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Estimating orthant probabilities of high
dimensional Gaussian vectors with an application

to set estimation

Dario Azzimonti ∗ David Ginsbourger †∗,

Abstract

The computation of Gaussian orthant probabilities has been extensively stud-
ied for low dimensional vectors. Here we focus on the high dimensional case and
we present a two step procedure relying on both deterministic and stochastic tech-
niques. The proposed estimator relies indeed on splitting the probability into a
low dimensional term and a remainder. While the low dimensional probability can
be estimated by fast and accurate quadrature, the remainder requires Monte Carlo
sampling. We show that an estimator obtained with this technique has higher ef-
ficiency than standard Monte Carlo methods. We further refine the estimation by
using a novel asymmetric nested Monte Carlo algorithm for the remainder and we
highlight cases where this approximation brings substantial efficiency gains. Fi-
nally this method is applied to derive conservative estimates of excursion sets of
expensive to evaluate deterministic functions under a Gaussian random field prior
without requiring a Markov assumption.

Keywords: Gaussian probabilities; Monte Carlo; Gaussian random fields; Con-
servative set estimation.

1 Introduction
Assume thatX = (X1, . . . , Xd) is a random vector with Gaussian distributionNd(µ,Σ).
We are interested in estimating, for any fixed t ∈ R, the following probability

π(t) = P (X ≤ (t, . . . , t)). (1)

The general problem of evaluating π(t), which, for a full rank matrix Σ, is the in-
tegral of the multivariate normal density φ(·;µ,Σ) over the one-sided d-dimensional
rectangle (−∞, t]d, has been extensively studied in moderate dimensions with many
different methods. In low dimensions tables are available (see, e.g., Owen (1956) for
d = 2). Furthermore, when the dimension is smaller than 20, there exist methods
(see, e.g., Abrahamson (1964), Moran (1984) and Miwa et al. (2003)) exploiting the
specific orthant structure of the probability in (1). Currently, however, most of the lit-
erature uses numerical integration techniques to approximate the quantity. In moderate
dimensions fast reliable methods are established to approximate π(t) (see, e.g. Cox
and Wermuth (1991)) and more recently the methods introduced in Schervish (1984);
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Genz (1992) and Hajivassiliou et al. (1996) (see also Genz and Bretz (2002), Ridgway
(2014) and the book Genz and Bretz (2009) for a broader overview) provide state-of-
the-art algorithms when d < 100. Those techniques rely on fast quasi Monte Carlo
(qMC) methods and are very accurate for moderate dimensions. However, when d is
larger than 1000 they are not computationally efficient or become intractable. Com-
monly used alternative methods are standard Monte Carlo (MC) techniques (see Tong
(2012), Chapter 8 for an extensive review), for which getting accurate estimates can be
computationally prohibitive.

We propose here a two step method that exploits the power of qMC quadratures
and the flexibility of stochastic simulation. We rely on the following equivalent formu-
lation.

π(t) = 1− P (maxX > t),

where maxX denotes maxi=1,...,dXi. In the following we fix t and denote p =
P (maxX > t).

The central idea here is using a moderate dimensional subvector of X to approx-
imate p and then correcting bias by MC. Let us fix q � d and define the active di-
mensions as Eq = {i1, . . . , iq} ⊂ {1, . . . , d}. Let us further denote with Xq the
q dimensional vector Xq = (Xi1 , . . . , Xiq ) and with X−q the (d − q) dimensional
vector X−q = (Xj)j∈E\Eq

. Then,

p = P (maxX > t) = pq + (1− pq)Rq, (2)
pq = P (maxXq > t),

Rq = P (maxX−q > t | maxXq ≤ t).

The quantity pq is always smaller or equal to p as Eq ⊂ {1, . . . , d}. Selecting a non-
degenerate vector Xq , we propose to estimate pq with the QRSVN algorithm (Genz
et al., 2012) which is efficient as we choose a number of active dimensions q much
smaller than d.

In Chevalier (2013), Chapter 6, the similar problem of approximating the non-
exceedance probability of the maximum of a Gaussian random field Z based on a few
well-selected points is presented. In that setting each component of X stands for the
value of Z at one point of a discretization of the index set. Active dimensions (i.e.
the well-selected points) were chosen by numerically maximizing pq , and the remain-
der was not accounted for. Here a full optimization of the active dimensions is not
needed as we, instead, exploit the decomposition in (2) to correct the error introduced
by pq . For this task, the reminder Rq is estimated with a standard MC technique and a
novel asymmetric nested Monte Carlo (anMC) algorithm. The anMC technique draws
samples by taking into account the computational cost, resulting in a more efficient
estimator.

