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Estimating orthant probabilities of high

dimensional Gaussian vectors with an application

to set estimation

Dario Azzimonti ∗‡ David Ginsbourger †∗

Abstract

The computation of Gaussian orthant probabilities has been exten-
sively studied for low dimensional vectors. Here we focus on the high
dimensional case and we present a two step procedure relying on both
deterministic and stochastic techniques. The proposed estimator relies
indeed on splitting the probability into a low dimensional term and a
remainder. While the low dimensional probability can be estimated
by fast and accurate quadrature, the remainder requires Monte Carlo
sampling. We further refine the estimation by using a novel asymmet-
ric nested Monte Carlo (anMC) algorithm for the remainder and we
highlight cases where this approximation brings substantial efficiency
gains. The proposed methods are compared against state-of-the-art
methods in a numerical study, where we also analyse advantages and
drawbacks of anMC. Finally the proposed method is applied to de-
rive conservative estimates of excursion sets of expensive to evaluate
deterministic functions under a Gaussian random field prior, without
requiring a Markov assumption.
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1 Introduction

Assume that X = (X1, . . . , Xd) is a random vector with Gaussian distri-
bution Nd(µ,Σ). We are interested in estimating, for any fixed t ∈ R, the
following probability

π(t) = P (X ≤ (t, . . . , t)). (1)

The general problem of evaluating π(t), which, for a full rank matrix Σ, is
the integral of the multivariate normal density φ(·;µ,Σ) over the one-sided
d-dimensional rectangle (−∞, t]d, has been extensively studied in moderate
dimensions with many different methods. In low dimensions tables are avail-
able (see, e.g., Owen (1956) for d = 2). Furthermore, when the dimension is
smaller than 20, there exist methods (see, e.g., Abrahamson (1964), Moran
(1984) and Miwa et al. (2003)) exploiting the specific orthant structure of the
probability in (1). Currently, however, most of the literature uses numerical
integration techniques to approximate the quantity. In moderate dimensions
fast reliable methods are established to approximate π(t) (see, e.g. Cox and
Wermuth (1991)) and more recently the methods introduced in Schervish
(1984); Genz (1992) and Hajivassiliou et al. (1996) (see also Genz and Bretz
(2002), Ridgway (2016) and the book Genz and Bretz (2009) for a broader
overview) provide state-of-the-art algorithms when d < 100. The method
introduced by Genz (1992) has been recently revised in Botev (2017) where
a more efficient tilted estimator is proposed. Those techniques rely on fast
quasi Monte Carlo (qMC) methods and are very accurate for moderate di-
mensions. However, when d is larger than 1000 they are not computation-
ally efficient or become intractable. Commonly used alternative methods
are standard Monte Carlo (MC) techniques (see Tong (2012), Chapter 8 for
an extensive review), for which getting accurate estimates can be computa-
tionally prohibitive.

We propose here a two step method that exploits the power of qMC
quadratures and the flexibility of stochastic simulation for the specific prob-
lem of estimating π(t). We rely on the following equivalent formulation.

π(t) = 1− P (maxX > t),

where maxX denotes maxi=1,...,dXi. In the following we fix t and denote
p = P (maxX > t).

The central idea is using a moderate dimensional subvector of X to
approximate p and then correcting bias by MC. Let us fix q � d and define
the active dimensions as Eq = {i1, . . . , iq} ⊂ {1, . . . , d}. Let us further
denote with Xq the q dimensional vector Xq = (Xi1 , . . . , Xiq) and with X−q
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the (d− q) dimensional vector X−q = (Xj)j∈E\Eq
. Then,

p = P (maxX > t) = pq + (1− pq)Rq, (2)

pq = P (maxXq > t),

Rq = P (maxX−q > t | maxXq ≤ t).

The quantity pq is always smaller or equal to p as Eq ⊂ {1, . . . , d}. Selecting
a non-degenerate vector Xq, we propose to estimate pq with the QRSVN
algorithm (Genz et al., 2012) which is efficient as we choose a number of
active dimensions q much smaller than d. In Chevalier (2013), Chapter 6,
the similar problem of approximating the non-exceedance probability of the
maximum of a Gaussian random field (GRF) ξ based on a few well-selected
points is presented. Each component of X stands for the value of ξ at one
point of a given discretization of the field’s domain. Active dimensions (i.e.
the well-selected points) were chosen by numerically maximizing pq, and the
remainder was not accounted for. Our proposed method, instead, does not
require a full optimization of the active dimensions as we exploit the de-
composition in (2) to correct the error introduced by pq. For this task, we
propose two techniques to estimate the reminder Rq: a standard MC tech-
nique and a novel asymmetric nested Monte Carlo (anMC) algorithm. The
anMC technique draws samples by taking into account the computational
cost, resulting in a more efficient estimator.

In the remainder of the paper, we propose an unbiased estimator for p
and we compute its variance in Section 2. In Section 3 we introduce the
anMC algorithm in the more general setting of estimating expectations de-
pending on two vectors with different simulation costs. It is then explicitly
applied to efficiently estimate Rq. In Section 4 two numerical studies are
presented. The first one studies the efficiency of the anMC algorithm com-
pared to standard MC. The second one is a benchmark study where the
efficiency of the proposed methods is compared with a selection of state-of-
the-art techniques. Finally, in Section 5, we show an implementation of this
method to compute conservative estimates of excursion sets for expensive to
evaluate functions under non-necessarily Markovian Gaussian random field
priors. More details on the choice of active dimensions are presented in
Appendix A. All proofs are in Appendix B. Computer code for partially
replicating the experiments presented here is attached in supplementary ma-
terial.

2 The estimator properties

2.1 An unbiased estimator for p

Equation (2) gives us a decomposition that can be exploited to obtain an
unbiased estimator for p. In the following proposition we define the estimator
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and we compute its variance.

