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EXISTENCE AND STABILITY OF PLANAR SHOCKS OF VISCOUS

SCALAR CONSERVATION LAWS WITH SPACE-PERIODIC FLUX

ANNE-LAURE DALIBARD AND MOON-JIN KANG

Abstract. The goal of this paper is to prove the existence and stability of shocks for
viscous scalar conservation laws with space periodic flux, in the multi-dimensional case.
Such a result had been proved by the first author in one space dimension, but the exten-
sion to a multi-dimensional setting makes the existence proof non-trivial. We construct
approximate solutions by restricting the size of the domain and then passing to the limit
as the size of the domain goes to infinity. One of the key steps is a “normalization” pro-
cedure, which ensures that the limit objects obtained by the approximation scheme are
indeed shocks. The proofs rely on elliptic PDE theory rather than ODE arguments as in
the 1d case. Once the existence of shocks is proved, their stability follows from classical
arguments based on the theory of dynamical systems.

1. Introduction and Main results

In this article, we aim to show the existence and large time stability of multidimensional
planar shock fronts of viscous scalar conservation laws with space-periodic flux:

∂tu+

N
∑

i=1

∂xiAi(x, u) = ∆xu, t > 0, x ∈ R
N ,

u(0, x) = u0(x)

(1.1)

where the flux functions Ai : T
N ×R → R

N are assumed to be periodic with respect to the
spatial variable x.

The issues in the case of one dimension N = 1 have been treated by the first author in
[5], and therefore our goal is to tackle these issues in the multidimensional case (N ≥ 2).
When the flux A is homogeneous, i.e. when A does not depend on x, a planar shock wave
is a special solution of (1.1) of the form u(t, x) = U(x · ν − ct), for some c ∈ R, ν ∈ S

N−1,
U ∈ L∞(RN ), and with limy→±∞U(y) = U±, for some constants U+, U− ∈ R. The profile U
is easily found thanks to simple ODE theory together with Rankine-Hugoniot condition. But
the stability of planar shock fronts is a challenging issues. Stability for a small perturbation
of multidimensional planar shocks has been shown by Goodman [9], Hoff and Zumbrun
[10], and the second author, Vasseur and Wang [12]. In one-dimensional case, Freistühler
and Serre [8] proved L1-stability for any L1-perturbation. Recently, the second author and
Vasseur [11] have shown contraction for any L2-perturbation.
But when A depends on the space variable, the constants are no longer stationary solutions

Date: March 16, 2016.
Acknowledgment. M.-J. Kang was supported by the Foundation Sciences Mathématiques de Paris as
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2 DALIBARD AND KANG

of (1.1) in general, and thus cannot be end states of planar shocks. Therefore we first
introduce a family of periodic stationary solutions of (1.1), which will play the role of
constant solutions in the homogeneous case. These solutions were introduced in [4].

Proposition 1.1 (Existence of periodic stationary solutions of (1.1), see [4]).

Let A ∈ W 1,∞
loc (TN × R)N . Assume that there exists C0 > 0, and m ∈ [0,∞), n ∈ [0, N+2

N−2 )

when N > 2 such that for all (x, v) ∈ T
N × R,

|∂vAi(x, v)| ≤ C0(1 + |v|m), 1 ≤ i ≤ N,(1.2a)

|divxA(x, v)| ≤ C0(1 + |v|n).(1.2b)

Assume as well that one of the following three conditions holds:

i) m = 0 or

ii) 0 ≤ n < 1 or

iii)
(

n < min(
N + 2

N
, 2) and ∃p0 s.t.

N
∑

i=1

∂xiAi(x, p0) ≡ 0
)

.

(1.3)

Then for each p ∈ R, there exists a unique periodic solution v(·, p) ∈ H1(TN ) of the equation

(1.4) −∆xv(x, p) + divxA(x, v(x, p)) = 0, < v(·, p) >= p.

In the above proposition and throughout the article, the brackets 〈·〉 denote the average
value of a T

N -periodic function.
We list below further properties of the functions v(x, p) (see Proposition 2.1). We also

define the averaged - or homogenized - flux Ā by

Ā(p) := 〈A(·, v(·, p))〉 ∀p ∈ R.

We are now ready to define stationary (or standing) planar shocks.

Definition 1.1. A stationary planar viscous shock of (1.1) with periodic end states is a
function Ū ∈ H1

loc(R
N ) which is a stationary solution of (1.1), periodic in the variables

x1, · · · xk−1, xk+1, · · · xN for some k ∈ {1, · · · , N}, and such that there exist p+, p− ∈ R

with p+ 6= p− such that

(1.5) lim
xk→±∞

(

Ū(x)− v(x, p±)
)

= 0 in L∞(TN−1),

Such a function is called a stationary shock of (1.1) with end states v(·, p±), or a stationary
shock of (1.1) connecting v(·, p−) to v(·, p+).

Remark 1.1. Notice that because of the periodicity of the flux and of the stationary states,
we only consider shocks in the directions e1, · · · , eN , (i.e. in the directions of the canonical
basis in R

N), and not in any direction ν ∈ S
N−1 as in the homogeneous case. Indeed, if we

take an arbitrary direction ν and look for a shock such that U(x · ν, x⊥) − U±(x) → 0 as
x · ν → ±∞, where x⊥ · ν = 0, then in general the asymptotic states U± are not periodic
solutions of (1.1), but quasi-periodic solutions. Therefore a first step would be to study
problems of the type

−∆v + divÃ(x, v) = 0

where the flux Ã is quasi-periodic in its first variable and the function v is sought as periodic.
This is expected to be much more difficult than in the periodic case, due to the lack of
compactness and to the non-linearity. Such questions go beyond the scope of this paper, and
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thus we focus on periodic end states only.
Moreover, without loss of generality, we focus on the case when k = 1 in the rest of the
paper.

The stationary shocks in Definition 1.1 can be viewed as a spatial transition front in
a space-periodic environment. The spatial transition fronts arising in various (periodic)
heterogeneities have also received a lot of attention in the reaction-diffusion community. In
particular, the existence of spatial transition waves for one-dimensional space-heterogenous
reaction-diffusion equation has been proved by Xin [23] and Berestycki and Hamel [1], and
by Nolen and Ryzhik [20] and Mellet, Raquejoffre and Sire [16] for ignition-type equation.
These results have been extended by Zlatos [24] to multidimensional case of the cylindrical
domain R×T

N−1. We also refer to [2, 3] for a generalization of the notion of the transition
fronts, whereas non-existence of such waves has been studied by Nadin [18] and Nolen et
al. [19]. Such transition wave for space-heterogenous reaction-diffusion equation connects
two steady states, which are constants, contrary to our case that the stationary shock wave
connects two steady states, which are non-constant periodic solutions.

Our main result is the following:

Theorem 1.1. (Existence of standing shocks) Assume that A ∈ W 1,∞
loc (TN × R)N , and

that there exist two periodic solutions v(·, p+), v(·, p−) to (1.4) with p+ 6= p−, satisfying the
following conditions:

Ā1(p−) = Ā1(p+) =: α,(1.6a)

Ā1(p) < α, ∀p ∈ (p+, p−) if p+ < p−, Ā1(p) > α, ∀p ∈ (p−, p+) if p− < p+.(1.6b)

Then there exists a stationary shock V̄ with end states v(·, p−) and v(·, p+).

Remark 1.2. The first assumption (1.6a) is an analogue of the Rankine-Hugoniot condition
for standing shock waves of homogeneous conservation laws. The second assumption (1.6b)
is the analogue of the Oleinik condition. It is proved in section 3 that the Rankine-Hugoniot
condition is in fact a necessary condition for the existence of a shock wave.

Theorem 1.1 is proved by passing to the limit in a sequence of approximate problems.
In these approximate problems, the domain R × T

N−1 is replaced by (−R,R) × T
N−1

for some R > 0. Standard tools of elliptic theory (Harnack inequality, maximum principle,
comparison principle, regularity estimates) are used to prove that the approximate sequence
enjoys several nice properties, such as monotony and L∞ bounds.

From now on, we only handle the first case of (1.6b), i.e.,

(1.7) p+ < p−, Ā1(p) < α, ∀p ∈ (p+, p−),

the argument for the other case is exactly identical.

Theorem 1.2. (Stability of standing shocks) Assume the hypotheses of Theorem 1.1, fur-

thermore A ∈ W 3,∞
loc (TN × R)N . Let Ū be a stationary shock wave connecting v(·, p−) to

v(·, p+), and u0 ∈ Ū + L1(R × TN−1) be a initial perturbation such that

(1.8) v(x, p+) ≤ u0(x) ≤ v(x, p−) for a.e. x ∈ R× T
N−1,

and u = u(t, x) be the unique entropy solution of (1.1) with u|t=0 = u0.

• Assume that
∫

R×TN−1(u0 − Ū) = 0. Then

lim
t→∞

‖u(t)− Ū‖L1(R×TN−1) = 0.



4 DALIBARD AND KANG

• Assume that A ∈ W 3,∞
loc (TN × R)N , that

∫

R×TN−1(u0 − Ū) 6= 0 and that there exist

functions φ,ψ ∈ L1(T) such that

∂vA1(x, v(x, p−)) ≥ φ(x1), for a.e. x ∈ T
N ,

a− :=

∫

T

φdx1 > 0,
(1.9)

and

∂vA1(x, v(x, p+)) ≤ ψ(x1), for a.e. x ∈ T
N ,

a+ :=

∫

T

ψdx1 < 0.
(1.10)

Then there exists a stationary shock V̄ connecting v(·, p−) to v(·, p+) such that
u0 − V̄ ∈ L1(R× T

N−1) and
∫

R×TN−1

(u0 − V̄ ) = 0 and lim
t→∞

‖u(t)− V̄ ‖L1(R×TN−1) = 0.

Remark 1.3. • The assumptions (1.9) and (1.10) are the analogue of the Lax condi-
tions for standing shock waves of homogeneous conservation laws. They are used in the
present context to obtain a rate of convergence of stationary shocks towards their end states
v(·, p±). This rate of convergence yields some L1 compactness for an approximate problem
(see (3.28)). We refer to the proofs of Lemma 3.2 and Proposition 3.2 below for details.