In the remainder of the paper, we propose an unbiased estimator for p and we com-
pute its variance in Section 2. In Section 3 we introduce the anMC algorithm in the
more general setting of estimating expectations depending on two vectors with different
simulation costs. It is then explicitly applied to efficiently estimate Rq . Finally, in Sec-
tion 4, we show an implementation of this method to compute conservative estimates
of excursion sets for expensive to evaluate functions under non-necessarily Markovian
Gaussian random field priors. In Appendix B, we present two heuristic methods to
select active dimensions. All proofs are in Appendix A.
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2 The estimator properties

2.1 An unbiased estimator for p

Equation (2) gives us a decomposition that can be exploited to obtain an unbiased
estimator for p. In the following proposition we define the estimator and we compute
its variance.

Proposition 1. Consider p̂q and R̂q , independent unbiased estimators of pq and Rq
respectively, then p̂ = p̂ = p̂q + (1− p̂q)R̂q is an unbiased estimator for p. Moreover
its variance is

var(p̂) = (1−Rq)2 var(p̂q) + (1− pq)2 var(R̂q) + var(p̂q) var(R̂q). (3)

In what follows we present options for p̂q and R̂q that form an efficient computa-
tional strategy.

2.2 Quasi Monte Carlo estimator for pq

The quantity pq can also be computed as

pq = 1− P (Xq ≤ tq) ,

where tq denotes the q dimensional vector (t, . . . , t). The approximation of pq thus
requires only an evaluation of the cumulative distribution function of Xq , selected as
non-degenerate. Since we assume that q � d, then the dimension is low and we
propose to estimate pq with the estimator p̂q that uses the method QRSVN introduced
in Genz (1992), Hajivassiliou et al. (1996).

This method computes a randomized quasi Monte Carlo integration of the normal
density. The estimate’s error is approximated with the variance of the randomized
integration. The quantity p̂q

G obtained with this procedure is an unbiased estimator of
pq , see Genz and Bretz (2009).

Figure 1 shows the boxplots of 30 replications of an experiment where p̂q
G is used

to approximate p. The dimension of the vector X is d = 1000, the threshold is fixed at
t = 11. In particular the vector X comes from the discretization of a six dimensional
Gaussian random field on the first 1000 points of the Sobol’ sequence (Bratley and Fox,
1988). The Gaussian random field was chosen with tensor product Matérn (ν = 5/2)
covariance kernel and a non constant mean function m. The hyperparameters of the
covariance kernel were fixed as θ = [0.5, 0.5, 1, 1, 0.5, 0.5]T and σ2 = 8, see Ras-
mussen and Williams (2006), Chapter 4, for details on the parametrization. The active
points were chosen with Method 1 reviewed in Appendix B. As the number of active
dimensions increases both the variance and the error of p̂q

G with respect to p decrease.
p̂q

G gives an inexpensive estimation of most of the probability mass with as few as 40
active dimensions, however it is intrinsically biased as an estimator of p. Estimating
Rq enables to correct the bias of this first step.

2.3 Monte Carlo estimator for Rq

Debiasing p̂q
G as an estimator of p can be done at the price of estimating

Rq = P
(
maxX−q > t | maxXq ≤ t

)
.
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Figure 1: Estimate of p = P (maxX ≥ t) with p̂q
G for different values of q, the

number of active dimensions.

There is no close formula for Rq , so it is approximated here via MC. Since X is
Gaussian then so are Xq , X−q and X−q | Xq = xq , for any deterministic vector
xq ∈ Rq .

In order to estimateRq = P
(
maxX−q > t | Xi1 ≤ t, . . . ,Xiq ≤ t

)
, we first gen-

erate n realizations xq1, . . . , x
q
n of Xq such that Xq ≤ tq . Second, we compute the

mean and covariance matrix of X−q conditional on each realization xql , l = 1, . . . , n
with the following formulas

µ−q|x
q
l = µ−q + Σ−q,q(Σq)−1(xql − µ

q), Σ−q|x
q
l = Σ−q − Σ−q,q(Σq)−1Σq,−q,

(4)
where µq,Σq and µ−q,Σ−q are the mean vector and covariance matrix of Xq and
X−q respectively, Σ−q,q is the cross-covariance between the dimensions E \ Eq and
Eq , Σq,−q is the transpose of Σ−q,q. Given the mean and covariance matrix conditional
on each sample xql , we can easily draw a realization y−q|ql fromX−q | Xq = xql . Once
n couples (xql , y

−q|q
l ), l = 1, . . . , n are drawn from the respective distributions, an

estimator for Rq is finally obtained as follows

R̂q
MC

=
1

n

n∑
l=1

1
max y

−q|q
l >t

.