Proposition 1. Consider p̂q and R̂q, independent unbiased estimators of

pq and Rq respectively, then p̂ = p̂q + (1 − p̂q)R̂q is an unbiased estimator
for p. Moreover its variance is

var(p̂) = (1−Rq)2 var(p̂q) + (1− pq)2 var(R̂q) + var(p̂q) var(R̂q). (3)

In what follows we consider different efficient computational strategies
for p̂q and R̂q.

2.2 Quasi Monte Carlo estimator for pq

The quantity pq can also be computed as

pq = 1− P (Xq ≤ tq) ,

where tq denotes the q dimensional vector (t, . . . , t). The approximation of
pq thus requires only an evaluation of the c.d.f. of Xq. Since we assume
that q � d, then the dimension is moderate and we propose to estimate
pq with the estimator p̂q that uses the method QRSVN introduced in Genz
(1992), Hajivassiliou et al. (1996) and refined in Genz and Bretz (2009). This
method computes a randomized quasi Monte Carlo integration of the normal
density. In particular we consider here the implementation of QRSVN with
the variable reordering described in Genz and Bretz (2009, Section 4.1.3).
The estimate’s error is approximated with the variance of the randomized
integration. The quantity p̂q

G obtained with this procedure is an unbiased
estimator of pq, see Genz and Bretz (2009).

The estimator p̂q
G requires two choices: q, the number of active dimen-

sions, and the dimensions themselves. The decomposition of p in Equa-
tion (2) leads to computational savings if we can approximate most of p
with pq for a small q. On the other hand a large number of active dimen-
sions allows to intercept most of the probability mass in p. Here we adopt
a heuristic approach to select both q and Eq sequentially by increasing the
number of active dimensions until we meet an appropriate stopping condi-
tion. This approach, detailed in Algorithm 3, Appendix A, was chosen in
the current implementation because it represents a good trade-off between
speed and accuracy.

For a fixed q, the choice of Eq plays an important role in the approxi-
mation of p because it determines the error p̂q − p, which is always nega-
tive. Selecting Eq such that P (maxXq > t) is numerically maximized, as
in Chevalier (2013), optimally reduces the bias of p̂q as an estimator for p.
Here we are not interested in a fully fledged optimization of this quantity as
the residual bias is removed with the subsequent estimation of Rq, therefore,
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Figure 1: Distribution of p̂q
G estimates obtained with different choices of

active dimensions.

we exploit fast heuristics methods. The main tool used here is the excursion
probability function:

pt(i) = P (Xi > t) = Φ

(
µi − t√

Σi,i

)
,

where Φ is the standard normal c.d.f. The function pt is widely used in spa-
tial statistics (see, e.g. Bolin and Lindgren, 2015) and Bayesian optimization
(see, e.g. Kushner, 1964; Bect et al., 2012). In our setting it can be used
to quickly identify the active dimensions. In fact this function takes high
values at dimensions with high probability of exceeding the threshold and
thus contribute the most to p. We propose the following methods.

Method A: sample q indices with probability given by pt.
Method B: sample q indices with probability given by pt(1− pt).
These methods require only one evaluation of the normal c.d.f. at each

element of the vector

(
µi−t√

Σi,i

)
i=1,...,d

, and are thus very fast. Both methods

were already introduced for sequential evaluations of expensive to evaluate
functions, see, e.g., Chevalier et al. (2014b).

Figure 1 shows a comparison of the estimates pq obtained with differ-
ent methods to select Eq. We consider 30 replications of an experiment
where p̂q

G is used to approximate p. The dimension of the vector X is
d = 1000, the threshold is fixed at t = 11. The vector X is obtained from
a discretization of a six dimensional GRF, defined on [0, 1]6, over the first
1000 points of the Sobol’ sequence (Bratley and Fox, 1988). The GRF has
a tensor product Matérn (ν = 5/2) covariance kernel. We generate a non
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constant mean function m by imposing the interpolation of a deterministic
function at 70 points. The covariance kernel’s hyperparameters are fixed as
θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and σ2 = 8, see Rasmussen and Williams (2006),
Chapter 4, for details on the parametrization. In this example, the two
methods clearly outperform a random choice of active dimensions.

Methods A and B work well for selecting active dimensions when the
mean vector µ and the covariance matrix diagonal are anisotropic. In such
cases both methods select dimensions that are a good trade-off between high
variance and mean close to t.

The choices of q and of the active dimensions influence the behaviour of
the estimator for Rq. This aspect is discussed in more details in the next
section.

2.3 Monte Carlo estimator for Rq

Debiasing p̂q
G as an estimator of p can be done at the price of estimating

Rq = P
(
maxX−q > t | maxXq ≤ t

)
.

There is no closed formula for Rq, so it is approximated here via MC.
Since X is Gaussian then so are Xq, X−q and X−q | Xq = xq, for any
deterministic vector xq ∈ Rq.

In order to estimate Rq = P
(
maxX−q > t | Xi1 ≤ t, . . . ,Xiq ≤ t

)
, we

first generate n realizations xq1, . . . , x
q
n of Xq such that Xq ≤ tq. Second,

we compute the mean and covariance matrix of X−q conditional on each
realization xql , l = 1, . . . , n with the following formulas

µ−q|x
q
l = µ−q + Σ−q,q(Σq)−1(xql − µ

q), Σ−q|q = Σ−q −Σ−q,q(Σq)−1Σq,−q,
(4)

where µq,Σq and µ−q,Σ−q are the mean vector and covariance matrix of Xq

and X−q respectively, Σ−q,q is the cross-covariance between the dimensions
E \ Eq and Eq, Σq,−q is the transpose of Σ−q,q. Note that the conditional
covariance Σ−q|q does not depend on the realization xql , therefore it can be
computed before the sampling procedure. Given the mean and covariance

matrix conditional on each sample xql , we can easily draw a realization y
−q|q
l

from X−q | Xq = xql . Once n couples (xql , y
−q|q
l ), l = 1, . . . , n are drawn

from the respective distributions, an estimator for Rq is finally obtained as
follows

R̂q
MC

=
1

n

n∑
l=1

1
max y

−q|q
l >t

.