• The proof of Theorem 1.2 uses classical arguments, relying on tools from dynamical
system theory. The main difficulty lies in the second part of Theorem 1.2, which requires,
for any real number q and any shock Ū , to find a shock V̄ with the same end states as Ū and
such that

∫

(V̄ − Ū) = q. This fact is almost obvious in the homogeneous case, since any
spatial translate of a shock is a shock. This statement is still rather easy to prove in the 1d
case, since a whole family of shocks depending continuously on a parameter is constructed.
In the present case, Theorem 1.1 only gives the existence of a single shock, and therefore
the existence of shocks satisfying the above statement for any q ∈ R is far from trivial, and
is proved in Proposition 3.2.

• Assumption (1.8) is a classical assumption within the framework of shock stability for
conservation laws (see [22] and the discussion on initial data within the interval [u+, u−] or
outside that interval). In order to remove it, we would typically need to prove the stability
of the periodic solutions v(·, p±) under zero-mass perturbation in the space L1(R × T

N−1).
However, to our knowledge, the stability of the functions v(·, p±) is known in L1(RN ) and
in L1(TN ) (see respectively [6] and [5]), but not in L1(R× T

N−1). Furthermore, the proofs
of stability in the whole space R

N and in the torus T
N rely on very different arguments,

since in the whole space, dispersive effects take place. It is possible that a hybrid proof could
be worked out in spaces of the form R

k×T
l with k+ l = N , but such a question goes beyond

the scope of this paper and thus we choose to leave it open.

We now provide some examples of fluxes satisfying assumptions (1.6a)-(1.6b), and (1.9)-
(1.10). Let Φ : TN → R

N be a divergence-free vector field, f ∈ C1(R,R), and let A(x, v) :=
Φ(x)f(v). Then for any constant p ∈ R, v(·, p) := p is a solution to the elliptic equation
(1.4) with < v(·, p) >= p. As a consequence,

Ā1(p) =

∫

TN

A1(x, p)dx = f(p) 〈Φ1〉 .
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Thus (1.6a) holds if and only if f(p+) = f(p−), and (1.6b) holds if and only if f(p)− f(p±)
has the same (strict) sign as 〈Φ1〉 (p+ − p−) for p ∈ (p+, p−). For instance, if 〈Φ1〉 > 0 and
f(p) = p2, any couple p− = −p+ > 0 works.
Moreover,

∂vA1(x, v(x, p)) = Φ1(x)f
′(p),

and therefore (1.9)-(1.10) are satisfied for instance if there exists α > 0 such that Φ1(x) ≥ α
for all x, and if f is strongly convex and such that f(p+) = f(p−), with p+ < p−.

Let us now introduce some notation that will be used throughout the paper. We will
often denote the spatial domain by

Ω := R× T
N−1.

In a similar way, we define, for R > 0,

ΩR := (−R,R)× T
N−1.

We introduce the space L1
0(R× T

N−1) of integrable functions with zero mass

L1
0(R× T

N−1) :=

{

f ∈ L1(R× T
N−1),

∫

R×TN−1

f = 0

}

.

For any integer k ∈ Z, and any function f ∈ L1
loc(Ω), we define

τkf(x) := f(x+ ke1), ∀x ∈ R× T
N−1.

Let us stress that the main difficulty in this article lies in proving the existence of shock
waves. Indeed, shock stability follows from classical arguments in [5] relying on dynamical
system theory (see [21]). We recall the arguments in section 4 for the reader’s convenience,
but the largest part of the paper is devoted to the existence of shocks.

The paper is organized as follows: section 2 is devoted to the proof of Theorem 1.1. In
section 3, we review some properties of stationary shocks. Eventually, section 4 is devoted
to the proof of Theorem 1.2.

2. Proof of Theorem 1.1

In this section, we construct stationary shocks thanks to an approximation scheme on
compact sets, and then pass to the limit. The proof makes an extensive use of the maximum
principle and of the Rankine-Hugoniot (1.6a) and Oleinik conditions (1.6b).

Before addressing the proof, we first recall some properties of the functions v(·, p) (see
[4]):

Proposition 2.1. Assume that the hypotheses of Proposition 1.1 are satisfied. The family
(v(·, p))p∈R satisfies the following properties:

(i) Regularity estimate : For all p ∈ R, v(·, p) ∈W 2,q(TN ) for all 1 < q <∞ and

∀R > 0, ∃CR > 0 s.t. sup
p∈[−R,R]

‖v(p)‖W 2,q(TN ) ≤ CR.

(ii) Growth property : if p > p′, then

v(x, p) < v(x, p′), x ∈ T
N

(iii) p-derivative : For all p ∈ R, ∂pv(·, p) ∈ H1(TN ) and

∀R > 0, ∃CR > 0 s.t. sup
p∈[−R,R]

‖∂pv(p)‖H1(TN ) ≤ CR.
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Moreover,

(2.11) ∂pv(x, p) > 0 a.e. (x, p) ∈ T
N × R.

(iv) Behavior at infinity : if additionally ∂vAi ∈ L∞(TN × R) for 1 ≤ i ≤ N , and

sup
v∈R

‖∂vA(·, v)‖L∞(TN ) <∞,

then

(2.12) lim
p→−∞

sup
x∈TN

v(x, p) = −∞, lim
p→+∞

inf
x∈TN

v(x, p) = +∞.

2.1. Construction of approximate solutions. For any R > 1, consider the approximate
equation:

(2.13)
−∆ŪR + divA(x, ŪR) = 0 in (−R,R)× T

N−1,

ŪR(±R,x
′) = v(±R,x′, p±) ∀x′ ∈ T

N−1.

For the time being, we assume that the flux A satisfies the assumptions of Proposition
1.1 with m = 0 and n < 1, i.e. A is uniformly Lipschitz with respect to its second variable,
and divxA has sublinear growth. These assumptions will be removed in Remark 2.1.

In this paragraph, we prove the existence and uniqueness of solutions of (2.13) for any
R > 1. Using the family v : TN × R → R constructed in Proposition 1.1, we consider a
composite function V (x) := v(x, f(x1)) for some f ∈ C∞(R) with f(x1) = p− if x1 ≤ −1,
f(x1) = p+ if x1 ≥ 1. Then we see that (2.13) is equivalent to

(2.14)
−∆UR + divB(x,UR) = S in ΩR,

UR(±R,x
′) = 0,

where UR := ŪR − V and S := ∆V − divA(x, V ), B(x, r) := A(x, V + r)−A(x, V ). Notice
that since A is uniformly Lipschitz with respect to r, there exists a constant C such that

|B(x, r)| ≤ C|r| ∀x ∈ Ω, ∀r ∈ R.

Moreover, according to the definition of S and to Proposition 1.1, the support of the function
S is included in [−1, 1] × T

N−1, and S ∈ L2(Ω).
Therefore, it is enough to prove the existence of (2.14). We want to apply Schaeffer’s

fixed point theorem. Let us consider the continuous mapping LR : H1
0 (ΩR) → H1

0 (ΩR) such
that W = LR(U) is the unique solution of the linear elliptic equation:

−∆W + divB(x,U) = S in ΩR,

W (±R,x′) = 0.

We use assumption (1.2a) with m = 0 and we obtain

‖∇W‖2L2(ΩR) ≤ ‖S‖L2(ΩR)‖W‖L2(ΩR) + C0‖U‖L2(ΩR)‖∇W‖L2(ΩR).

Using the Poincaré inequality and Young’s inequality, we have that

‖∇W‖L2(ΩR) ≤ CR‖S‖L2(ΩR) + C‖U‖L2(ΩR),

for some constant CR depending on R.
Since f is smooth, it follows from Proposition 1.1 that

‖∇W‖L2(ΩR) ≤ CR(‖U‖L2(ΩR) + 1).
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Thus, using the Rellich-Kondrachov theorem, we infer that the mapping LR is compact.
Now, there remains to prove that the set

{Uλ ∈ H1
0 (ΩR) | U

λ = λLR(U
λ), λ ∈ [0, 1]}

is bounded. For any λ ∈ [0, 1] and for any solution Uλ of Uλ = λLR(U
λ), we have

∫

ΩR

|∇Uλ|2 ≤ ‖S‖L2(ΩR)‖U
λ‖L2(ΩR) + λ

∣

∣

∣

∣

∫

ΩR

B(x,Uλ) · ∇Uλ

∣

∣

∣

∣

.

Let b : (x, r) ∈ R
N+1 7→

∫ r
0 B(x, r′) dr′. Then

∫

ΩR

B(x,Uλ) · ∇Uλ =

∫

ΩR

(

div(b(x,Uλ))− (divxb)(x,U
λ)
)

= −

∫

ΩR

(divxb)(x,U
λ).

Notice that

divxb(x, r) =

∫ r

0

(

divA(x, V + r′)− divA(x, V )
)

dr′,

and therefore, using the growth assumption on A, there exists a constant C such that for
all r ∈ R,

|divxb(x, r)| ≤ C(1 + |r|n+1) with n < 1.

Using once again the Cauchy-Schwartz and the Poincaré inequality, we infer that

‖Uλ‖H1(ΩR) ≤ CR ∀λ ∈ [0, 1].

According to Schaeffer’s fixed point theorem, LR has a fixed point in H1
0 (ΩR), and there-

fore (2.13) has a solution in H1(ΩR).
Uniqueness follows for instance from the following argument. Let ŪR, Ū

′
R be two solutions

of (2.13), and let W := ŪR − Ū ′
R. Then W solves an elliptic equation of the type

−∆W + div(aRW ) = 0 in ΩR,

W (±R,x′) = 0,

where aR ∈ L∞(ΩR) is defined by

aR(x) :=

∫ 1

0
∂vA(x, τŪR(x) + (1− τ)Ū ′

R(x))dτ.