The realizations of Xq are obtained with a rejection sampling algorithm (Robert,
1995; Horrace, 2005). This step is computationally expensive as many draws of the
vector Xq might be rejected depending on the size of the d-dimensional rectangle
[−∞, t]d. Drawing samples from the distribution of X−q | Xq = xql is instead less
expensive. The computation of the mean vector and covariance matrix requires only
linear algebra operations as described in (4) and realizations of X−q | Xq = xql can be
generated by sampling from a multivariate normal distribution.

The difference in computational cost between the first step and the second step of
the MC procedure can be exploited to reduce the variance. In Section 3 we present
a new MC procedure that at a fixed computational cost reduces the variance of the
estimate.
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Figure 2: Estimate of p with p̂GMC for different values of q. A full MC estimation of
the same quantity is shown for comparison

We denote with p̂GMC the unbiased estimator of p defined as

p̂GMC = p̂q
G + (1− p̂qG)R̂q

MC
.

Figure 2 shows the box plots of 30 replications of an experiment where p is ap-
proximated with p̂GMC. The set-up is the same as in Fig. 1. The core of the probability
is approximated with p̂q

G and the active dimensions are chosen with Method 1. The

residual Rq is estimated with R̂q
MC

. The remainder allows to correct the bias of p̂q
G

even with a small number of active dimensions. As comparison the results of the same
experiment with a full MC estimator for p are also shown. For all experiments and
for each method the number of samples was chosen in order to have approximately
the same computational cost. The estimator p̂GMC exploits an almost exact method to

estimate the largest part of the probability p, therefore the MC estimator R̂q
MC

has less
variance than a full MC procedure for a fixed computational cost.

3 Estimation of the residual with asymmetric nested
Monte Carlo

In section 2, Rq was estimated by R̂q
MC

. There exists many methods to reduce the
variance of such estimators, including antithetic variables (Hammersley and Morton,
1956), importance sampling (Kahn, 1950; Kahn and Marshall, 1953) or conditional
Monte Carlo (Hammersley, 1956) among many others, see, Lemieux (2009), Chapter 4,
and Robert and Casella (2013), Chapter 4, for a broader overview. Here we propose
a so-called asymmetric nested Monte Carlo (anMC) estimator for Rq that reduces the
variance by a parsimonious multiple use of conditioning data.

The idea is to use an asymmetric sampling scheme that assigns the available com-
putational resources by taking into account also the actual cost of simulating each com-
ponent. This type of asymmetric sampling scheme was already introduced in the partic-
ular case of comparing the performance of stopping times for a real-valued stochastic
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process in discrete times in Dickmann and Schweizer (2014). Here we introduce this
procedure in a general fashion and then we detail how to use it as variance reduction

for R̂q
MC

. Consider two random elements W ∈ W and Z ∈ Z , defined on the same
probability space and not independent. We are interested in estimating

G = E [g(W,Z)] , (5)

where g : W × Z → R is a measurable function, assumed integrable with respect to
(W,Z)’s probability measure. Let us also assume that it is possible to draw realizations
from the marginal distribution of W , Z and from the conditional distribution of Z |
W = wi, for each wi sample of W . We can then obtain realizations (wi, zi), i =
1, . . . , n of (W,Z) by simulating wi from the distribution of W and then zi from the
conditional distribution Z |W = wi, leading to:

Ĝ =
1

n

n∑
i=1

g(wi, zi). (6)

This MC estimator can actually be seen as the result of a two step nested MC procedure
where, for each realization wi, one inner sample zi is drawn from Z | W = wi. Note

that the estimator R̂q
MC

used in Section 2 is a particular case of Equation (6) withW =
Xq | Xq ≤ tq , Z = X−q and g(x, y) = 1max y>t. As noted in Section 2, drawing
realizations of Xq | Xq ≤ tq has a higher computational cost than simulating X−q

because rejection sampling is required. More generally, if we denote with CW (n) the
cost of n realizations of W and with CZ|W (m;wi) the cost of drawing m conditional
simulations from Z | W = wi, then sampling several conditional realizations for a
given wi might bring savings if CW (1) is much higher than CZ|W (1;wi).

In the proposed asymmetric sampling scheme for each realization wi we sample m
realizations zi,1, . . . , zi,m from Z |W = wi. Assume that we sample with this scheme
the couples (wi, zi,j), i = 1, . . . , n, j = 1, . . . ,m, then we can write the following
estimator for G

G̃ =
1

nm

n∑
i=1

m∑
j=1

g(wi, zi,j). (7)

For a fixed number of samples, the estimator G̃ may have a higher variance than
Ĝ due to the dependency between pairs sharing the same replicate of W . However,
in many cases, it may be more relevant to focus on obtaining good estimates within a
fixed time. If we set the computational budget instead of the number of samples and if
CZ|W is smaller thanCW , then anMC may lead to an overall variance reduction thanks
to an increased number of simulated pairs. We show in the remainder of this section
that, in the case of an affine cost function CZ|W , there exists an optimal number of
inner simulations m diminishing the variance of G̃ below that of Ĝ. Assume

CW (n) = cn and, for each sample wi
CZ|W (m;wi) = CZ|W (m) = α+ βm,

with c, α, β ∈ R+ dependent on the simulators chosen for W and Z | W . The sec-
ond equation entails that the cost of conditional simulations does not depend on the
conditioning value.