The realizations of Xq are obtained with a crude multivariate rejection
sampling algorithm (Robert, 1995; Horrace, 2005). The cost of this step is
driven by the acceptance probability of the sampler and it can be very high.
The accepted samples satisfy the condition Xq ≤ tq thus we have that the
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Figure 2: Estimate of p with p̂GMC for different values of q. A full MC
estimation of the same quantity is shown for comparison

acceptance probability is P (Xq ≤ tq) = 1−pq. This shows that the choice of
q and of the active dimensions play an important role. If pq is much smaller
than p, then the rejection sampler will have a high acceptance probability,
however the overall method will be less efficient as most of the probability
is in the remainder. On the other hand, if q and the active dimensions are
well chosen, the value of pq could be very close to p. This will also lead to
a slower rejection sampler as the acceptance probability would be small.

The second part of the procedure for R̂q
MC

, drawing samples from the
distribution of X−q | Xq = xql , is instead less dependent on q and generally
less expensive than the fist step. The mean vector and covariance matrix
computations requires only linear algebra operations as described in Equa-
tion (4) and realizations of X−q | Xq = xql can be generated by sampling
from a multivariate normal distribution.

The difference in computational cost between the first step and the sec-
ond step of the MC procedure can be exploited to reduce the variance at a
fixed computational cost. This idea is exploited by the asymmetric nested
MC procedure presented in Section 3.

We denote with p̂GMC the unbiased estimator of p defined as

p̂GMC = p̂q
G + (1− p̂qG)R̂q

MC
,

where GMC denotes the use of Genz’s method for pq and MC for R̂q.
Figure 2 shows the box plots of 30 replications of an experiment where

p is approximated with p̂GMC. The set-up is the same as in Fig. 1. The core
of the probability is approximated with p̂q

G and the active dimensions are

chosen with Method 1. The residual Rq is estimated with R̂q
MC

. The re-
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mainder allows to correct the bias of p̂q
G even with a small number of active

dimensions. As comparison the results of the same experiment with a full
MC estimator for p are also shown. For all experiments and for each method
the number of samples was chosen in order to have approximately the same
computational cost. The estimator p̂GMC exploits an almost exact method
to estimate the largest part of the probability p, therefore the MC estimator

R̂q
MC

has less variance than a full MC procedure for a fixed computational
cost.

3 Estimation of the residual with asymmetric nested
Monte Carlo

In section 2, Rq was estimated by R̂q
MC

. There exists many methods to
reduce the variance of such estimators, including antithetic variables (Ham-
mersley and Morton, 1956), importance sampling (Kahn, 1950; Kahn and
Marshall, 1953) or conditional Monte Carlo (Hammersley, 1956) among
many others; see, e.g. Robert and Casella (2013, Chapter 4), for a broader
overview. Here we focus on reducing the variance at a fixed computational
cost, i.e. we are interested in increasing the estimator efficiency (Lemieux,
2009, Section 4.2). We propose a so-called asymmetric nested Monte Carlo
(anMC) estimator for Rq that increases the efficiency with a parsimonious
multiple use of conditioning data. In this section we develop some useful
theoretical properties of anMC estimators.

The idea is to use an asymmetric sampling scheme that assigns the
available computational resources by taking into account the actual cost
of simulating each component. A similar asymmetric sampling scheme was
introduced in the particular case of comparing the performance of stopping
times for a real-valued stochastic process in discrete times in Dickmann and
Schweizer (2016). Here we introduce this procedure in a general fashion and,

in the next section, we detail it to R̂q
MC

. For two measurable spaces W,Z,
consider two random elements W ∈ W and Z ∈ Z, defined on the same
probability space and not independent. We are interested in estimating the
quantity

G = E [g(W,Z)] , (5)

where g : W × Z → R is a measurable function, assumed integrable with
respect to (W,Z)’s probability measure. Let us also assume that it is possible
to draw realizations from the marginal distribution of W , Z and from the
conditional distribution of Z |W = wi, for each wi sample ofW . In the spirit
of a Gibbs sampler, we can then obtain realizations (wi, zi), i = 1, . . . , n of
(W,Z) by simulating wi from the distribution of W and then zi from the
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conditional distribution Z |W = wi, leading to:

Ĝ =
1

n

n∑
i=1

g(wi, zi). (6)

This MC estimator can actually be seen as the result of a two step nested
MC procedure where, for each realization wi, one inner sample zi is drawn

from Z | W = wi. Note that the estimator R̂q
MC

used in Section 2 is a
particular case of Equation (6) with W = Xq | Xq ≤ tq, Z = X−q and
g(x, y) = 1max y>t. As noted in Section 2, drawing realizations of Xq | Xq ≤
tq has a higher computational cost than simulating X−q because rejection
sampling is required in the first case. More generally, let us denote with
CW (n) the cost of n realizations of W and with CZ|W (m;wi) the cost of
drawing m conditional simulations from Z | W = wi. If CW (1) is much
higher than CZ|W (1;wi) then sampling several conditional realizations for a
given wi might bring computational savings.

In the proposed asymmetric sampling scheme for each realization wi we
sample m realizations zi,1, . . . , zi,m from Z | W = wi. Assume that we use
this sampling scheme for the couples (wi, zi,j), i = 1, . . . , n, j = 1, . . . ,m,
then an estimator for G is

G̃ =
1

nm

n∑
i=1

m∑
j=1

g(wi, zi,j). (7)

For a fixed number of samples, the estimator G̃ may have a higher vari-
ance than Ĝ due to the dependency between pairs sharing the same replicate
of W . However, in many cases, the estimator G̃ may be relevant to reduce
the variance at a fixed computational time. In fact, let us fix the compu-
tational budget instead of the number of samples. If CZ|W (1;wi) < CW (1),
then anMC may lead to an overall variance reduction thanks to an increased
number of simulated pairs. In the remainder of the section, we show that, in
the case of an affine cost functions, there exists an optimal number of inner
simulations m such that var(G̃) < var(Ĝ). Assume

CW (n) = c0 + cn and, for each sample wi

CZ|W (m;wi) = CZ|W (m) = α+ βm,

with c0, c, α, β ∈ R+ dependent on the simulators of W and Z | W . The
second equation entails that the cost of conditional simulations does not
depend on the conditioning value. If W = Xq | Xq ≤ tq, Z = X−q as
in Section 2, then Z | W is Gaussian with mean and covariance matrix
described in (4). In this case, the cost for sampling Z | W is affine, with
α describing preliminary computations and β random number generation
and algebraic operations. Denote with W1, . . . ,Wn replications of W . For
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each Wi we consider the conditional distribution Z |Wi and m replications
Z1,i, . . . , Zm,i. Under these assumption the total simulation budget is

Ctot(n,m) = c0 + n(c+ α+ βm).

