
L,R

]
be the polynomial algebra in two formal variables L and R. Notation overlaps with

the one for lowering and raising operators, but it will be clear form the context to what we refer

when writing L f or R f . The action of L and R on [•]M(g ) ( • ⊗ • )
is given by

L f = span
{
φ◦Lσ f f : σ ∈ IrrRep

(
K (g )
∞

)
, φ : σ→ Lσ f

}
and

R f = span
{
φ◦Rσ f f : σ ∈ IrrRep

(
K (g )
∞

)
, φ : σ→ Rσ f

}
.

Viewing the differential operators L and R jointly as a vector-valued Hecke operator at the

infinite place acting on almost holomorphic Siegel modular forms, we set for f ∈ [•]M(g ) ( • ⊗ • )
T∞ =C[

T∞
]
, T∞ f = L f +R f ⊂ [•]M(g ) ( • ⊗ • )

. (2.4)

One readily verifies by employing the defining formulas of lowering and raising operators in [Kle+15]

that T∞ acts as a hyper-derivation.

– 12 –



Hyper-Algebras of Vector-Valued Modular Forms M. Westerholt-Raum

§2.5 Hecke actions on hyper-algebras. Based on the vector-valued Hecke operators that we

have introduced in Section 1.4, we get an additional hyper-module structure on (almost) holo-

morphic Siegel modular forms. Let

Tf =C
[
Tp : p prime

]
(2.5)

be the polynomial ring in infinitely many formal variables Tp . As in the case of covariant differ-

ential operators, notation coincides with the one for actual Hecke operators, but this should not

lead to confusion. The action of Tp on [•]M(g ) ( • ⊗ • )
is defined by

Tp f = span
{
φ◦Tp f : ρ ∈ IrrRep

(
K (g )

f

)
, φ : Tp ρ f → ρ

} ⊂ [•]M(g ) ( • ⊗ • )
. (2.6)

This equips [•]M(g ) ( • ⊗ • )
with the structure of a Tf-hyper-module.

§2.6 The formal Hecke algebra. We combining both formal Hecke algebras into one

T=T∞TAf =C
[
T∞, Tp : p prime

]
. (2.7)

Recall that T∞ ⊂T acts on almost holomorphic Siegel modular forms by hyper-derivations, and

Tf acts by endomorphisms.

3 Essential surjectivity of tensor products of modular forms
The hyper-algebra structure and the action of the formal Hecke algebra make it rather easy to

formulate essential surjectivity for products of modular forms. The blueprint for such results are

the ones in [Kle+15; WR14]. The first of them, phrased in the language that we have developed

reads as follows. For all k ≥ 8, all l ,k − l ≥ 4, and all congruence representations ρ, we have

M(1)(k ⊗ •)= E(1)(k ⊗ •) + Tf E (1)(l )⊗Tf E (1)(k − l ) . (3.1)

In the language we have developed, it is straightforward to ask for analogues.

§3.1 A conjecture in the case of genus 2. We start with a conjecture, that we will not prove in

this paper. There is experimental evidence in [Rau10] that

M(2)(k ⊗1)= SK(2)(k ⊗1) + ∑
4≤l≤k−4

SK(2)(l ⊗ 1
) ·SK(2)(k − l ⊗ 1

)
, (3.2)

where SK denotes the space of (holomorphic) Saito-Kurokawa lifts. In light of this and of For-

mula (3.1) an extension to all ρ seems possible. Could it be that for sufficiently large k, l , and

k − l , and for any congruence type ρ of genus 2 Siegel modular forms, we have

M(2)(k ⊗ρ)= SK(2)(k ⊗ρ) + Tf SK(2)(l ⊗ 1
)⊗Tf SK(2)(k − l ⊗ 1

)
? (3.3)

Note that we have restricted to scalar weights in the above. To cover vector valued weights, we

have to first study the effect of covariant differential operators on tensor products. This will be

executed, in case of g = 1, in the next subsection.
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§3.2 Hecke operators at all places in genus 1. Making use of not only Hecke operators at the

finite places, but of the full formal Hecke algebra T, one can strengthen surjectivity results as the

one in (3.1).