If W = Xq | Xq ≤ tq , Z = X−q as in Section 2, then Z | W is Gaussian with
mean and covariance matrix described in (4). In this case the cost for sampling Z | W
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is affine, with α describing pre-calculation times and β random number generation and
algebraic operations.

Denote with W1, . . . ,Wn replications of W . For each Wi we consider the con-
ditional distribution Z | Wi and Z1,i, . . . , Zm,i replications from it. We study here
the properties of G̃ when the total simulation budget, denoted Ctot(n,m) is fixed to
Cfix ∈ R+. First observe that

Ctot(n,m) = n(c+ α+ βm).

Then we can derive the number of replications of W as a function of m:

NCfix(m) =
Cfix

c+ α+ βm
.

The following proposition shows a decomposition of var(G̃) that is useful to find
the optimal number of simulations m∗ under a fixed simulation budget Ctot(n,m) =
Cfix.

Proposition 2. Consider n independent copies W1, . . . ,Wn of W and, for each Wi,
m copies Zi,j = Zj |Wi j = 1, . . . ,m, independent conditionally on Wi. Then,

var(G̃) =
1

n
var(g(W1, Z1,1))− m− 1

nm
E
[

var(g(W1, Z1,1) |W1)
]
. (8)

Corollary 1. Under the same assumptions, G̃ has minimal variance when

m = m̃ =

√
(α+ c)B

β(A−B)
,

where A = var(g(W1, Z1,1)) and B = E
[

var(g(W1, Z1,1) | W1)
]
. Moreover denote

with ε = m̃− bm̃c, then the optimal integer is m∗ = bm̃c if

ε <
(2m̃+ 1)−

√
4(m̃)2 + 1

2
(9)

or m∗ = dm̃e otherwise.

Proposition 3. Under the same assumptions, if m∗ > 2(α+c)B
(c+α)B+β(A−B) then var(G̃) =

var(Ĝ) [1− η], where η ∈ (0, 1).

3.1 Algorithmic considerations
In order to computem∗, we need to knowA = var(g(W1, Z1,1)) andB = E

[
var(g(W1, Z1,1) |

W1)
]

and the constants c, α and β. A and B depend on the specific problem at hand
and are usually not known in advance. Part of the total computational budget is then
needed to estimateA andB. This preliminary phase is also used to estimate the system
dependent constants c and β. Algorithm 1 reports the pseudo-code for anMC.
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Input : µW , µZ ,ΣW ,ΣZ ,ΣWZ , g, Ctot
Output: G̃

Part 0: estimate c, β, α ;
initialize compute the conditional covariance ΣZ|W and initialize n0,m0;
Part 1: for i← 1 to n0 do

estimateA,B simulate wi from the distribution of W ;
compute the conditional mean µZ|W=wi

;
draw m0 simulations zi,1, . . . , zi,m0

from the conditional distribution
Z |W = wi;
estimate E [g(W,Z) |W = wi] with Ẽi = 1

m0

∑m0

j=1 g(wi, zi,j);
estimate var (g(W,Z) |W = wi) with
Ṽi = 1

m0−1

∑m0

j=1(g(wi, zi,j)− Ẽi)2;

compute m̃ =

√
(α+c) 1

n0

∑n0
i=1 Ṽi

β 1
n0−1

∑n0
i=1(Ẽi− 1

n0

∑n0
i=1 Ẽi)2

, m∗ as in Corollary 1 and

n∗ = NCfix(m
∗);

Part 2: for i← 1 to n∗ do
compute G̃ if i ≤ n0 then

for j ← 1 to m∗ do
if j ≤ m0 then

use previously calculated Ẽi and Ṽi;
else

simulate zi,j from the distribution Z |W = wi;
compute Ẽi = 1

m∗

∑m∗

j=1 g(wi, zi,j);
else

simulate wi from the distribution of W ;
compute the conditional mean µZ|W=wi

;
for j ← 1 to m∗ do

simulate zi,j from the conditional distribution Z |W = wi;
compute Ẽi = 1

m∗

∑m∗

j=1 g(wi, zi,j);

estimate E [g(W,Z)] with G̃ = 1
n∗

∑n∗

i=1 Ẽi;
Algorithm 1: Asymmetric nested Monte Carlo.