If the total budget is fixed, Ctot(n,m) = Cfix ∈ R+, then the number of
replications of W as a function of m is

NCfix
(m) =

Cfix − c0

c+ α+ βm
.

The following proposition shows a decomposition of var(G̃) that is use-
ful to find the optimal number of simulations m∗ under a fixed simulation
budget Ctot(n,m) = Cfix.

Proposition 2. Consider n independent copies W1, . . . ,Wn of W and, for
each Wi, m copies Zi,j = Zj | Wi j = 1, . . . ,m, independent conditionally
on Wi. Then,

var(G̃) =
1

n
var(g(W1, Z1,1))− m− 1

nm
E
[

var(g(W1, Z1,1) |W1)
]
. (8)

Corollary 1. Under the same assumptions, G̃ has minimal variance when

m = m̃ =

√
(α+ c)B

β(A−B)
,

where A = var(g(W1, Z1,1)) and B = E
[

var(g(W1, Z1,1) | W1)
]
. Moreover

denote with ε = m̃− bm̃c, then the optimal integer is m∗ = bm̃c if

ε <
(2m̃+ 1)−

√
4(m̃)2 + 1

2
(9)

or m∗ = dm̃e otherwise.

Proposition 3. Under the same assumptions, if m∗ > 2(α+c)B
(c+α)B+β(A−B) then

var(G̃) = var(Ĝ) [1− η], where η ∈ (0, 1).

3.1 Algorithmic considerations

In order to compute m∗, we need the quantities A = var(g(W1, Z1,1)) and
B = E

[
var(g(W1, Z1,1) |W1)

]
and the constants c0, c, α and β. A and B de-

pend on the specific problem at hand and are usually not known in advance.
Part of the total computational budget is then needed to estimate A and
B. This preliminary phase is also used to estimate the system dependent
constants c and β. Algorithm 1 reports the pseudo-code for anMC.
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Algorithm 1: Asymmetric nested Monte Carlo.

Input : µW , µZ ,ΣW ,ΣZ ,ΣWZ , g, Ctot

Output: G̃
Part 0: estimate c0, c, β, α ;
initialize compute the conditional covariance ΣZ|W and initialize n0,m0;

Part 1: for i← 1 to n0 do
estimate A,B simulate wi from the distribution of W and compute µZ|W=wi

;
draw m0 simulations zi,1, . . . , zi,m0 from the conditional
distribution Z |W = wi;

estimate E [g(W,Z) |W = wi] with Ẽi = 1
m0

∑m0
j=1 g(wi, zi,j);

estimate var (g(W,Z) |W = wi) with
Ṽi = 1

m0−1

∑m0
j=1(g(wi, zi,j)− Ẽi)2;

end

compute m̃ =

√
(α+c) 1

n0

∑n0
i=1 Ṽi

β 1
n0−1

∑n0
i=1(Ẽi− 1

n0

∑n0
i=1 Ẽi)2

, m∗ as in Corollary 1 and

n∗ = NCfix
(m∗);

Part 2: for i← 1 to n∗ do
compute G̃ if i ≤ n0 then

for j ← 1 to m∗ do
if j ≤ m0 then

use previously calculated Ẽi and Ṽi;
else

simulate zi,j from the distribution Z |W = wi;

compute Ẽi = 1
m∗
∑m∗

j=1 g(wi, zi,j);

end

end

else
simulate wi from the distribution of W and compute µZ|W=wi

;

for j ← 1 to m∗ do
simulate zi,j from the conditional distribution Z |W = wi;

end

compute Ẽi = 1
m∗
∑m∗

j=1 g(wi, zi,j);

end

end

estimate E [g(W,Z)] with G̃ = 1
n∗
∑n∗

i=1 Ẽi;
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Figure 3: Comparison of results with p̂q
G, p̂GMC, p̂GanMC and standard MC

on 30 replications of the example introduced in Fig. 1.

3.2 Estimate p with p̂GanMC

The anMC algorithm can be used to reduce the variance compared to Rq’s
MC estimate proposed in Section 2.3. In fact, let us consider W = Xq |
Xq ≤ tq and Z = X−q. We have that W is expensive to simulate as
it requires rejection sampling while, for a given sample wi, Z | W = wi
is Gaussian with mean and covariance matrix described in Equation (4).
It is generally much cheaper to obtain samples from Z | W = wi than
from W . Moreover, as noted earlier, Rq can be written in the form of
Equation (5) with g(x, y) = 1max y>t. By following Algorithm 1 we calculate
m∗, sample n∗ realizations w1, . . . , wn∗ of W and for each realization wi
obtain m∗ samples zi,1, . . . , zi,m∗ of Z |W = wi. We estimate Rq via

R̂q
anMC

=
1

n∗m∗

n∗∑
i=1

m∗∑
j=1

1max zi,j>t.

Finally plugging in R̂q
anMC

and p̂q
G in Equation (2), we obtain

p̂GanMC = p̂q
G + (1− p̂qG)R̂q

anMC
.

Figure 3a shows a comparison of results using 30 replications of the
experiment presented in Section 2.3. Results obtained with a MC estimator
are shown for comparison.