Theorem 3.1. Let l , l ≥ 4 be even integers, and ρ a congruence type. Then for every even k ≥ l + l ′

we have

S(1)(k ⊗ ρ
) ⊂ T∞

(
TE (1)(l )⊗TE (1)(l ′)

)
. (3.4)

Proof. To ease notation, we suppress the superscript (1) for Eisenstein series throughout this

proof. Without loss of generality, we can assume that l ≤ l ′. In complete analogy with [WR14], we

note that the right hand side of (3.4) is a Tf-module. It therefore suffices to show the following:

Any newform f for the congruence subgroup Γ0(N ) vanishes, if for t = (l + l ′−k)/2 ∈ Z≥0, the

(holomorphic) modular form fεD is orthogonal to the almost holomorphic modular form

Ind
(
El ,1|D|

)⊗Rt (El ′,1|D|,∞
)
.

Notation is adopted from [WR14]: We let 1|D| be the square of Kronecker character εD for a nega-

tive fundamental discriminant D . Note hat 1|D| is a trivial non-primitive Dirichlet character. The

modular form fεD is the twist of f by εD . Further, we define Eisenstein series

El ,1|D|(τ) =
∞∑

n=1
σl−1,1|D|(n)qn

El ,1|D|,∞,s =
∑

γ∈Γ∞\SL2(Z)
eΓ0(N ) ⊗ eΓ0(N ) y s

∣∣∣
k,ρ1|D|⊗ρ1|D|

γ .

The induction of modular forms for Γ0(N ) to vector-valued modular forms for SL2(Z) is denoted

by Ind. The induction of a Dirichlet character χ from Γ0(N ) a Dirichlet character χ of modulus N

is denoted by ρχ.

We establish the described vanishing condition by relating the Petersson scalar product to spe-

cial L-values, as in [IK05; KZ84; WR14]. Combining regularization and unfolding as is described

in detail in [WR14], we find that〈
Ind fεD , Ind

(
El ,1|D|

)⊗Rt (El ′,1|D|,∞,s
)〉
=

∫
Γ(1)\H(1)

π
(

f · El ,1|D|(τ) · eΓ0(N ) ⊗ eΓ0(N ) Rt y s
) dxdy

y2−k
, (3.5)

where π is the projection adjoint to the inclusion

1−→ ρ|D|⊗
(
ρ|D|⊗ρN |D|2

)⊗ρN |D|2 , 1 7−→ ∑
γ:Γ0(|D|)\SL2(Z)
γ′:Γ0(|D|N )\SL2(Z)

eγ⊗
(
eγ⊗ eγ′

)⊗ eγ′ .

Evaluating the integral, employing analytic continuation, and then inserting s = 0, we obtain a

product of special values of Dirichlet series.
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A direct verification shows that lims→0 Rt
l ′ y s = (l ′)↑t y−t , where (a)↑n = a(a+1) · · · (a+n−1) is the

upper factorial. The above scalar product (3.5) therefore equals

(l ′)↑t

( ∞∑
n=0

∫ ∞

0
c( fεD ; n)e(ni y)σl−1,1|D|(n)e(ni y) y−t+s dy

y2−k

)
s=0

= (l ′)↑t

(
Γ(k −1− t )

(4π)k−1−t

∞∑
n=0

σl (n)c( fεD ; n)

nk−1−t+s

)
s=0

.

By the extension of Rankin’s result [Ran52] in [WR14], we find that it does converge absolutely, if

l > l ′ or allows for a suitable analytic continuation of l = l ′. It can be expressed in terms of special

L-values as follows.

L
(

fεD , k −1− t
)
L
(

fεD ×1|D|, k − l − t
)

L
(
1|D|1|D|1, k −1−2t − l )

) .

The denominator equals L
(
1|D|, l ′−1)

)
by the relation k = 2t+l+l ′. The first factor in the numer-

ator is a special value of an Euler product, since t = (k − l − l ′)/2 < k
2 −2 and thus k −1− t > k

2 +1.