3.2 Estimate p with p̂GanMC

The anMC algorithm can be used to reduce the variance compared toRq’s MC estimate
proposed in Section 2.3. In fact, let us consider W = Xq | Xq ≤ tq and Z = X−q .
We have that W is expensive to simulate as it requires rejection sampling while, for a
given sample wi, Z |W = wi is Gaussian with mean and covariance matrix described
in Equation (4). It is much cheaper to obtain samples from Z | W = wi than from
W . Moreover, as noted earlier, Rq can be written in the form of Equation (5) with
g(x, y) = 1max y>t. We can then use Algorithm 1 to calculate m∗, sample n∗ realiza-
tions w1, . . . , wn∗ of W and for each realization wi obtain m∗ samples zi,1, . . . , zi,m∗
of Z |W = wi. Then we can estimate Rq via

R̂q
anMC

=
1

n∗m∗

n∗∑
i=1

m∗∑
j=1

1max zi,j>t.
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Figure 3: Comparison of results with p̂q
G, p̂GMC and p̂GanMC on the example introduced

in Fig. 1.

Finally plugging in R̂q
anMC

and p̂q
G in Equation (2), we obtain

p̂GanMC = p̂q
G + (1− p̂qG)R̂q

anMC
.

Figure 3 shows a comparison of results using 30 replications of the experiment pre-
sented in Section 2.3. Results obtained with a MC estimator are shown for comparison.

While the simulations of all experiment were obtained under the constraint of a
fixed computational cost, the actual time to obtain the simulations was not exactly the
same. In order to be able compare the methods in more general settings we further
rely on the notion of efficiency. For an estimator p̂, we define the efficiency (Lemieux
(2009), Section 4.2) as

Eff[p̂] =
1

var(p̂) time[p̂]
,

where time[p̂] denotes the computational time of the estimator p̂.
Figure 4 shows a comparison of the efficiency of p̂GMC and p̂GanMC with a full

Monte Carlo estimator. With as few as q = 50 active dimensions we obtain an increase
in efficiency of around 10 times on average over the 30 replications of the experiment
with the estimator p̂GMC. The estimator p̂GanMC shows a higher median efficiency than
the others for all q ≥ 20.

4 Application: efficient computation of conservative es-
timates

We show here that anMC is key in conservative excursion set estimation relying on
Gaussian field models. We consider an expensive to evaluate system described by a
continuous function f : D ⊂ R` → R, ` ≥ 1, where D is a compact domain, and we
focus on estimating, for some fixed threshold t ∈ R, the set

Γ∗ = {x ∈ D : f(x) ≤ t}.
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Figure 4: Efficiency of the estimators p̂GMC and p̂GanMC compared with the efficiency
of a standard MC estimator on 30 replications of the experiment from Fig. 3. Values in
logarithmic scale.

Such problems arise in many applications such as reliability engineering (see, e.g.,
Picheny et al. (2013), Chevalier et al. (2014a)) climatological studies (Bolin and Lind-
gren, 2015; French and Sain, 2013) or in natural sciences (Bayarri et al., 2009). Often
f can only be evaluated with computer simulations and is seen as expensive to evaluate
black-box (Sacks et al., 1989). In practice we assume here that f was only evalu-
ated at points χk = {x1, . . . , xk} ⊂ D and the associated responses are denoted with
fk = (f(x1), . . . , f(xk)) ∈ Rk and we are interested in giving an estimate of Γ∗

starting from these k evaluations.
In a Bayesian framework we consider f as one realization of a Gaussian random

field (Zx)x∈D with prior mean function m and covariance kernel K. A prior distribution
of the excursion set is hence obtained by thresholding Z, thus obtaining the following
random closed set

Γ = {x ∈ D : Zx ≤ t}.

Denoting with Zχk
the random vector (Zx1

, . . . , Zxk
), we can then condition Z on the

observations fk and obtain a posterior distribution for the field Zx | Zχk
= fk. This

gives rise to a posterior distribution for Γ. Different definitions of random closed set
expectation (Molchanov (2005), Chapter 2) can be used to summarize the posterior dis-
tribution of Γ and to provide estimates for Γ∗. In Chevalier et al. (2013), for example,
the Vorob’ev expectation was introduced in this setting. Let us recall here the basic
tools needed to compute this estimate. We denote with pΓ,k : D → [0, 1] the coverage
function of the posterior set Γ | Zχk

= fk, defined as

pΓ,k(x) = Pk(x ∈ Γ), x ∈ D,

where Pk(·) = P (· | Zχk
= fk). This function associates to each point in D its

probability of being inside the posterior excursion set. The function pΓ,k gives rise to a
family of excursion set estimates; in fact, for each ρ ∈ [0, 1] we can define the posterior
ρ-level Vorob’ev quantile of Γ

Qρ = {x ∈ D : pΓ,k(x) ≥ ρ}.