While the simulations of all experiments were obtained under the con-
straint of a fixed computational cost, the actual time to obtain the simula-
tions was not exactly the same. In order to be able compare the methods
in more general settings we further rely on the notion of efficiency. For an
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estimator p̂, we define the efficiency (Lemieux, 2009, Section 4.2) as

Eff[p̂] =
1

var(p̂) time[p̂]
,

where time[p̂] denotes the computational time of the estimator p̂.
Figure 3b shows a comparison of the efficiency of p̂GMC and p̂GanMC

with a full Monte Carlo estimator. With as few as q = 50 active dimensions
we obtain an increase in efficiency of around 10 times on average over the
30 replications of the experiment with the estimator p̂GMC. The estimator
p̂GanMC shows a higher median efficiency than the others for all q ≥ 20.

4 Numerical studies

4.1 Choice of the number of inner samples

In this section we study the efficiency of the anMC method compared with
a standard MC method for different choices of m. Here we do not select the
optimal m∗ defined in Corollary 1, but we study the efficiency as a function
of m. In many practical situations even if part 1 of Algorithm 1 does not
render the optimal m∗ the anMC algorithm is still more efficient than a
standard MC if the chosen m is close to m∗.

We consider a similar setup to the experiment presented in Section 2.2.
Here we start from a GRF with tensor product Matérn (ν = 5/2) and a non
constant mean function m different from the example in Section 2.2, initial-
ized as conditional mean on 60 randomly generated values at a fixed design
on [0, 1]6. The hyperparameters are fixed as θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and
σ2 = 8. The GRF is then discretized over the first d = 1000 points of
the Sobol sequence to obtain the vector X. We are interested in 1 − p =
P (X < t), with t = 5. We proceed by estimating p with p̂GMC and p̂GanMC

for different choices of m to compare their efficiency. The initial part pq is
computed once with estimator p̂q

G with q and the active dimensions chosen
with Algorithm 3, Method B. The number of outer simulations in the anMC
algorithm is kept fixed to n = 10, 000 and we only vary m. For each m, the
anMC estimation is replicated 20 times.

The median estimated value for p is p̂ = 0.9644. Most of the probability
is estimated with pq, in fact p̂q

G = 0.9636. Figure 4a shows Eff[p̂] computed
with the overall variance of p̂. A choice of m = 10 leads to a median
increase in efficiency of 73% compared to the MC case. In this example, both
the probability to be estimated and pq are close to 1, thus the acceptance

probability for R̂q is low. In this situation the anMC method is able to
exploit the difference in computational costs to provide a more efficient
estimator for R̂q.

In order to study the effect of the acceptance probability on the method’s
efficiency we change the threshold in the previous example to t = 7.5 by
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(a) High probability state, t = 5,
p̂GanMC = 0.9644.
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(b) Low probability state, t = 7.5,
p̂GanMC = 0.1178.

Figure 4: Efficiency of p̂GanMC estimator versus the number of inner simu-
lations m. For each m the experiment is reproduced 30 times.

keeping the remaining parameters fixed. The value of p is smaller, p̂ =
0.1178. The number of active dimensions q, chosen with Algorithm 3, is
smaller (q = 90) as the probability mass is smaller. The value of pq (p̂q

G =
0.1172) is much smaller than in the previous case and this leads to a higher

acceptance probability for R̂q. Figure 4b shows efficiency of the method as a
function of m. Here the anMC method does not bring significant gains over
the MC method as the the ratio between the cost of rejection sampling and
the conditional simulations in R̂q is close to one. The estimated m∗ is equal
to 1.91, thus it is smaller than the minimum threshold of Proposition 3 that
guarantees a more efficient anMC algorithm.

4.2 Comparison with state of the art

In this section we compare the GMC and GanMC methods, as implemented
in the R package ConservativeEstimates, with available state-of-the-art
algorithms to estimate π(t). In particular, we compare this implementation
with:

QRSVN an implementation of Genz method (Genz and Bretz, 2009) in
the R package mvtnorm, function pmvnorm;

GHK an implementation of GHK method (Geweke, 1991; Hajivassiliou and
McFadden, 1998) in the R package bayesm, function ghkvec;

MET R implementation of the minimax-exponentially-tilted (MET) method
(Botev, 2017) in the package TruncatedNormal, function mvNcdf;.
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Figure 5: Efficiency of the probability estimator versus the dimension d. For
each d the experiment is reproduced 15 times. Values in logarithmic scale.

We consider the example introduced in Section 4.1 and we increase the
dimension of the problem d by considering finer discretizations of the un-
derlying GRF. For example, the vector X of dimension d = 100 is obtained
from the GRF discretized on the first 100 points of the 6-dimensional Sobol’
sequence. As the dimension d increases the probability π(t) changes, thus
providing different setups. Each experiment is replicated 15 times.

Figure 5a presents a comparison of the estimator’s efficiency for the
problem of computing π(t), with t = 5. This is a low probability setup, as
the range of π(t) varies between 0.66155 for d = 100 and 0.00124 for d =
7000. The most efficient algorithm is the QRSVN Genz method, however
this implementation does not scale to dimensions higher than 1000. The
GMC algorithm is the second most efficient in all dimensions except d =
2000 where it is the most efficient. The GanMC algorithm is instead the
most efficient when d is greater than 2000. This effect is explained by the

efficiency gains brought by R̂q
anMC

when the rejection sampler is expensive.
If d > 2000, the probability P (Xq ≤ tq) is always smaller than 0.01, thus
the rejection sampler becomes much more expensive than the conditional
sampler in the estimation of the remainder R̂q. Algorithms GHK and MET
allowed estimates until dimension d = 5000 and d = 4000 respectively before
running in memory overflows. The GanMC algorithm is 45 times more
efficient than the GHK algorithm for d = 5000 and 3.8 times more efficient
than MET for d = 4000. It is also 5 times more efficient than GMC for
d = 7000.