On the other hand, using the strong form of the Krein-Rutman Theorem (see Appendix),
it can be proved that the equation

−∆w + div(aRw) = 0 in ΩR,

−∂1w + aR,1w = 0 on ∂ΩR

admits a unique positive solution w ∈ C(Ω̄R)∩H
1(ΩR) such that

∫

ΩR
w = 1. A straightfor-

ward computation (see [17]) shows that

−∆

(

W 2

w

)

+ div

(

aR
W 2

w

)

= −2w

∣

∣

∣

∣

∇
W

w

∣

∣

∣

∣

2

in ΩR.

Integrating over ΩR, we deduce that
∫

ΩR

w

∣

∣

∣

∣

∇
W

w

∣

∣

∣

∣

2

= 0,

which implies that W/w is constant, therefore W ≡ 0 due to W = 0 at x1 = ±R.
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2.2. Properties of approximate solutions. We claim that the approximate solution ŪR

satisfies the following properties.

Lemma 2.1. For any fixed integer R > 1, let ŪR be the solution of (2.13). Then the
following properties holds.

(1) A priori bound in L∞: for all x ∈ ΩR,

v(x, p+) ≤ ŪR(x) ≤ v(x, p−).

(2) Integration constant: there exists a number αR such that for all x1 ∈ (−R,R),

(2.15) −
d

dx1

∫

TN−1

ŪR(x1, x
′) dx′ +

∫

TN−1

A1(x1, x
′, ŪR(x1, x

′)) dx′ = αR,

and α ≤ αR ≤ C for some constant C independent of R. (Recall α := Ā1(p−) =
Ā1(p+))

(3) Monotony: for all x ∈ (−R,R− 1)× T
N−1,

ŪR(x1 + 1, x′) < ŪR(x1, x
′).

(4) Uniform local a priori bound: for any q ∈ (1,∞), there exists a constant Cq (inde-
pendent of R) such that

sup
k∈{−R,···R−1}

‖ŪR‖W 2,q((k,k+1)×TN−1) ≤ Cq.

Proof. For the time being, we still assume that the flux A satisfies the assumptions of
Proposition 1.1 with m = 0 and n < 1, which will be removed in Remark 2.1.

(1) A priori bound in L∞:
First, notice that using elliptic regularity results together with a bootstrap ar-

gument, it is easily proved that ŪR ∈ W 2,q(ΩR) for all q < ∞, and therefore
ŪR ∈ C(ΩR). Thus, thanks to (2.12) in Proposition 2.1 and to the assumption
m = 0, there exist p̄R, pR with p̄R > p

R
such that

v(x, p
R
) ≤ ŪR(x) ≤ v(x, p̄R) ∀x ∈ Ω̄R.

Let us choose p̄R (resp. p
R
) as the smallest (resp. the largest) real number such

that the above inequality is satisfied. Then necessarily, since ŪR and v(x, p̄R) are
continuous and Ω̄R is compact, there exists xR ∈ ΩR such that ŪR(xR) = v(xR, p̄R).
Let us argue by contradiction, and assume that xR is an interior point of ΩR.
Notice that gR := v(x, p̄R)− ŪR is a non-negative solution of an elliptic equation of
the type

−∆gR + div(agR) = 0 in ΩR,

where a ∈ L∞(ΩR) is defined by

a(x) :=

∫ 1

0
∂vA(x, τv(x, p̄R) + (1− τ)ŪR(x))dτ.

Since xR is an interior point and gR(xR) = 0, by the Harnack inequality, we have
that gR vanishes on any compactly embedded subset of ΩR. Thus by continuity,
gR ≡ 0 on ΩR, which is in the contradiction with ŪR ∈ C(ΩR) and p+ 6= p−.
Therefore, xR ∈ ∂ΩR, thus p̄R ∈ {p+, p−}. Since p+ < p−, we have p̄R = p−.
Similar arguments lead to p

R
= p+.
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(2) Integration constant:
Integrating equation (2.13) on T

N−1 with x1 fixed, we obtain

−
d2

dx21

∫

TN−1

ŪR(x1, x
′) dx′ +

d

dx1

∫

TN−1

A1(x1, x
′, ŪR(x1, x

′)) dx′ = 0 ∀x1 ∈ (−R,R),

which provides identity (2.15). Furthermore, notice that since for all x1 ∈ (−R,R−
1),

αR =

∫

TN−1

(

ŪR(x1, x
′)− ŪR(x1 + 1, x′)

)

dx′ +

∫ x1+1

x1

∫

TN−1

A1(x, ŪR(x)) dx,

the boundedness of ŪR implies that αR is bounded. Thus, there remains to prove
the lower bound αR ≥ α. To this end, we consider identity (2.15) at x1 = −R
(notice that (2.15) holds at x1 = −R because ŪR is smooth). Using the boundary
condition, we have

αR =
d

dx1

∫

TN−1

(

v(x1, x
′, p−)− ŪR(x1, x

′)
)

dx′
∣

∣

∣

x1=−R

+

∫

TN−1

A1(−R,x
′, v(−R,x′, p−)) dx

′ −
d

dx1

∫

TN−1

v(x1, x
′, p−)dx

′
∣

∣

∣

x1=−R
.

Since v(x1, x
′, p−)− ŪR(x1, x

′) ≥ 0 for all (x1, x
′) ∈ ΩR, with equality at x1 = −R,

we have that

d

dx1

∫

TN−1

(

v(x1, x
′, p−)− ŪR(x1, x

′)
)

dx′
∣

∣

∣

x1=−R
≥ 0.

On the other hand, since

−∆v(x, p−) + divA(x, v(x, p−)) = 0,

we also have that
∫

TN−1

A1(x1, x
′, v(x1, p−)) dx

′ −
d

dx1

∫

TN−1

v(x1, x
′p−)dx

′ = constant ∀x1 ∈ R.

Integrating the above identity over T, we deduce that the above constant is Ā1(p−) =
α. Choosing x1 = −R, the inequality αR ≥ α is proved.

(3) Monotony:
Consider the function ŪR(x1 + 1, x′) defined on (−R − 1, R − 1) × T

N−1. Since
the flux A is periodic, ŪR(x1 + 1, x′) satisfies the same equation as ŪR. Moreover,
using the L∞ a priori estimates and the boundary conditions on ŪR, we have that

ŪR(x1 + 1, x′)− ŪR(x1, x
′) ≤ 0 at x1 = −R and at x1 = R− 1.

Set HR := ŪR(x1+1, x′)− ŪR(x1, x
′) and (HR)− := −HR1HR≤0. Since the function

x 7→ −x1x≤0 is convex, we have that in D′((−R,R − 1)× T
N−1),

(2.16) −∆(HR)− + divx
(

−1HR≤0(A(x, ŪR(x1 + 1, x′))−A(x, ŪR(x1, x
′)))

)

≤ 0.
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We denote by −mR the left hand-side of the above inequality. Then mR is a non-
negative measure. Moreover, straightforward integrations entail

(2.17)

−mR((−R,R− 1)× T
N−1)

=

[

−∂1

∫

TN−1

(HR)−dx
′

]x1=R−1

x1=−R

+

[
∫

TN−1

−1HR≤0

(

A1(x, ŪR(x1 + 1, x′))−A1(x, ŪR(x1, x
′))

)

dx′
]x1=R−1

x1=−R

.

Since HR ≤ 0 at x1 = −R and at x1 = R− 1, we have

∂1(HR)− = −1HR≤0∂1HR = −∂1HR at x1 = −R and R− 1.

Using (2.15), we have that

−

(

∂1

∫

TN−1

(HR)−dx
′

)

∣

∣

∣

x1=R−1

+

(
∫

TN−1

−1HR≤0

(

A1(x, ŪR(x1 + 1, x′))−A1(x, ŪR(x1, x
′))

)

dx′
)

∣

∣

∣

x1=R−1

= ∂1

∫

TN−1

ŪR(R,x
′) dx′ −

∫

TN−1

(A1(R,x
′, ŪR(R,x

′))dx′

− ∂1

∫

TN−1

ŪR(R− 1, x′) dx′ +

∫

TN−1

(A1(R − 1, x′, ŪR(R− 1, x′))dx′

= αR − αR = 0.

Similarly we have the same result at x1 = −R. Therefore, it follows from (2.17)
that mR((−R,R − 1)× T

N−1) = 0, and thus

−∆(HR)− + divx
(

−1HR≤0(A(x, ŪR(x1 + 1, x′))−A(x, ŪR(x1, x
′)))

)

= 0.

That is, (HR)− is a non-negative solution of an elliptic equation of the type:

−∆(HR)− + divx (aR(HR)−) = 0,

where aR ∈ L∞((−R,R − 1)× T
N−1) is defined by

aR :=

∫ 1

0
∂vA(x, τŪR(x+ e1) + (1− τ)ŪR(x))dτ.

Let us argue by contradiction and assume that HR(x0) ≥ 0 for some x0 ∈ (−R,R−
1)× T

N−1. Then (HR)−(x0) = 0,and Harnack’s inequality implies that (HR)− = 0
on (−R,R− 1)× T

N−1.
In that case, HR(x) ≥ 0 for all x ∈ (−R,R− 1) × T

N−1, and since R is an integer,
we obtain

v(x, p+) = ŪR(R,x
′) ≥ ŪR(R− 1, x′) ≥ · · · ≥ ŪR(−R,x

′) = v(x, p−).

This is in contradiction with p+ < p− as (1.7). Therefore, we deduce that HR(x) < 0
for all x ∈ (−R,R− 1)× T

N−1, and

ŪR(x1 + 1, x′)− ŪR(x1, x
′) < 0 ∀x ∈ (−R,R− 1)× T

N−1.
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(4) Uniform bounds in Sobolev spaces:
For any k ∈ {−R+ 1, · · · , R− 2}, ŪR solves the equation

−∆ŪR = −divA(x, ŪR) in (k, k + 1)× T
N−1,

with the inherited boundary conditions, which are bounded in L∞(TN−1) uniformly
in R and k thanks to (1). Using the L∞ a priori bound together with interior elliptic
estimates, we infer that ŪR is bounded in H1((k, k + 1)× T

N−1) (and even in W 1,q

for any q < ∞), uniformly in k and R. Using a classical bootstrap argument, we
then prove that ŪR is bounded in W 2,q((k, k + 1) × T

N−1) for any q < ∞. Using
the fact that the boundary conditions at −R and R are smooth and bounded, we
derive similar bounds on (−R,−R+ 1) × T

N−1 and (R − 1, R)× T
N−1. Hence the

result follows.