10



The Vorob’ev expectation of Γ (Molchanov, 2005) is the quantile QρV that satisfies
|Qρ| ≤ Ek[|Γ|] ≤ |QρV | for all ρ ≥ ρV , where |A| denotes the volume of a setA ⊂ Rl.
This set expectation consists of the points that have high enough marginal probability
of being inside the excursion set. The lower limit for the marginal probability is chosen
in order to approximate well the volume of the set. In some applications, however, it
is important to provide confidence statements on the whole set estimate. Conservative
estimates introduced in Bolin and Lindgren (2015) for Gaussian Markov random fields
address this issue. A conservative estimate of Γ∗ is

CΓ,k = arg max
C⊂D

{|C| : Pk(C ⊂ {Zx ≤ t}) ≥ α}, (10)

where |C| denotes the volume of C. This definition however leads to major computa-
tional issues.

First of all we need to select a family of sets to use for the optimization procedure
in Equation (10). Here we follow Bolin and Lindgren (2015) and select the Vorob’ev
quantiles as family of sets. This family has the advantage that it is parametrized by one
real number ρ and thus it renders the optimization straightforward. We use here the
dichotomy algorithm detailed in Algorithm 2.

Second, for each candidate Q we need to evaluate Pnext = Pk(Q ⊂ {Zx ≤ t}), the
probability that Q is inside the excursion. In fact, this quantity is a high dimensional
orthant probability. For the Vorob’ev quantile Qρ′ , consider the discretization over the
points c1, . . . , cr, then

Pk(Qρ′ ⊂ {Zx ≤ t}) = Pk(Zc1 ≤ t, . . . , Zcr ≤ t) = 1− Pk( max
i=1,...,r

Zci > t).

Thus we use the estimator p̂GanMC to approximate 1 − Pk(Qρ′ ⊂ {Zx ≤ t}). The use
of anMC allows a discretization of the Vorob’ev quantiles at resolutions that seem out
of reach otherwise.

Input :
• mk,Kk, conditional mean and covariance of Z | Zχk

= fk;

• fine discretization design G;
Output: Conservative estimate for Γ∗ at level α.

Part 0: sort the points in G in decreasing order of pΓ,k, with indices Gs = {i1, . . . im};
compute iB , iT find the highest index iT such that

∏T
j=1 pΓ,k(Gs)[ij ] ≥ α;

find the highest index iB such that pΓ,k(Gs)[iB ] ≥ α;
evaluate mean and covariance matrix mk(iB) and ΣiB ,iB ;

Part 1: initialize iL = iT , iR = iB ;
Initialize dichotomy compute PL = Pk(QρiL ⊂ {Zx ≤ t}), PR = Pk(QρiR ⊂ {Zx ≤ t});

Part 2: while PR < α and (iR − iL) ≥ 2 do
optimization next evaluation inext = iL+iR

2 ;
compute Pnext = Pk(Qρinext

⊂ {Zx ≤ t});
if Pnext ≥ α then

iL = inext, iR = iR;
else

iL = iL, iR = inext;
Algorithm 2: Conservative estimates algorithm.

We apply Algorithm 2 to a two dimensional artificial test case. We consider as
function f a realization of a Gaussian field (Zx)x∈D, whereD ⊂ R2 is the unit square.
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Conservative estimate at 95% (Matern kernel)

Conservative estimate (95%)
0.95-level set
Vorob'ev expectation
True excursion

(a) Realization obtained with a Matérn kernel.

Conservative estimate at 95% (Gauss kernel)

Conservative estimate (95%)
0.95-level set
Vorob'ev expectation
True excursion

(b) Realization obtained with Gaussian kernel.

Figure 5: Conservative estimates at 95% (white region) for the excursion below t = 1.
Both models are based on 15 evaluations of the function (black triangles). The true
excursion level is plotted in blue, the Vorob’ev expectation in green and the 0.95-level
set in red.