Figure 5b compares the estimators’ efficiency for the computation of
π(t) with t = 7.5. As partially observed in the previous section this is a
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high probability setup as the median estimate of π(t) ranges from 0.99685,
for d = 100, to 0.67436, for d = 7000. Also in this case the QRSVN is
the most efficient algorithm in low dimensions. The GMC and the GanMC
algorithms however are the most efficient for all dimensions higher than
2000. The GanMC algorithm is 4 times more efficient than the MET for
d = 3000 and 5 times more efficient than GHK for d = 5000. In this setup the

computational cost of the rejection sampler in R̂q
anMC

is not much higher
than the conditional sampler. In fact, the acceptance probability of the
rejection sampler is always higher than 0.6. In most replications this leads
to a choice of m∗ smaller than 2 and thus GanMC is slower than GMC
because of Part 1 in Algorithm 1 while achieving the same variance. This
is the main reason why the GMC algorithm proves to be more efficient for
most dimensions, in fact for d = 5000 it is 5.9 times more efficient than
GanMC and for d = 7000 the ratio is 1.3. All computations were carried
on the cluster of the University of Bern on machines with Intel Xeon CPU
2.40GHz and 16 GB RAM.

5 Application: efficient computation of conserva-
tive estimates

We show here that anMC is key in conservative excursion set estimation
relying on Gaussian field models. We consider an expensive to evaluate
system described by a continuous function f : D ⊂ R` → R, ` ≥ 1, where D
is a compact domain, and we focus on estimating, for some fixed threshold
t ∈ R, the set

Γ∗ = {x ∈ D : f(x) ≤ t}.
Such problems arise in many applications such as reliability engineering (see,
e.g., Picheny et al. (2013), Chevalier et al. (2014a)) climatological studies
(Bolin and Lindgren, 2015; French and Sain, 2013) or in natural sciences
(Bayarri et al., 2009). Often f is seen as expensive to evaluate black-box
(Sacks et al., 1989) and can only be evaluated with computer simulations.
We assume here that f was only evaluated at points χk = {x1, . . . , xk} ⊂ D
and the associated responses are denoted with f(χk) = (f(x1), . . . , f(xk)) ∈
Rk and we are interested in giving an estimate of Γ∗ starting from these k
evaluations.

In a Bayesian framework we consider f as a realization of a GRF (ξx)x∈D
with prior mean function m and covariance kernel K. A prior distribution
of the excursion set is hence obtained by thresholding ξ, thus obtaining the
following random closed set

Γ = {x ∈ D : ξx ≤ t}.

Denoting with ξχk
the random vector (ξx1 , . . . , ξxk), we can then condition

ξ on the observations f(χk) and obtain a posterior distribution for the field

16



ξx | ξχk
= f(χk). This gives rise to a posterior distribution for Γ. Different

definitions of random closed set expectation (Molchanov (2005), Chapter 2)
can be used to summarize this posterior distribution and to provide esti-
mates for Γ∗. In Chevalier et al. (2013), for example, the Vorob’ev expec-
tation was introduced in this setting. Let us briefly recall this definition.
We denote with pΓ,k : D → [0, 1] the coverage function of the posterior set
Γ | ξχk

= f(χk), defined as

pΓ,k(x) = Pk(x ∈ Γ), x ∈ D,

where Pk(·) = P (· | ξχk
= f(χk)). This function associates to each point in

D its probability of being inside the posterior excursion set. The function
pΓ,k gives rise to a family of excursion set estimates: for each ρ ∈ [0, 1] we
can define the posterior ρ-level Vorob’ev quantile of Γ

Qρ = {x ∈ D : pΓ,k(x) ≥ ρ}.

The Vorob’ev expectation of Γ (Molchanov, 2005) is the quantile QρV that
satisfies |Qρ| ≤ Ek[|Γ|] ≤ |QρV | for all ρ ≥ ρV , where |A| denotes the
volume of a set A ⊂ Rl. The set QρV consists of the points that have
high enough marginal probability of being inside the excursion set. In some
applications, however, it is important to provide confidence statements on
the whole set estimate. Conservative estimates introduced in Bolin and
Lindgren (2015) for Gaussian Markov random fields address this issue. A
conservative estimate of Γ∗ is

CΓ,k = arg max
C⊂D

{|C| : Pk(C ⊂ {ξx ≤ t}) ≥ α}, (10)

where |C| denotes the volume of C.
The object in Equation (10), however, leads to major computational

issues. First of all we need to select a family of sets to use for the opti-
mization procedure in Equation (10). Here we follow Bolin and Lindgren
(2015) and select the Vorob’ev quantiles as family of sets. This family has
the advantage that it is parametrized by one real number ρ and thus it ren-
ders the optimization straightforward. Algorithm 2 details the optimization
procedure.

Second, for each candidate Q we need to evaluate Pnext = Pk(Q ⊂ {ξx ≤
t}), the probability that Q is inside the excursion. In fact, this quantity
is a high dimensional orthant probability. For a Vorob’ev quantile Qρ′ ,
discretized over the points c1, . . . , cr,

Pk(Qρ′ ⊂ {ξx ≤ t}) = Pk(ξc1 ≤ t, . . . , ξcr ≤ t) = 1− Pk( max
i=1,...,r

ξci > t).

Thus we use the estimator p̂GanMC to approximate 1− Pk(Qρ′ ⊂ {ξx ≤ t}).
The use of anMC allows resolutions for the discretized Vorob’ev quantiles
that seem out of reach otherwise.
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Algorithm 2: Conservative estimates algorithm.

Input : mk,Kk, conditional mean and covariance of ξ | ξχk
= f(χk),

and G, fine discretization design;
Output: Conservative estimate for Γ∗ at level α.