In order to inspect the second factor in the numerator, note that l +t ≤ k
2 , since we have assumed

that l ≤ l ′. If l + t < k
2 then k − t − l ≥ k

2 +1, so that L( fεD ,k − t − l ) is the special value of a conver-

gent Euler product. Otherwise, we infer that the central value L( fεD , k
2 ) vanishes for all negative

fundamental discriminants D . Using Waldspurger’s and Kohnen-Zagiers results [KZ84; Wal81],

we can argue as in [WR14] to finish the proof.

Theorem 3.1 does not cover the case of small weights k. The next statement clarifies that k <
l + l ′ cannoth appear on the right hand side of (3.4).

Proposition 3.2. Suppose that k < l1 + l2 for positive even l1, l2 ≥ 4 and positive even k. Then any

weight k cusp form f is orthogonal with respect to the Petersson scalar product to Rt1 g1 ·Rt2 g2 for

g1 and g2 modular forms of weight l1 and l2, and t1, t2 ∈Z≥0 such that k = l1 +2t1 + l2 +2t2.

Proof. The almost holomorphic modular form Rt1 g1 ·Rt2 g2 has depth t1+ t2. That is, it allows for

a decomposition

Rt1 g1 ·Rt2 g2 =
t1+t2∑
t=0

Rt ht

for holomorphic modular forms ht of weight k −2t . Since d > t1 + t2, each term in this sum is

orthogonal to f by Shimura’s orthogonality relations [Shi87]—also confer [PSS15].

4 Adelic automorphic representations
Automorphic representation theory in most modern settings focuses on adelic representations.

That is, one investigates the right regular representation of G(A) on L2
(
G(Q)\G(A)

)
. It is an im-

portant aspect of the theory that one can split any automorphic representation into a restricted
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tensor product of local components. The local theory is over p-adic fields and the theory over

the infinite places.

In the classical theory of modular forms these two aspects of automorphic representation the-

ory are reflected by Hecke operators and covariant differential operators. To support our claim

that hyper-algebras of modular forms together with the action of T are mitigating between the

classical language and the representation theoretic one, we show how to pass from classical mod-

ular forms to the attached local representations and how some of their aspects can be interpreted

in terms of hyper-algebras. In particular, we rephrase our result in Section 3 in terms of tensor

products of automorphic representations.

§4.1 Harish-Chandra modules. It is formally correct to work with the group PGSpg (R) in this

subsection. However, as is common, we will instead work with Spg (R), for which all aspects that

we discuss here are the same. Further, we adopt notation from [WR15] to shorten this exposition.

Given any almost holomorphic Siegel modular form f , we can associate to it an irreducible

Harish-Chandra module. Recall that a Harish-Chandra module is an admissible (g,K)-module. A

(g,K)-module is a representation of K = K (g )
∞ that is simultaneously a g-module with g= spg , and

for which these two structures are compatible. A detailed definition can be found in Section 3.3.1

of [Wal88]. A (g,K)-module M is called admissible if it is a unitarizable K -representation and if

HomK (σ, M) is finite dimensional for every finite dimensional K -representation σ.

Starting with f , we produce a function A∞( f ) on G—A∞ stands for adelization at the infinite

place, which here is isomorphic to R:

A∞( f )(g ) = (
f |σ,ρ g

)
(i I (g )).

It takes values in V (σ)⊗V (ρ), and when contracting with V (σ)∨, we obtain a space of functions

that take values in V (ρ) and which is a K -module isomorphic to σ∨⊗V (ρ). We denote the con-

traction by A∞( f ) ·V (σ)∨, and the (g,K)-module generated by it will be denoted by

A∞( f ) = (g,K)
(
A∞( f ) ·V (σ)∨

)
.

Let k ⊂ g be the Lie algebra of K . It was established in [WR15] that application of covariant

differential operators and the action of the k-complement m⊆ g commute with passing back and

forth between modular forms and K -types in Harish-Chandra modules. Concretely, we estab-

lished commutativity of the following diagram, featuring the hyper-derivations L and R:

f A∞( f )

R f m+ A∞( f )

A∞

A∞

R m+

f A∞( f )

L f m− A∞( f )

A∞

A∞

L m−
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The product of vector valued modular forms then contains information about the tensor prod-

uct of Harish-Chandra modules. And thus it yields a lower bound on smooth functions in the

tensor product of G(R)-representations. Given a Harish-Chandra module we can obtain from it

a representation of Spg (R). In our case, we denote this representation by G(R)A∞.