We consider two parametrizations for the prior covariance kernel: a tensor product
Matérn covariance kernel with ν = 5/2, variance σ2 = 0.5 and range parameters
θ = [0.4, 0.2] and a Gaussian covariance kernel with variance σ2 = 0.5 and range
parameters θ = [0.2, 0.4]. In both cases we assume a prior constant mean function. We
are interested in the set Γ∗ with t = 1. For both cases we consider k = 15 evaluations
of f at the same points chosen by Latin hypercube sampling. Figures 5a and 5b show
the conservative estimate at level 95% compared with the true excursion, the Vorob’ev
expectation and the 0.95-quantile for the Matérn and the Gaussian kernel. In both
cases we see that the 0.95-quantile does not guarantee that the estimate is included in
the true excursion with probability 0.95. The conservative estimates instead are guar-
anteed to be inside the true excursion with probability α = 0.95. They correspond
to Vorob’ev quantiles at levels 0.998 and 0.993 for Matérn and Gaussian respectively.
The conservative estimates were obtained with a 100 × 100 discretization of the unit
square. Such high resolution grids lead to very high dimensional probability calcula-
tions. In fact, the dichotomy algorithm required 11 computations of the probability
1 − Pk(Qρ′ ⊂ {Zx ≤ t}) for each case. The discretization’s size for Qρ varied be-
tween 1213 and 3201 points in the Matérn kernel case and between 1692 and 2462
points in the Gaussian case. Such high dimensional probabilities cannot be computed
with the current implementation of the algorithm by Genz, however they could also
be computed with a standard Monte Carlo at very high computational costs. Instead,
with the proposed method, the total computational time on a laptop with Intel Core
i7 1.7GHz CPU and 8GB of RAM was equal to 365 and 390 seconds respectively for
Matérn and Gaussian kernel.
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5 Discussion
In this paper we introduced a new method to approximate high dimensional orthant
Gaussian probabilities. The procedure resulted in estimators with greater efficiency
than standard Monte Carlo, scalable on dimensions larger than 1000. The remainder
Rq in the decomposition of Equation (2) was estimated with standard Monte Carlo and
with a novel asymmetric nested Monte Carlo (anMC) procedure. The anMC estimator
showed an increase in efficiency in the simulation studies presented. The efficiency of
the overall method depends on the general structure of the Gaussian vector and there
are situations where it brings only moderate improvements over a standard Monte Carlo
approach. A study of the relationships between the covariance structure and the effi-
ciency of the method might be beneficial for understanding this behaviour. The issue
of choosing q, the number of active dimensions, was not addressed here however fur-
ther studies in this direction might lead to a more automated estimation procedure. In
the application section we showed that the estimator p̂GanMC made possible the compu-
tation of conservative estimates of excursion sets with general Gaussian random field
priors. All code was developed in R.
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A Proofs
Proof of Proposition 1

Proof. We have that E[p̂q] = pq and E[R̂q] = Rq . Then we have

var(p̂) = var(p̂q) + var((1− p̂q)R̂q)︸ ︷︷ ︸
=�

+2 cov(p̂q, (1− p̂q)R̂q)︸ ︷︷ ︸
=N

. (11)

We can write the variance � and the covariance N as

� = var((1− p̂q)R̂q) = (1− pq)2 var(R̂q) +R2
q var(p̂q) + var(p̂q) var(R̂q),

N = cov[p̂q, (1− p̂q)R̂q] = − var(p̂q)Rq,

respectively, by exploiting the independence of p̂q and R̂q . By plugging in those ex-
pressions in Equation (11) we obtain the result in Equation (3).

Proof of Proposition 2
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Proof.

var(G̃) =
1

n2m2
var

 n∑
i=1

m∑
j=1

g(Wi, Zi,j)

 =
1

nm2
var

 m∑
j=1

g(W1, Z1,j)


=

1

nm2

m∑
j=1

m∑
j′=1

cov
(
g(W1, Z1,j), g(W1, Z1,j′)

)
=

1

nm2

[
m var(g(W1, Z1,1)) +m(m− 1) cov(g(W1, Z1,1), g(W1, Z1,2))

]
=

1

nm2
[m var(g(W1, Z1,1)) +m(m− 1)�] . (12)

where the first equality is a consequence of the independence of W1, . . . ,Wn and the
third equality is a consequence of the independence of Zi,j and Zi,j′ conditionally on
Wi. Moreover the covariance denoted by � in (12) can be written as follows.

� = E
[

cov(g(W1, Z1,1), g(W1, Z1,2) |W1)
]︸ ︷︷ ︸

=0 Z1,1,Z1,2 independent conditionally onW1

+ cov
(
E[g(W1, Z1,1) |W1],E[g(W1, Z1,2) |W1]

)︸ ︷︷ ︸
=var(E[g(W1,Z1,1)|W1])

= var
(
E[g(W1, Z1,1) |W1]

)
= var

(
g(W1, Z1,1)

)
− E

[
var
(
g(W1, Z1,1) |W1

)]
.

(13)

Equations (12) and (13) give the result (8).

Proof of Corollary 1

Proof. Denote with e = β(A−B), f = (α+c)(A−B)+βB, g = (c+α)B, h = Ctot,
then

var(G̃)(m) =
em2 + fm+ g

hm
. (14)

Observe that the first and second derivatives of var(G̃) with respect to m are respec-
tively

∂ var(G̃)

∂m
=

1

h

[
e− g

m2

]
,

∂2 var(G̃)

∂m2
=

2g

hm3
.