Part 0: sort the points in G in decreasing order of pΓ,k, with indices
Gs = {i1, . . . im};

compute iB, iT find the highest index iT such that
∏T
j=1 pΓ,k(Gs)[ij ] ≥ α;

find the highest index iB such that pΓ,k(Gs)[iB] ≥ α;
evaluate mean and covariance matrix mk(iB) and ΣiB ,iB ;

Part 1: initialize iL = iT , iR = iB ;
Initialize dichotomy estimate PL = Pk(QρiL ⊂ {ξx ≤ t}), PR = Pk(QρiR ⊂ {ξx ≤ t}) with

GanMC ;
Part 2: while PR < α and (iR − iL) ≥ 2 do

optimization next evaluation inext = iL+iR
2 ;

estimate Pnext = Pk(Qρinext
⊂ {ξx ≤ t}) with GanMC;

if Pnext ≥ α then
iL = inext, iR = iR;

else
iL = iL, iR = inext;

end

end

We apply Algorithm 2 to a two dimensional artificial test case. We
consider as function f a realization of a GRF (ξx)x∈D, where D ⊂ R2 is
the unit square. We consider two parametrizations for the prior covariance
kernel: a tensor product Matérn covariance kernel with ν = 5/2, variance
σ2 = 0.5 and range parameters θ = [0.4, 0.2] and a Gaussian covariance
kernel with variance σ2 = 0.5 and range parameters θ = [0.2, 0.4]. In both
cases we assume a prior constant mean function. We are interested in the
set Γ∗ with t = 1. For both cases we consider k = 15 evaluations of f at
the same points chosen by Latin hypercube sampling. Figures 6a and 6b
show the conservative estimate at level 95% compared with the true excur-
sion, the Vorob’ev expectation and the 0.95-quantile for the Matérn and the
Gaussian kernel. The 0.95-quantile does not guarantee that the estimate
is included in the true excursion with probability 0.95 in both examples.
The conservative estimates instead are guaranteed to be inside the true ex-
cursion with probability α = 0.95. They correspond to Vorob’ev quantiles
at levels 0.998 (Matérn) and 0.993 (Gaussian). The conservative estimates
were obtained with a 100× 100 discretization of the unit square. Such high
resolution grids lead to very high dimensional probability calculations. In
fact, the dichotomy algorithm required 11 computations of the probability
1−Pk(Qρ′ ⊂ {ξx ≤ t}) for each case. The discretization’s size for Qρ varied

18



Conservative estimate at 95% (Matern kernel)

Conservative estimate (95%)
0.95-level set
Vorob'ev expectation
True excursion

(a) Realization obtained with a Matérn
kernel.

Conservative estimate at 95% (Gauss kernel)

Conservative estimate (95%)
0.95-level set
Vorob'ev expectation
True excursion

(b) Realization obtained with Gaussian
kernel.

Figure 6: Conservative estimates at 95% (white region) for the excursion
below t = 1. Both models are based on 15 evaluations of the function
(black triangles). The true excursion level is plotted in blue, the Vorob’ev
expectation in green and the 0.95-level set in red.

between 1213 and 3201 points in the Matérn kernel case and between 1692
and 2462 points in the Gaussian case. Such high dimensional probabilities
cannot be computed with the current implementation of the algorithm by
Genz, however they could be computed with other Monte Carlo methods
at higher computational costs. Instead, with the proposed method, the to-
tal computational time on a laptop with Intel Core i7 1.7GHz CPU and
8GB of RAM was equal to 365 and 390 seconds respectively for Matérn and
Gaussian kernel.

6 Discussion

In this paper we introduced a new method to approximate high dimensional
orthant Gaussian probabilities based on a decomposion of the probability
in a low dimensional part pq and a remainder Rq. The number of active
dimensions q and the dimensions themselves are chosen with two heuristic
algorithms which provide good results in case of dense covariance matrix
with anisotropic diagonal and anisotropic mean vector. An alternative pro-
posal is choosing the first q dimensions ordered according to the inverse
Genz variable reordering proposed in Genz and Bretz (2009, Section 4.1.3).
While similar to the heuristics proposed here, this method is not efficient
in high dimensions as it requires a full Cholesky decomposition of the co-
variance matrix. The remainder Rq is instead estimated with two methods:
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standard Monte Carlo and asymmetric nested Monte Carlo (anMC). Both
methods showed higher efficiency than other state-of-the-art methods for
dimensions higher than 1000.

The anMC method proved to be very efficient, in the numerical studies
presented, if the orthant probability of interest has low to medium values.
This method however relies on an initial step where several constants and
probabilistic quantities are empirically estimated to choose the optimal m∗,
the number of inner samples. In particular the cost parameters c, β, the
slopes of the linear costs, might be hard to estimate if the constants c0, α
are comparatively large. In this case Algorithm 1 might not choose the
optimal m∗. However, a numerical study of the algorithm behaviour for
different choices of m showed that, on the considered examples, even if the
chosen m is not optimal but it is close to optimal, the efficiency gain is
very close to the optimal efficiency gain. The estimator p̂GanMC efficiency
is mainly driven by the acceptance probability of the rejection sampler in

R̂q
anMC

, which depends on p̂q. This highlights the existence of a trade-

off between p̂q
G and R̂q. If the choice of q and active dimensions is not

optimal, then the acceptance probability of the rejection sampler becomes
larger, making the estimation of R̂q easier. An estimator p̂q closer to p

makes the quantity R̂q harder to estimate. However, in this case, R̂q
anMC

becomes more efficient than R̂q
MC

as the ratio between the computational
costs becomes more favourable.

The estimator p̂GanMC made possible the computation of conservative
estimates of excursion sets with general GRF priors. The R implementa-
tion of the algorithm is contained in the package ConservativeEstimates

currently available on GitHub.

A Choice of active dimensions

The estimator p̂q
G, introduced in Section 2.2, requires the choice of q, the

number of active dimensions and the choice of the dimensions themselves.
Algorithm 3 describes the heuristic procedure implemented in ConservativeEstimates

to select q and obtain the active dimensions. Here we select q by sequentially
increasing the number of active dimensions until the relative change of p̂q

G

is less than the estimate’s error.
The constant γ > 0 is chosen equal to 1 in our implementation. Moreover

the algorithm stops if qk > 300 to avoid using Genz’s algorithm in high
dimensions.

A.1 Add spatial information

If the random vector X comes from a GRF discretized over a set of points
Espat = {e1, . . . , ed} ⊂ Rl, then we can exploit this information to choose
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Algorithm 3: Select q, active dimensions and compute p̂q
G.