Corollary 4.1. Given two almost holomorphic Siegel modular forms f and g , we have the follow-

ing inclusion of (g,K)-modules:

A∞
(
T∞ f ⊗T∞ g

) ⊆ A∞( f ) ⊗ A∞(g ) .

By passing back to representations of Spg (R), we find that

G(R)A∞
(
T∞ f ⊗T∞ g

) ⊆ G(R)A∞( f ) ⊗ G(R)A∞(g ).

Proof. This follows from the commutative diagrams above, except that we have to verify that

the hyper-product T∞ f ⊗T∞ g yields an admissible (g,K)-module. This becomes clear when

inspecting the action of the center of k.

§4.2 The finite places. As opposed to the infinite place it is important to insist on the group

G = PGSpg when treating the finite places. Recall that as a maximal compact group over Qp , we

choose K (g )
p = PGSpg (Zp ). Also recall that any type in this paper is a congruence type, which

means that it gives rise to a representation overAf.

To approximate at p, we need the relation G(Qp ) = G(Q)K (g )
p . Consider a vector-valued almost

holomorphic Siegel modular form f of type ρ =⊗′ρp . Given g k ∈ G(Qp ) we set

Ap ( f )(g k) = ρ−1
p (k)

(
f |σ,ρ g

)
(i I (g )).

As a first remark note that f is constant on kerρp ⊆ K (g )
p . The contraction of Ap ( f ) with V (ρp )∨

will be denoted by Ap ( f ). It is a space of functions on G(Qp ) taking values in V (σ)⊗V (⊗′
p 6=p ′ρp ′).

As a K (g )
p -module it has isomorphism type ρ∨

p ⊗ (
V (σ)⊗V (⊗′

p 6=p ′ρp ′)
)
.

The commutative diagram corresponding to the one in Subsection 4.1 is

f Ap ( f )

Tp f ∆p Ap ( f )

Ap

Ap

Tp ∆p

where ∆p is the vector space with basis consisting of determinant p matrices in K (g )
p . In analogy

with the infinite case, we write G(Qp )Ap ( f ) for the representation overQp that corresponds to f .
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Corollary 4.2. Given Siegel modular forms f and g , we have the following inclusion of G(Qp )-rep-

resentations:

G(Qp )Ap
(
Tp f ⊗Tp g

) ⊆ G(Qp )Ap ( f ) ⊗ G(Qp )Ap (g ) .

§4.3 Global tensor products. We now transfer the statements of Corollary 4.1 and 4.2 to the

global setting.

Theorem 4.3. Given almost holomorphic Siegel modular forms f and g , with automorphic rep-

resentations $( f ) and $(g ) associated with them. Suppose that for a newform h we have

Ind(h) ∈T f ⊗Tg .

Then the associated automorphic representation $(h) is contained in the tensor product of those

associated with f and g :

$(h) ,−→$( f ) ⊗ $(g ) .

Proof. Using strong approximation, we obtain a map from holomorphic Siegel modular forms f

to functions

A( f ) = A∞( f ) ⊗ (⊗
p

Ap ( f )
)

on G(A), which generate an automorphic representation $( f ) = $∞( f ) ⊗⊗′
p$p ( f ) associated

with f . Note that the Harish-Chandra module attached to a representation of G(R) consists of

the subspace of smooth vectors. In particular, it is a subspace of V ($∞( f )). The commutative

diagrams in Subsection 4.1 and 4.2 show that A∞
(
T∞ f

)⊂V ($∞) and Ap
(
Tp f

)⊂V ($p ).

As a consequence of Theorem 4.3, we can reinterpret (3.1) and (3.4) in terms of tensor products

of global representations. This provides a proof of Theorem II.
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