The second derivative is positive for all m > 0 then var(G̃) is a convex function for
m > 0 and the point of minimum is equal to the zero of ∂ var(G̃)/∂m, which is
m =

√
g/e = m̃.

Since var(G̃) is convex inm, the integer that realizes the minimal variance is either
bm̃c or dm̃e. By plugging in m = m̃ − ε =

√
g/e − ε and m = m̃ − ε + 1 =√

g/e− ε+ 1 in Equation (14), we obtain the condition in (9).

Proof of Proposition 3

Proof. First of all notice that the total cost of sampling Ĝ is Ctot = n(c + CZ|W ) =

n(c + α + β). By isolating n in the previous equation we obtain n = Ctot
c+α+β and, by

computations similar to those in Proposition 2 we obtain

var(Ĝ) =
c+ α+ β

Ctot
var(g(W1, Z1,1)) =

c+ α+ β

Ctot
A,
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whereA = var(g(W1, Z1,1)). In the following we will also denoteB = E
[

var(g(W1, Z1,1) |
W1)

]
as in Corollary 1. Let us now substituteNCfix(m

∗) in equation (8), thus obtaining

var(G̃) =
(c+ α+ βm∗)Am∗ − (m∗ − 1)(c+ α+ βm∗)B

Ctotm∗

= var(Ĝ)
(m∗)2β(A−B) +m∗[(c+ α)(A−B) + βB] + (c+ α)B

A(c+ α+ β)m∗

= var(Ĝ)
2(α+ c)B +m∗[(c+ α)(A−B) + βB]

A(c+ α+ β)m∗
, (15)

where in (15) we substituted (m∗)2 from Corollary 1. By further rearranging the terms,
we obtain

var(G̃) = var(Ĝ)

[
1− (m∗ − 2)(c+ α)B +m∗β(B −A)

A(c+ α+ β)m∗

]
= var(Ĝ) [1− η] .

Since A − B,B, c, β, α are always positive, then η < 1 for all m∗ > 0. Moreover
η > 0 if

m∗ >
2(α+ c)B

(α+ c)B + β(A−B)
.

B Choice of active dimensions

B.1 Basics
The choice of active dimensions Eq plays a crucial role in the approximation of p
because it determines the error p̂q−p. Since this error is always negative, we implement
procedures to select Eq that exploit this property.

Selecting Eq such that P (maxXq > t) is numerically maximized, as in Chevalier
(2013), optimally reduces the bias of p̂q as an estimator for p. Here we are not interested
in such optimal bias reduction, as we completely remove this error with a second step.
However we aim at fast heuristics methods to select Eq in such a way that the error
p̂q − p is lowered.

The basic tool used here to select active dimensions is the excursion probability
function:

pt(i) = P (Xi > t) = Φ

(
µi − t√

Σi,i

)
.

This function is widely used in spatial statistics (Bolin and Lindgren, 2015) and Bayesian
optimization (Kushner, 1964; Bect et al., 2012). In our setting it can be used to iden-
tify the dimensions where we have a high probability of exceeding the threshold. The
indices that realize a high value for pt enable identifying dimensions that actively con-
tribute to the maximum. We propose the following methods.

Method 1: sample q indices with probability given by pt.
Method 2: sample q indices with probability given by pt(1− pt).
These methods require only µ and Σ, and are thus very fast to compute. Both

methods were already introduced for sequential evaluations of expensive to evaluate
functions, see, e.g., Chevalier et al. (2014b).

Figure 6 shows a comparison of the estimates pq obtained with different methods to
select Eq . The two methods clearly outperform a random choice of active dimensions.
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B.2 Choice of active dimensions: spatial methods
In many situations the random vector X comes from a discretization of a Gaussian
random field over a set of points E ⊂ Rl. Let us denote with e1, . . . , ed the points in
the discretization of E. In this case, we can exploit the spatial information to select the
active dimensions with the following two methods.

Method 3: select the first dimension by sampling the index with probability given
by pt. The jth dimension is sampled from the set of indices with probability given by
ptδj , where

δj =

j∏
k=2

dist(ek, E \ {ek}) (j = 2, . . . , d)

with dist(ek, E\{ek}) denoting the vector of Euclidean distances between ek and each
point in E \ {ek}.

Method 4: select the first dimension by sampling the index with probability given
by pt(1 − pt). The jth dimension is sampled from the set of indices with probability
given by pt(1− pt)δj .

Methods 3 and 4 give better results than Method 1 and 2 when the probability p is
not too small because in such situation the function pt has several local maxima and
the spatial correction helps selecting dimensions in each of the modes of pt.
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