�

Remark 2.1. We here explain how we can remove the constraints m = 0 and n < 1 on
growth assumptions of the flux. Assume that A belongs to W 1,∞

loc (TN × R) and that there
exist two periodic solutions v(·, p±) of (1.4) with p+ 6= p− satisfying (1.6a).
Let

C0 := max(‖v(·, p+)‖∞, ‖v(·, p−)‖∞).

and χ ∈ C∞
0 (R) such that χ(ξ) = 1 for |ξ| ≤ C0 + 1. Define

Aχ(x, ξ) := A(x, ξ)χ(ξ), x ∈ T
N , ξ ∈ R

Then the flux Aχ belongs to W 1,∞(TN ×R) and satisfies the growth assumptions of Propo-
sition 1.1 with m = n = 0. Therefore, for any p ∈ R there exists a unique periodic solution
vχ(·, p) of

−∆vχ(x) + divAχ(x, vχ(x, p)) = 0 in T
N , 〈vχ(·, p)〉 = p.

It follows from the uniqueness of vχ and from the definition of Aχ that vχ(·, p±) = v(·, p±).
Now, we can apply the results proved above to the flux Aχ. Thus there exists a unique

solution Ūχ
R of equation (2.13) with A replaced by Aχ, and Ūχ

R enjoys the properties of
Lemma 2.1. In particular, ‖Ūχ

R‖∞ ≤ C0, and thus

Aχ(x, Ū
χ
R) = A(x, Ūχ

R) ∀x ∈ ΩR.

Hence Ūχ
R is also a solution of (2.13) with the original flux A. Thus we can now drop the

χ’s, and consider arbitrary fluxes A ∈W 1,∞
loc (TN×R) satisfying the assumptions of Theorem

1.1.

2.3. Passing to the limit as R→ ∞.

⊲ First step: Extension to R× T
N−1 and “normalization”.

We first extend ŪR to R× T
N−1 by setting

(2.18) ŪR(x) = v(x, p+) for x1 ≥ R, ŪR(x) = v(x, p−) for x1 ≤ −R.

Thanks to (4) of Lemma 2.1 and to the regularity of v, the above function ŪR is continuous
and bounded uniformly in R in W 1,∞(R×T

N−1). Moreover ŪR(·+e1) ≤ ŪR over the whole
space.

Before passing to the limit, one issue is that all integer translations in x1 of shocks are
also shocks. And a shock translated by ke1, with |k| ≫ 1, is very close to one of the end
states v(·, p±) on compact sets in all Sobolev norms. In order to prevent ŪR from converging
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towards v(·, p±), we fix the value (or rather, the mean value) of (a translate of) ŪR at a
given point. We call this step the “normalization” of ŪR.

More precisely, let p̄ ∈ (p+, p−) be arbitrary (for instance, take p̄ = p++p−
2 ). Then since

∫ 1

0

∫

TN−1

ŪR(R+ x1, x
′) dx′ dx1 = p+ and

∫ 1

0

∫

TN−1

ŪR(−R− 1 + x1, x
′) dx′ dx1 = p−,

there exists xR ∈ (−R− 1, R) such that
∫ 1

0

∫

TN−1

ŪR(xR + x1, x
′) dx′ dx1 = p̄.

Let kR := ⌊xR⌋ ∈ Z and define V̄R := ŪR(x1 + kR, x
′). Then since A and v are periodic in

their first variable, V̄R solves

(2.19)

−∆V̄R + divA(x, V̄R) = 0 in (−R− kR, R− kR)× T
N−1,

V̄R(−R− kR, x
′) = v(−R− kR, x

′, p−),

V̄R(R− kR, x
′) = v(R − kR, x

′, p+), x′ ∈ T
N−1,

and there exists yR ∈ [0, 1) (yR = xR − kR) such that
∫ 1

0

∫

TN−1

V̄R(yR + x1, x
′) dx′ dx1 = p̄.

Additionally, V̄R inherits from ŪR all the properties listed in Lemma 2.1.

⊲ Second step: Limit R→ ∞.
Thanks to the bounds listed above and in Lemma 2.1, we can extract a subsequence Rm

and find a function V̄ such that V̄Rm ⇀ V̄ in W 1,q(K), ∀q ∈ [1,∞) for any compact set
K ⊂ R× T

N−1, and thus V̄Rm → V̄ strongly in Cα(K) for some α > 0. Furthermore, up to
a further extraction of a subsequence, there exist some constants x+, x−, ȳ and ᾱ such that

R− kR → x+ ∈ [0,+∞], −R− kR → x− ∈ [−∞, 0], yR → ȳ ∈ [0, 1], αR → ᾱ ∈ [α,C].

Notice also that x+ − x− = +∞. Thanks to the strong convergence of V̄Rm in Cα(K), we
have

(2.20)

∫ 1

0

∫

TN−1

V̄ (ȳ + x1, x
′) dx1 dx

′ = p̄.

Furthermore, if x+ < +∞ (resp. x− > −∞), then V̄ (x+, x
′) = v(x+, x

′, p+) (resp.
V̄ (x−, x

′) = v(x−, x
′, p−)).

We can also pass to the limit in (2.19), thus V̄ is a solution of

−∆V̄ + divA(x, V̄ ) = 0 on (x−, x+)× T
N−1.

Eventually, we have further properties on V̄ from the properties listed in Lemma 2.1 as
follows:

• L∞ bound : v(x, p+) ≤ V̄ (x) ≤ v(x, p−) for all x ∈ R× T
N−1;

• Additional regularity: V̄Rm ⇀ V̄ in W 2,q(K) for any compact set K ⊂ (x−, x+) ×
T
N−1 and for all q < ∞, and therefore V̄Rm → V̄ strongly in W 1,q(K) for such

compact sets K and for any q ∈ [1,∞]. Moreover, V̄ ∈W 1,∞(Ω);
• Integration constant:

(2.21) −
d

dx1

∫

TN−1

V̄ (x1, x
′) dx′ +

∫

TN−1

A1(x1, x
′, V̄ (x1, x

′)) dx′ = ᾱ ∀x1 ∈ (x−, x+).
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• Monotony: V̄ (x+ e1) ≤ V̄ (x).

⊲ Third step: Limit states of V̄ and value of the integration constant.
Let us consider the sequence (uk)k∈Z defined by

uk : x ∈ [0, 1] × T
N−1 7→ V̄ (x+ ke1).

Thanks to the monotony property and the a priori bounds for V̄ , the sequence (uk)k∈Z is
monotonous and bounded inW 1,∞([0, 1]×T

N−1). Thus for all x ∈ [0, 1]×T
N−1, (uk(x))k∈Z

has a finite limit as k → ±∞, which we denote as u±, and u± is bounded and Lipschitz
continuous.

Since uk(1, x
′) = uk+1(0, x

′) for all k ∈ Z, we deduce that u±(0, x
′) = u±(1, x

′) and thus
u± is periodic. Let us now prove that u± = v(·, p±). We consider for instance the function
u+, the argument for u− is strictly identical.

If x+ <∞, since (2.18) yields

V̄R(x1, x
′) = v(x1, x

′, p+), x1 ≥ R− kR, x
′ ∈ T

N−1

we deduce easily that V̄ (x) = v(x, p+) for all x ∈ (x+,∞) × T
N−1, and as a consequence,

u+ = v(x, p+).
If x+ = +∞, extending u+ by periodicity, we have u+ ∈ C(TN ) and V̄ (· + ke1) → u+

locally uniformly as k → +∞. Since every uk is a solution of

−∆uk + divA(x, uk) = 0,

taking k → ∞ in the above equation, we deduce that u+ is a periodic solution of the
above equation. Therefore there exists p̄+ ∈ R such that u+ = v(·, p̄+). Notice that since
v(·, p−) ≤ V̄ ≤ v(·, p+), we have p̄+ ∈ [p+, p̄−].
In particular,

−
d

dx1

∫

TN−1

u+(x1, x
′) dx′ +

∫

TN−1

A1(x1, x
′, u+(x1, x

′)) dx′ = Ā1(p̄+) ∀x1 ∈ T.

Taking the integral of the above identity over T and comparing with (2.21), we obtain
Ā1(p̄+) = ᾱ.
Since ᾱ ≥ α and p̄+ ∈ [p+, p̄−], the assumption (1.7) leads to p̄+ ∈ {p+, p−} and

(2.22) ᾱ = α = Ā1(p±).

Since V̄ (ȳ + x1 + k, x′) ≤ V̄ (ȳ + x1, x
′) for all (x1, x

′) ∈ [0, 1] × T
N−1 and k ∈ N,

u+(ȳ + x1, x
′) ≤ V̄ (ȳ + x1, x

′) ∀(x1, x
′) ∈ [0, 1] × T

N−1.

Taking the average of the above inequality over [0, 1] × T
N−1, it follows from (2.20) that

p̄+ ≤ p̄ < p−. Therefore p̄+ = p+.
Hence we conclude that

V̄ (x1, x
′)− v(x1, x

′, p±) → 0 as x1 → ±∞ in L∞(TN−1).

Notice also that since (2.21) is true on (x−, x+)× T
N−1, and at least one of the properties

x− = −∞ or x+ = +∞ always holds, it follows from the argument above that (2.22) always
holds.

⊲ Fourth step: Conclusion.
First of all, if x+ = +∞ and x− = −∞, then gathering the properties of the previous

steps, V̄ is a stationary shock with end states v(·, p+) and v(·, p−), thus Theorem 1.1 is
proved.
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Therefore we now consider the case x+ < +∞ (the case x− > −∞ is treated in a similar
fashion). In this case, we see that the equation

(2.23) −∆V̄ + divA(x, V̄ ) = 0

is satisfied on (−∞, x+) × T
N−1. Of course, since V̄ (x) = v(x, p+) for all x1 > x+, the

equation is also satisfied on (x+,∞) × T
N−1. Notice that V̄ is continuous at the point

x1 = x+, but its derivative in x1 might have a jump, and therefore there might be a Dirac
mass in ∆V̄ at x1 = x+. We prove that this is not the case.