Input : q0, small initial q, e.g. q0 = d1/3, and qstep the increment of
q, γ > 0

Output: q, p̂G
q

Compute p̂G
q0 and save err(p̂G

q0) := 3
√

var(p̂G
q0) ;

initialize k = 0;
repeat

increment k = k + 1 ;
qk := q0 + kqstep ;
choose qk active dimensions, compute p̂Gqk and err(p̂G

qk
) ;

compute ∆(p̂G
qk

) =

∣∣∣p̂G
qk
−p̂G

qk−1

∣∣∣
1+p̂G

qk

;

until ∆(p̂Gqk) < γ err(p̂Gqk) or qk > 300;

q = qk and p̂q
G = p̂G

qk
;

Eq. Let us consider the sequence of vectors (δj)j=1,...,q, defined for each j as

δj =

j∏
k=1

dist(eik , Espat) (j = 1, . . . , q)

where dist(eik , Espat) denotes the d-dimensional vector of Euclidean dis-
tances between eik and each point in Espat and {ei1 , . . . , eiq} are the points
corresponding to the selected active dimensions Eq. We then adjust Meth-
ods A, B by sampling the jth active dimension with probabilities given by
the component-wise products pt

δj
‖δj‖ and pt(1− pt) δj

‖δj‖ respectively.

B Proofs

Proof of Proposition 1

Proof. We have that E[p̂q] = pq and E[R̂q] = Rq. Then we have

var(p̂) = var(p̂q) + var((1− p̂q)R̂q)︸ ︷︷ ︸
=�

+2 cov(p̂q, (1− p̂q)R̂q)︸ ︷︷ ︸
=N

. (11)

We can write the variance � and the covariance N as

� = var((1− p̂q)R̂q) = (1− pq)2 var(R̂q) +R2
q var(p̂q) + var(p̂q) var(R̂q),

N = cov[p̂q, (1− p̂q)R̂q] = − var(p̂q)Rq,

respectively, by exploiting the independence of p̂q and R̂q. By plugging in
those expressions in Equation (11) we obtain the result in Equation (3).
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Proof of Proposition 2

Proof.

var(G̃) =
1

n2m2
var

 n∑
i=1

m∑
j=1

g(Wi, Zi,j)

 =
1

nm2
var

 m∑
j=1

g(W1, Z1,j)


=

1

nm2

m∑
j=1

m∑
j′=1

cov
(
g(W1, Z1,j), g(W1, Z1,j′)

)
=

1

nm2

[
m var(g(W1, Z1,1)) +m(m− 1) cov(g(W1, Z1,1), g(W1, Z1,2))

]
=

1

nm2
[m var(g(W1, Z1,1)) +m(m− 1)�] . (12)

where the first equality is a consequence of the independence of W1, . . . ,Wn

and the third equality is a consequence of the independence of Zi,j and Zi,j′

conditionally on Wi. Moreover the covariance denoted by � in (12) can be
written as follows.

� = E
[

cov(g(W1, Z1,1), g(W1, Z1,2) |W1)
]︸ ︷︷ ︸

=0 Z1,1,Z1,2 independent conditionally on W1

+ cov
(
E[g(W1, Z1,1) |W1],E[g(W1, Z1,2) |W1]

)︸ ︷︷ ︸
=var(E[g(W1,Z1,1)|W1])

= var
(
E[g(W1, Z1,1) |W1]

)
= var

(
g(W1, Z1,1)

)
− E

[
var
(
g(W1, Z1,1) |W1

)]
.

(13)

Equations (12) and (13) give the result (8).

Proof of Corollary 1

Proof. Denote with e = β(A − B), f = (α + c)(A − B) + βB, g = (c +
α)B, h = Ctot − c0, then

var(G̃)(m) =
em2 + fm+ g

hm
. (14)

Observe that the first and second derivatives of var(G̃) with respect to m
are respectively

∂ var(G̃)

∂m
=

1

h

[
e− g

m2

]
,

∂2 var(G̃)

∂m2
=

2g

hm3
.

The second derivative is positive for all m > 0 then var(G̃) is a convex func-
tion for m > 0 and the point of minimum is equal to the zero of ∂ var(G̃)/∂m,
which is m =

√
g/e = m̃.
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Since var(G̃) is convex in m, the integer that realizes the minimal vari-
ance is either bm̃c or dm̃e. By plugging in m = m̃ − ε =

√
g/e − ε and

m = m̃ − ε + 1 =
√
g/e − ε + 1 in Equation (14), we obtain the condition

in (9).

Proof of Proposition 3

Proof. First of all notice that the total cost of sampling Ĝ is Ctot = c0 +
n(c + CZ|W ) = c0n(c + α + β). By isolating n in the previous equation we

obtain n = Ctot
c+α+β , where Ctot for the sake of brevity and, by computations

similar to those in Proposition 2 we obtain

var(Ĝ) =
c+ α+ β

Ctot

var(g(W1, Z1,1)) =
c+ α+ β

Ctot

A,

where A = var(g(W1, Z1,1)). In the following we will also denote B =
E
[

var(g(W1, Z1,1) |W1)
]

as in Corollary 1. Let us now substitute NCfix
(m∗)

in equation (8), thus obtaining

var(G̃) =
(c+ α+ βm∗)Am∗ − (m∗ − 1)(c+ α+ βm∗)B

Ctotm∗

= var(Ĝ)
(m∗)2β(A−B) +m∗[(c+ α)(A−B) + βB] + (c+ α)B

A(c+ α+ β)m∗

= var(Ĝ)
2(α+ c)B +m∗[(c+ α)(A−B) + βB]

A(c+ α+ β)m∗
, (15)

where in (15) we substituted (m∗)2 from Corollary 1. By rearranging the
terms, we obtain

var(G̃) = var(Ĝ)

[
1− (m∗ − 2)(c+ α)B +m∗β(B −A)

A(c+ α+ β)m∗

]
= var(Ĝ) [1− η] .

Since A − B,B, c, β, α are always positive, then η < 1 for all m∗ > 0.
Moreover η > 0 if

m∗ >
2(α+ c)B

(α+ c)B + β(A−B)
.
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