Thus, using (2.21) and (2.22), we have that

(2.24) −
d

dx1

∫

TN−1

V̄ (x1, x
′) dx′

∣

∣

∣

x1=x−

+

+

∫

TN−1

A1(x1, x
′, V̄ (x1, x

′)) dx′
∣

∣

∣

x1=x−

+

= Ā1(p+),

and recall that
(2.25)

−
d

dx1

∫

TN−1

v(x1, x
′, p+) dx

′
∣

∣

∣

x1=x+

+

∫

TN−1

A1(x1, x
′, v(x1, x

′, p+)) dx
′
∣

∣

∣

x1=x+

= Ā1(p+).

Let J(x′) be the jump of ∂x1
V̄ at x1 = x+, i.e.

J(x′) := ∂x1
v(x+, x

′, p+)− ∂x1
V̄ (x−+, x

′).

Since V̄ (x−+, x
′) = v(x+, x

′, p+), combining (2.24) with (2.25), we get
∫

TN−1

J(x′)dx′ = 0.

Moreover, since V̄ (x) ≥ v(x, p+) for all x ∈ R × T
N−1, with equality for x1 ≥ x+, we have

J(x′) ≥ 0 for all x′ ∈ T
N−1, consequently J ≡ 0. Thus ∂x1

V̄ has no jump at x1 = x+,
which implies that the equation (2.23) is satisfied over the whole space.
Hence V̄ is a stationary shock with end states v(·, p+) and v(·, p−), which completes the
proof of Theorem 1.1.

Remark 2.2. In fact, the situation where x+ < +∞ (resp. x− > −∞) cannot happen.
Indeed, in that case, w = V̄ − v(x, p+) (resp. w = v(x, p−)− V̄ ) would be the non-negative
solution of an elliptic equation of the type

−∆w + div(aw) = 0 in R× T
N−1,

with a ∈ L∞(R × T
N−1), and w ≡ 0 for x1 ≥ x+ (resp x1 ≤ x−). Using once again the

Harnack inequality, we infer that w has to vanish identically over R×T
N−1, which leads to

a contradiction. Therefore we always have x+ = +∞ and x− = −∞.

3. Properties of stationary shocks with periodic end states

We first show that the Rankine-Hugoniot condition (1.6a) is in fact a necessary condition
for the existence of shock waves.

Lemma 3.1. Assume A1 ∈ W 1,∞
loc (TN × R). Let Ū be a stationary shock wave connecting

v(·, p−) to v(·, p+). Then Ā1(p−) = Ā1(p+) =: α, and Ū satisfies

−
d

dx1

∫

TN−1

Ū(x1, x
′)dx′ +

∫

TN−1

A1(x1, x
′, Ū(x1, x

′))dx′ = α.
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Proof. Since the shock wave Ū is a solution of

−∆Ū + divA(x, Ū ) = 0,

there exists a constant C̄ such that

−
d

dx1

∫

TN−1

Ū(x)dx′ +

∫

TN−1

A1(x, Ū (x))dx′ = C̄, ∀x1 ∈ R.

Moreover, since

−
d

dx1

∫

TN−1

v(x, p+)dx
′ +

∫

TN−1

A1(x, v(x, p+))dx
′ = Ā1(p+),

we have
(3.26)

−
d

dx1

∫

TN−1

(

Ū(x)−v(x, p+)
)

dx′+

∫

TN−1

(

A1(x, Ū (x))−A1(x, v(x, p+))
)

dx′ = C̄−Ā1(p+).

Notice that (1.5) and A1 ∈W 1,∞
loc (TN × R) yield that for any ε ∈ (0, 1), there exists m > 0

such that for all x1 > m,

|Ū(x)− v(x, p+)| ≤ ε, |A1(x, Ū (x))−A1(x, v(x, p+))| ≤ ε‖∂vA1‖L∞(TN×(−K,K)),

where the constant K is such that K ≥ ‖v(·, p+)‖∞ + 1. Thus, integrating (3.26) over
[m,m+ 1], we have that

|C̄ − Ā1(p+)| ≤ Cε ∀ε ∈ (0, 1),

which implies that C̄ = Ā1(p+). Similarly, applying the above argument to v(·, p−), we
have C̄ = Ā1(p−). �

If we impose additional conditions on the flux A at the two end states, the shock wave
exponentially converges towards the end states:

Proposition 3.1. Let Ū be a stationary shock wave connecting v(·, p−) to v(·, p+) satisfying

v(·, p+) ≤ Ū ≤ v(·, p−). Assume that A1 ∈ (W 1,∞
loc ∩C1)(TN×R) and that there exist periodic

functions φ ∈ L1(T) and ψ ∈ L1(T) such that the Lax conditions (1.9), (1.10) are satisfied.
Then there exist positive constants R and CR such that for all ±x1 > R,
∫

TN−1

|Ū(x1, x
′)− v(x1, x

′, p±)|dx
′ < CR e

a±x1/2

∫

TN−1

|Ū(±R,x′)− v(±R,x′, p±)|dx
′.

Proof. We show the convergence towards the left end state v(·, p−). First of all, we see that
Lemma 3.1 yields

d

dx1

∫

TN−1

|Ū (x)− v(x, p−)|dx
′

=
d

dx1

∫

TN−1

(v(x, p−)− Ū(x))dx′

=

∫

TN−1

(A1(x, v(x, p−))−A1(x, Ū(x)))dx′

=

∫

TN−1

(
∫ 1

0
∂vA1(x, τŪ + (1− τ)v(x, p−))dτ

)

(v(x, p−)− Ū(x))dx′.

It follows from (1.5) that

∀ε > 0, ∃R > 0 s.t. |Ū(x)− v(x, p−)| < ε for all x1 < −R, x′ ∈ T
N−1.
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Since the function ∂vA1 is continuous, using (1.9), we infer that there exists a constant C
such that

∂vA1(x, τŪ + (1− τ)v(x, p−)) ≥ φ(x1)− Cε for all x1 < −R, x′ ∈ T
N−1, τ ∈ [0, 1].

Thus for all x1 < −R,

d

dx1

∫

TN−1

|Ū(x)− v(x, p−)|dx
′ ≥ (φ(x1)− Cε)

∫

TN−1

|Ū(x)− v(x, p−)|dx
′.

This inequality implies that for all x1 < −R
∫

TN−1

|Ū(x)− v(x, p−)|dx
′ <

∫

TN−1

|Ū (x)− v(x, p−)|dx
′
∣

∣

∣

x1=−R
× exp

(

∫ x1

−R
(φ(s)− Cε)ds

)

.

Since the periodicity of φ implies that there exists a positive constant C such that
∫ x1

−R
φ(s)ds ≤ (x1 +R)

∫

T

φ(s)ds+ C,

we have the desired estimate for the case of v(x, p−), choosing ε so that a− − Cε ≥ a−/2.
The same arguments also lead to the convergence towards v(·, p+) as x1 → +∞. �

Lemma 3.2. Assume A ∈ W 1,∞
loc (TN × R)N satisfying the assumptions of Theorem 1.1,

together with (1.7). Let Ū and V̄ be two stationary shock waves connecting v(·, p−) to
v(·, p+). Then Ū and V̄ enjoy the following properties:

• The function Ū − V̄ keeps a constant sign;
• Ū − τ1Ū ≥ 0, V̄ − τ1V̄ ≥ 0;
• There exist k−, k+ ∈ Z, with either k+ = 0 or k− = 0, such that

τk−Ū ≤ V̄ ≤ τk+Ū ;

• Ū − V̄ ∈ L1(R × T
N−1).

Remark 3.1. The first statement of Lemma 3.2 implies that stationary shocks are ordered
in the sense that any two shocks Ū and V̄ satisfy only one of Ū = V̄ , Ū < V̄ and Ū > V̄ .

Proof. Let us first prove that Ū − V̄ keeps a constant sign. Assume for instance that
Ū(0) ≤ V̄ (0). Using the same argument as the one developed from (2.16), we have that
W := Ū − V̄ satisfies

−∆|W |+ divx

(

sgn(W )
(

A(x, Ū )−A(x, V̄ )
)

)

≤ 0 in D′(R× T
N−1).

We denote by −m the left hand-side of the above inequality. Then m is a non-negative
measure. But since

lim
x1→±∞

‖Ū (x1, ·) − V̄ (x1, ·)‖L∞(TN−1) = 0,

we have that m(R× T
N−1) = 0. Thus,

−∆|W |+ divx

(

sgn(W )
(

A(x, Ū )−A(x, V̄ )
)

)

= 0.

That is, |W | is a non-negative solution of an elliptic equation of the type:

−∆|W |+ divx (a|W |) = 0,

where

a :=

∫ 1

0
∂vA(x, τŪ + (1− τ)V̄ )dτ ∈ L∞(R× T

N−1).
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As a consequence, Harnack’s inequality implies that eitherW is identically zero, orW never
vanishes. Thus there are two possibilities:

• If Ū(0) = V̄ (0), then W ≡ 0 and Ū = V̄ ;
• If Ū(0) < V̄ (0), then W never vanishes and V̄ − Ū remains strictly positive. In that
case

v(x, p+) < Ū(x) < V̄ (x) < v(x, p−), ∀x ∈ R× T
N−1.

Hence the first statement of the Lemma is proved.
Concerning the second statement, observe that τ1Ū and τ1V̄ are also stationary shock

waves connecting v(·, p−) to v(·, p+). As a consequence, according to the first statement,
Ū − τ1Ū and V̄ − τ1V̄ keep a constant sign. It follows that the sequences of functions
(τkŪ)k∈Z, (τkV̄ )k∈Z are monotonous, and using assumption (1.7), we infer that these se-
quences are necessarily non-increasing. Hence Ū − τ1Ū ≥ 0, V̄ − τ1V̄ ≥ 0.

We now address the third statement. Once again, without loss of generality, we assume
that Ū ≤ V̄ , so that k− = 0. Moreover, since the sequence (Ū(ke1))k∈Z is monotonous, we
have

τkŪ(x) → v(x, p−) as k → −∞ in L∞([0, 1] × T
N−1)

Thus there exists k+ ∈ Z, k+ ≤ 0, such that for all x ∈ [0, 1] × T
N−1,

V̄ (x) ≤ τk+Ū(x).

Using the first statement and the fact that τk+Ū is a standing shock, we infer that V̄ ≤ τk+Ū .

Eventually, still working under the assumption Ū ≤ V̄ , we have, for any K > 0,
∫ K

−K

∫

TN−1

|Ū − V̄ | ≤

∫ K

−K

∫

TN−1

(τk+Ū − Ū)

=

∫ −K

−K+k+

∫

TN−1

Ū −

∫ K

K+k+

∫

TN−1

Ū ≤ 2|k+|‖Ū‖∞,

and therefore Ū − V̄ ∈ L1(Ω). �

Proposition 3.2. Assume that the assumptions of Theorem 1.1 are satisfied, together with
the Lax assumptions (1.9)-(1.10). Assume furthermore that ∂vA, ∂

2
vA ∈W 1,∞

loc (TN × R).
Let Ū be a stationary shock wave connecting v(·, p−) to v(·, p+). Let q ∈ R be arbitrary.

Then there exists a unique shock V̄ ∈ Ū + L1(R × T
N−1) such that

∫

R×TN−1(V̄ − Ū) = q.

Remark 3.2. The sole purpose of assumptions (1.9)-(1.10) is to ensure that the family
(pR)R>0 defined by (3.28) below is equi-integrable, and therefore compact with respect to R.
If this compactness property can be retrieved in another way, then assumptions (1.9)-(1.10)
can be removed from the statement of Proposition 3.2.

Proposition 3.2 has the following immediate consequence:

Corollary 3.1. Let p−, p+ be constants such that the assumptions of Theorem 1.1 are
satisfied. Assume that (1.9)-(1.10) hold, and let Ū be a stationary shock wave connecting
v(·, p−) to v(·, p+). If u ∈ Ū + L1(R× TN−1), then there exists a unique standing shock V̄
such that u ∈ V̄ + L1

0(R × T
N−1).

We now turn to the proof of Proposition 3.2. The proof relies heavily on properties of
the function Ū(·+ e1)− Ū , which we list in the following Lemma:
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Lemma 3.2. Assume the hypotheses of Theorem 1.1, together with (1.7), futhermore ∂vA ∈

W 1,∞
loc (TN × R). Let Ū be a stationary shock wave connecting v(·, p−) to v(·, p+), and let

p := Ū − Ū(·+ e1).

Then p satisfies the following properties:

• Setting

b(x) =

∫ 1

0
∂vA(x, sŪ(x) + (1− s)Ū(x+ e1)) ds ∈W 1,∞(Ω),

the function p is a non-negative solution of

(3.27) −∆p+ div(bp) = 0 in R× T
N−1;

Moreover, p ∈ L1 ∩W 1,∞(R× T
N−1).

• For any R > 1, consider the approximate problem

(3.28)

−∆pR + div(bpR) = 0 in (−R,R)× T
N−1,

−∂1pR + b1pR = 0 at x1 = ±R,
∫

ΩR

pR =

∫

Ω
p.

Then equation (3.28) has a unique solution pR ∈ H1(ΩR). Moreover, pR(x) > 0
for all x ∈ ΩR, and if pR is extended by zero outside ΩR, the family (pR)R>0 is
uniformly bounded in Lq(Ω) for all 1 ≤ q <∞.

• Assume that the Lax conditions (1.9)-(1.10) are satisfied. Then

pR → p as R→ ∞, in L1(R × T
N−1).

Proof. • Properties of p: the integrability, sign and regularity properties of p follow from
Lemma 3.2 and from the regularity properties of Ū . The equation on p simply follows from
making the difference between the equations on τ1Ū and Ū .

• Properties of pR: existence, uniqueness and positivity are a consequence of the Krein-
Rutman theorem (see Appendix). The uniform L1 bound follows from the normalization
and the positivity. We then obtain H1 bounds by multiplying (3.28) by pR and integrating
by parts. We obtain

∫

ΩR

|∇pR|
2 ≤

1

2
‖b‖W 1,∞

(
∫

TN−1

p2R(R,x
′) dx′ +

∫

TN−1

p2R(−R,x
′) dx′ +

∫

ΩR

p2R

)

.

Using first a trace inequality and then the Gagliardo-Nirenberg interpolation inequality, we
infer that for all ν > 0, there exists a constant Cν , independent of R, and such that

‖pR(±R, ·)‖L2(TN−1) ≤ C‖pR‖H1/2(ΩR) ≤ Cν‖pR‖L2 + ν‖∇pR‖L2

≤ Cν‖pR‖
1−α
L1 ‖∇pR‖

α
L2 + ν‖∇pR‖L2

≤ Cν‖pR‖L1 + 2ν‖∇pR‖L2 ,

where α = N/(N + 2). Taking ν sufficiently small, we infer that
∫

ΩR

|∇pR|
2 ≤ C‖b‖W 1,∞‖pR‖

2
L1 ≤ C.
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Using once again the uniform L1 bound together with the Gagliardo-Nirenberg interpolation
inequality, we obtain

sup
R>0

‖pR‖H1(ΩR) <∞.

Likewise, we have uniform Lq bounds, i.e., for any 1 < q <∞,

‖pR‖Lq(ΩR) ≤ ‖pR‖
1−α′

L1 ‖∇pR‖
α′

L2 ≤ C, α′ =
2N(q − 1)

(N + 2)q
∈ (0, 1).

• Asymptotic behaviour of pR when the Lax conditions are satisfied: we first obtain
estimates on the rate of decay in x1 in the following way. Integrating equation (3.28) on
T
N−1 leads to

−
d2

dx21

∫

TN−1

pR +
d

dx1

∫

TN−1

b1pR = 0,

and thus

−
d

dx1

∫

TN−1

pR +

∫

TN−1

b1pR = cst. on [−R,R].

The boundary conditions imply that the constant has to be zero, and therefore

−
d

dx1

∫

TN−1

pR +

∫

TN−1

b1pR = 0 on [−R,R].

Now, since Proposition 3.1 yields that for all ±x1 > R,
∫

TN−1

|p| ≤

∫

TN−1

|Ū (x)− v(x, p±)|+

∫

TN−1

|v(x+ e1, p±)− Ū(x+ e1)| < CR e
a±x1/2,

there exists x′0 ∈ T
N−1 such that p(x1, x

′
0) ≤ CR e

a±x1/2 for all ±x1 > R, which im-
plies together with Harnack inequality that p(x1, ·) converges exponentially fast towards
zero in L∞(TN−1) as x1 → ±∞, and b1 therefore converges exponentially fast towards
∂vA(x, v(x, p±)) in L

∞(TN−1) as x1 → ±∞. The Lax conditions (1.9)-(1.10) imply that for
any ε < max(|a+|, |a−|)/2, there exists K > 0 such that

b1(x) ≥ φ(x1)− ε for x1 < −K, b1(x) ≤ ψ(x1) + ε for x1 > K.

Thus, if K < x1 < R, we obtain, since pR > 0,

0 ≤ −
d

dx1

∫

TN−1

pR + (ψ(x1) + ε)

∫

TN−1

pR.

As a consequence, there exists a constant C such that
∫

TN−1

pR(x1, x
′) dx′ ≤ C exp(x1a+/2).

We also obtain similar estimates on (−R,−K). Using the Harnack inequality, we deduce
eventually that there exists a constant C (independent of R) such that

C−1 exp(a−x1/2) ≤ pR(x) if x1 < 0, pR(x) ≤ C exp(a+x1/2) if x1 > 0.

Furthermore, if we consider

ϕ+ := inf
x′∈TN−1

∂vA1(x1, x
′, v(x1, x

′, p+)), ϕ− := sup
x′∈TN−1

∂vA1(x1, x
′, v(x1, x

′, p−)),

then (1.9)-(1.10) imply that b+ :=
∫

T
ϕ+dx1 < 0 and b− :=

∫

T
ϕ−dx1 > 0, and using the

above arguments, we obtain that

pR(x) ≤ C exp(b−x1/2) if x1 < 0, C−1 exp(b+x1/2) ≤ pR(x) if x1 > 0.
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Hence, the sequence (pR)R>1 is equi-integrable. Using the uniform H1 estimate, we deduce
that (pR)R>1 is compact in L1(Ω). By uniqueness (up to a multiplicative constant) of the
solutions of (3.27), it follows that pR → p in L1(Ω).

�

Remark 3.3. Obviously, the same statements hold for pk := |Ū(·+ke1)− Ū | for any k ∈ Z,
replacing every occurrence of Ū(·+ e1) by Ū(·+ ke1).

We are now ready to prove Proposition 3.2:

3.1. Proof of Proposition 3.2. Let q ∈ R be fixed. Notice first that if there exist two
shocks V̄1, V̄2 with

∫

(V̄1 − Ū) =
∫

(V̄2 − Ū) = q, then V̄1 − V̄2 ∈ L1
0(Ω) and V̄1 − V̄2 keeps a

constant sign according to Lemma 3.2. Hence V̄1 = V̄2. The uniqueness of V̄ follows. We
therefore focus on the existence of V̄ in the rest of the proof.

First, there exists an integer k ∈ Z such that q has the same sign as Ū(·+ ke1)− Ū , and

|q| ≤ ‖Ū(·+ ke1)− Ū‖L1 = ‖pk‖L1 .

In order to fix ideas, we work with q > 0, so that k < 0 and pk = Ū(· + ke1) − Ū . In the
sequel, we set

bk(x) =

∫ 1

0
∂vA(x, (1 − s)Ū(x) + sŪ(x+ ke1)) ds ∈W

1,∞(Ω).

The goal is to prove that for all q ∈ R, the following equation has at least one solution

(3.29) −∆W + divB(x,W ) = 0 in Ω, W ∈ L1(Ω),

∫

Ω
W = q,

where B(x, r) = A(x, Ū + r) − A(x, Ū ). Setting W = V̄ − Ū , this is strictly equivalent to
the statement of Proposition 3.2.

In order to require that
∫

ΩW = q, we slightly modify the form of equation (3.29) and
rather look for solutions of the equation

(3.30) −∆W + div(bkW ) + divB̃k(x,W ) = 0, W ∈ L1(Ω),

∫

Ω
W = q

where B̃k(x, r) = Ã(x, Ū+r)−Ã(x, Ū)−bk(x)r. Here, Ã is defined by Ã(x, r) := A(x, r)χ(r),
where χ ∈ C∞

0 (R) such that χ(r) = 1 for |r| ≤ r0 for some large constant r0 with r0 >

2‖v(·, p±)‖∞, thus Ã ∈ W 1,∞(TN × R). It is clear that if W ∈ L1 is a solution of (3.30),

then V̄ = W + Ū is a standing shock for the flux Ã, with periodic end states v(·, p±). As

a consequence, v(·, p+) ≤ V̄ ≤ v(·, p−), and thus Ã(x, V̄ (x)) = A(x, V̄ (x)). Whence V̄ is a
standing shock for the flux A such that

∫

(V̄ − Ū) = q.
Notice also that there exists a constant C such that

|B̃k(x, r)| ≤ C|r| ∀r ∈ R, ∀x ∈ Ω,

and that for all r ∈ R, x ∈ Ω, since ∂2vA ∈ L∞
loc,

B̃k(x, r) = r

∫ 1

0

(

∂vÃ(x, Ū + sr)− ∂vÃ(x, Ū + spk(x))
)

ds

= r(r − pk)

∫ 1

0

∫ 1

0
s∂2vÃ(x, Ū + sτr + s(1− τ)pk(x)) dτ ds.

As a consequence, for all r ∈ R, x ∈ Ω,

(3.31) |B̃k(x, r)| ≤ C|r||r − pk(x)|.
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We prove the existence of solutions of (3.30) by using approximate problems on ΩR and
passing to the limit as R → ∞. Using Lemma 3.2, we first introduce the function pk,R
which solves

−∆pk,R + div(bkpk,R) = 0 in ΩR,

− ∂1pk,R + bk,1pk,R = 0 for x1 = ±R,

∫

ΩR

pk,R =

∫

Ω
pk.

(3.32)

We recall that pk,R > 0 in ΩR. We define

B̃k,R(x, r) = χR(x1)r(r − pk,R)

∫ 1

0

∫ 1

0
s∂2vÃ(x, Ū + sτr + s(1− τ)pk(x)) dτ ds

for some cut-off function χR such that χR ≡ 1 on (−R + 1, R − 1) and Supp χR ⊂ (−R +
1/2, R − 1/2).

We now prove that for all R > 1, there exists a solution WR ∈ H1(ΩR) of the equation

(3.33)

−∆WR + div(bkWR) + divB̃k,R(x,WR) = 0 in ΩR,

−∂1WR + bk,1WR = 0 for x1 = ±R,
∫

ΩR

WR = q.

Let us solve equation (3.33) by using Schaefer’s fixed point theorem. Let W1 ∈ H1(ΩR)
be arbitrary. We use the Fredholm alternative to solve the equation

(3.34)

−∆W2 + div(bkW2) + divB̃k,R(x,W1) = 0 in ΩR,

−∂1W2 + bk,1W2 = 0 for x1 = ±R,
∫

ΩR

W2 = q.

Indeed, according to Lemma A.1, the solutions of the homogeneous equation

(3.35) −∆w + div(bkw) = 0 in ΩR, −∂1w + bk,1w = 0 for x1 = ±R

are the functions w = cpk,R where pk,R > 0, c ∈ R. Since the dual problem of (3.35) is

−∆q − bk · ∇q = 0 in ΩR, ∂1q = 0 for x1 = ±R,

and a simple computation gives
∫

ΩR

pk,R|∇q|
2dx = 0,

the solutions of the dual problem are the constants. Thus, the inhomogeneous term
−divB̃k,R(x,W1) of (3.34) is orthogonal to the constants thanks to the cut-off function
χR. This ensures the existence of solutions of the first two lines of (3.34); these solutions
are defined up to a function of the form cpk,R, for c ∈ R, and the third line of (3.34) fixes
the value c and ensures uniqueness of solutions of (3.34). Hence we can define the operator
LR :W1 ∈ L2(ΩR) 7→ W2 ∈ L2(ΩR). Notice that in fact, the operator LR is continuous from
L2(ΩR) to H

1(ΩR), and therefore LR is compact for all R > 0. Now, let λ ∈ [0, 1] be arbi-

trary, and let W λ be such that λLR(W
λ) =W λ. We first observe that since B̃k,R(x, 0) = 0,
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(W λ)+ :=W λ1Wλ≥0 satisfies

−∆(W λ)+ + div(bk(W
λ)+) + λdiv

(

1Wλ>0B̃k,R(x,W
λ)
)

≤ 0 in ΩR,

−∂1(W
λ)+ + bk,1(W

λ)+ = 0 for x1 = ±R.

Using once again an argument similar to the one developed form (2.16), we deduce that
W λ keeps a constant sign on ΩR. Thus

(3.36) ‖W λ‖L1(ΩR) =

∫

W λ = q > 0.

We derive an uniform H1 bound on W λ in the following way: we have
∫

ΩR

|∇W λ|2 −

∫

ΩR

bkW
λ · ∇W λ = λ

∫

ΩR

B̃k,R(x,W
λ) · ∇W λ.

Using trace estimates together with the Gagliardo-Nirenberg interpolation as in the proof
of Lemma 3.2, we have that for any ν > 0 there exists Cν > 0 such that

∫

ΩR

bkW
λ · ∇W λ = −

1

2

∫

ΩR

div(bk)|W
λ|2 +

1

2

∫

TN−1

bk,1(R,x
′)|W λ(R,x′)|2 dx′

−
1

2

∫

TN−1

bk,1(R,x
′)|W λ(R,x′)|2 dx′

≤ Cν‖bk‖W 1,∞‖W λ‖2−α
L1 ‖∇W λ‖α2 + ν‖∇W λ‖22

for some α ∈ (0, 2). On the other hand, setting

βk,R(x, r) :=

∫ r

0
B̃k,R(x, r

′) dr′, x ∈ Ω, r ∈ R,

we have (notice that since ∂2vA ∈W 1,∞
loc , we also have B̃k,R ∈W 1,∞)

B̃k,R(x,W
λ) · ∇W λ = div

(

βk,R(x,W
λ)
)

− (divxβk,R)(x,W
λ).

Since βk,R(±R,x
′, r) = 0 for all x′, r,

∫

ΩR

B̃k,R(x,W
λ) · ∇W λdx = −

∫

ΩR

(divxβk,R)(x,W
λ)dx

= −

∫

ΩR

∫ Wλ

0
(divxB̃k,R)(x, r

′) dr′dx

≤

∫

ΩR

∫ Wλ

0
C dr′dx

≤ C‖W λ‖L1(ΩR).

Using Young’s inequality together with the L1 bound (3.36) on W λ, we infer that there
exists a constant C independent of λ and R, such that

‖W λ‖H1(ΩR) ≤ C.

Therefore, it follows from Schaefer’s theorem that (3.33) has a solution WR ∈ H1∩L1(ΩR).
Moreover, using the estimates above for λ = 1, we deduce that the family (WR)R>0 is
bounded in H1 ∩ L1(ΩR) uniformly in R.
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Furthermore, we claim that

(3.37) 0 ≤WR ≤ pk,R ∀R.

The positivity of WR has been proved above. As for the upper-bound, we notice that by
definition of B̃k,R, B̃k,R(x, pk,R) ≡ 0, and thus it follows from (3.32) that pk,R is a solution
of

−∆pk,R + div(bkpk,R) + divB̃k,R(x, pk,R) = 0 in ΩR,

−∂1pk,R + bk,1pk,R = 0 for x1 = ±R.

Using the same argument as the one leading to the positivity of WR, we deduce that
WR − pk,R keeps a constant sign over ΩR. By definition of k,

q =

∫

ΩR

WR ≤

∫

Ω
pk =

∫

ΩR

pk,R,

we deduce that WR − pk,R ≤ 0.
We can now pass to the limit in (3.33) as R → ∞. According to the uniform H1 ∩ L1

bounds, we deduce that there exists W ∈ H1 ∩ L1(Ω) such that WR ⇀ W in H1(Ω), and
WR → W in L2

loc(Ω) up to a subsequence. Since pk,R → pk in L1 according to Lemma 3.2,
we deduce that W is a solution of

−∆W + div(bkW ) + divB̃k(x,W ) = 0.

Eventually, using inequality (3.37) together with the convergence in L1 of the functions
pk,R, we deduce that (WR)R>0 is uniformly equi-integrable, and therefore compact in L1.
Hence, up to a further extraction of subsequences, WR →W in L1 and

∫

W = lim
R→∞

∫

WR = q.

Thus the existence of solutions of (3.30) is proved, which completes the proof of Proposition
3.2.

4. Stability of stationary shocks

The goal of this section is to prove Theorem 1.2. Throughout the section, we denote
by (St)t≥0 the semi-group associated with equation (1.1). We recall (see for instance [22])
that St is well-defined in L1(Ω)+L∞(Ω), is order preserving and satisfies conservation and
contraction principles in L1(Ω): if u, v ∈ L1(Ω)+L∞(Ω) are such that u− v ∈ L1(Ω), then
Stu− Stv ∈ L1(Ω) for all t ≥ 0 and

∫

Ω
(Stu− Stv) =

∫

Ω
(u− v), ‖Stu− Stv‖L1 ≤ ‖u− v‖L1 ∀t ≥ 0.

First of all, Corollary 3.1 allows us to restrict the proof of Theorem 1.2 to the case of
zero-mass perturbation u0 ∈ Ū + L1

0(R× T
N−1).

On the other hand, the following lemma allows us to replace the inequality (1.8) by an
inequality where the upper bound and lower bounds are standing shocks.

Lemma 4.1. Let Ū be a stationary shock wave connecting v(·, p−) to v(·, p+). Assume that
u ∈ Ū + L1

0(R× T
N−1) satisfies v(x, p+) ≤ u(x) ≤ v(x, p−) for a.e. x ∈ R× T

N−1.
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Then, for any ε > 0, there exist a function uε ∈ Ū +L1
0(R×T

N−1) and standing shocks U ε
±

connecting v(·, p−) to v(·, p+) such that

‖u− uε‖L1(R×TN−1) ≤ ε, U ε
+ ≤ uε ≤ U ε

−.

The case of N = 1 above (i.e., R instead of R×T
N−1) has been shown in [5, Lemma 3.6],

whose proof can be directly extended to the above lemma, because other variables x′ are in
T
N−1. The idea is to take uε = Ū outside of a compact set [−Aε, Aε] × T

N−1 and then to
perturb slightly u on the compact set [−Aε, Aε]× T

N−1 in order to be strictly between the
two end states. We leave the details of the proof to the reader since they are identical to
[5, Lemma 3.6].

Now, thanks to Lemma 4.1 together with the L1-contraction principle, it is enough to
prove Theorem 1.2 for the class of initial data u0 ∈ Ū + L1

0(R× T
N−1) such that

(4.38) U+ ≤ u0 ≤ U−, for some standing shocks U±.

Indeed, assume that limt→∞ ‖Stv0 − Ū‖L1(R×TN−1) = 0 for any v0 ∈ Ū + L1
0(R × T

N−1)

satisfying (4.38). By Lemma 4.1, for any u0 ∈ Ū + L1
0(R × T

N−1) satisfying (1.8), and
ε > 0, there exists a function uε0 ∈ Ū + L1

0(R × T
N−1) such that ‖u0 − uε0‖L1(R×TN−1) ≤ ε

and (4.38). Then the L1-contraction principle yields that for all t ≥ 0,

‖Stu0 − Ū‖L1(Ω) ≤ ‖Stu0 − Stu
ε
0‖L1(Ω) + ‖Stu

ε
0 − Ū‖L1(Ω) ≤ ε+ ‖Stu

ε
0 − Ū‖L1(Ω).

Since t 7→ ‖Stu0 − Ū‖L1 is non-increasing, and thus has a finite limit as t→ ∞,

lim
t→∞

‖Stu0 − Ū‖L1(R×TN−1) ≤ ε,

which implies that limt→∞ ‖Stu0 − Ū‖L1(R×TN−1) = 0.

Therefore, there remains to prove Theorem 1.2 for the initial data u0 ∈ Ū+L1
0(R×T

N−1)
satisfying (4.38). We follows the same arguments as [5], which is based on the dynamical
system theory due to Osher and Ralston [21]. The strategy is to prove that the ω-limit set
of the trajectory Stu0 is reduced to {Ū} using the L1-contraction principle. Thus, we need
to first show that the ω-limit set is non-empty.

⊲ First step : Structure of the ω-limit set.
We begin by noticing that the comparison principle together with (4.38) imply that for

all t ≥ 0,

U+ ≤ Stu0 ≤ U−,

and thus, setting w(t) = Stu0 − Ū ,

U+ − Ū ≤ w(t) ≤ U− − Ū .

Since U+ − Ū and U− − Ū are in L1 ∩ L∞(R × T
N−1) by Lemma 3.2, the family (w(t))t≥0

is equi-integrable in L1(R × T
N−1) and uniformly bounded in L∞([0,∞) × Ω). Moreover,

since w solves a linear parabolic equation of the type

∂tw + divx

(

a(t, x)w
)

−∆w = 0,

where a :=
∫ 1
0 ∂vA(x, τStu0 + (1− τ)Ū )dτ ∈ L∞([0,∞) × Ω), it follows from [14, Theorem

10.1] that there exists α > 0 such that for all t0 ≥ 1 and R > 1,

‖w‖Hα/2,α((t0,t0+1)×(−R,R)×TN−1) <∞.
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Thus, (w(t))t≥0 is also equi-continuous in L1.
Therefore, it follows from the Riesz-Fréchet-Kolmogorov theorem that (w(t))t≥0 is relatively
compact in L1. Thus the ω-limit set

B :=
{

W ∈ Ū + L1
0(Ω) | ∃(tn)n∈N, tn → ∞, Stnu0 →W in L1(Ω)

}

,

is non-empty. Notice that B ⊂ Ū +L1
0(Ω) because of u0 ∈ Ū +L1

0(Ω) and the conservation
of mass.
By the definition of ω-limit set, B is forward and backward invariant by the semi-group
St, i.e., StB = B for all t. Moreover, thanks to parabolic regularity, all functions in B are
smooth, for example B ⊂ H1

loc(Ω). As a consequence, for any W ∈ B, it follows from [14,
Theorem 6.1] that StW ∈ L2(0, T ;H2

loc(Ω)) ∩H
1(0, T ;L2

loc(Ω)).
We take advantage of LaSalle invariance principle [15] with a suitable Lyapunov func-

tional F [u] := ‖u − Ū‖L1(Ω). Since t 7→ F [StW ] is non-increasing by the L1-contraction
principle, F takes a constant value on B, which we denote by C0.

⊲ Second step : B = {Ū}. We now prove B = {Ū}. For anyW0 ∈ B, we setW (t) = StW0.
Notice that W (t) ∈ Ω for all t ≥ 0. Since W (t)− Ū satisfies

∂t(W − Ū) + divx

(

A(x,W )−A(x, Ū )
)

−∆(W − Ū) = 0,

we have

(4.39) ∂t|W − Ū |+ divx

(

b(t, x)|W − Ū |
)

− sgn(W − Ū)∆(W − Ū) = 0,

where b(t, x) =
∫ 1
0 ∂vA(x, τW + (1− τ)Ū)dτ .

In order to show that sgn(W − Ū)∆(W − Ū) = ∆|W − Ū |, we use the following lemma.

Lemma 4.2. Let f ∈ L1 ∩ L∞(R × T
N−1) such that ∇f ∈ L2(R × T

N−1) and ∆f ∈
L1
loc(R× T

N−1). Assume that f satisfies

(4.40) lim
R→∞

∫

Ω
sgn(f)∆f θ

(x1
R

)

dx = 0,

for all θ ∈ C∞
0 (R) such that θ ≡ 1 in a neighborhood of the origin. Then

lim
δ→0

1

δ
|∇f |21|f |<δ = 0 in D′(Ω),

therefore,

sgn(f)∆f = ∆|f | in D′(Ω).

The case of N = 1 above has been shown in [5, Lemma B.1], whose proof can be directly
extended to the above lemma. Now, in order to show that the condition (4.40) is satisfied
in our case, we recall from the previous step that F [W (t)] = ‖W (t)− Ū‖L1(Ω) = C0 for all

t ≥ 0. For any t′ > t ≥ 0, since
∫ t′

t

∫

Ω
∂t|W − Ū |θ(

x1
R
)dxds ≤

∫

Ω
|W (t′)− Ū |dx−

∫

|x1|≤CR
|W (t)− Ū |dx

=

∫

|x1|≥CR
|W (t)− Ū |dx→ 0 as R→ ∞,
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and
∫ t′

t

∫

Ω
divx

(

b(t, x)|W − Ū |
)

θ(
x1
R
)dxds ≤ ‖A‖W 1,∞‖θ′‖∞

1

R

∫ t′

t

∫

Ω
|W (t)− Ū |dxds

=
C(t′ − t)

R
→ 0 as R→ ∞,

we have
∫ t′

t

∫

Ω
sgn(W − Ū)∆(W − Ū)θ(

x1
R
)dxds → 0 as R→ ∞.

Thus, a slightly modified version of Lemma 4.2 implies that

sgn(W − Ū)∆(W − Ū) = ∆|W − Ū |.

Therefore, |W − Ū | is a non-negative solution of a parabolic equation of the type

∂t|W − Ū |+ divx

(

b(t, x)|W − Ū |
)

−∆|W − Ū | = 0,

where b ∈ L∞([0,∞) × Ω). Thanks to the Harnack inequality for the parabolic equations,
for any compact set K in Ω, there exists CK such that

(4.41) sup
x∈K

|(W0 − Ū)(x)| ≤ CK inf
x∈K

|(W (1)− Ū)(x)|.

Moreover, using the fact that W (1)− Ū ∈ L1
0 ∩H

1
loc(Ω), there exists x1 ∈ Ω such that

(W (1)− Ū)(x1) = 0,

which implies together with (4.41) that W0 ≡ V . Hence we have B = {Ū}, and thus
complete the proof of Theorem 1.2.

Appendix A. use of the Krein-Rutman theorem to prove the positivity of

solutions of some elliptic equations

In this Appendix, we prove the following result, which has been used in several instances
in the paper:

Lemma A.1. Let R > 0 be arbitrary, and let b ∈ L∞(ΩR). Consider the equation

(A.1)
−∆w + div(bw) = 0 in ΩR,

−∂1w + b1w = 0 for x1 = ±R.

Then the vector space of solutions of equation (A.1) is Rw1, where w1 ∈ H1(ΩR) ∩ C(Ω̄R)
is a strictly positive solution of (A.1) such that

∫

ΩR
w1 = 1.

Proof. The dual of problem (A.1) is

−∆q − b · ∇q = 0 in (−R,R)× T
N−1,

∂1q = 0 at x1 = ±R,

of which the constant function equal to one is a strictly positive solution.
Let us introduce the operator F : u ∈ L2(ΩR) 7→ v ∈ L2(ΩR) where v = F (u) is the

unique solution of the equation

−∆v − b · ∇v + αv = αu in ΩR, ∂1v = 0 at x1 = ±R,

and α is a positive constant chosen so that the bilinear form associated to F is coercive

(e.g. α = ||b||2∞
2 + 1

2 ). With that choice of α, F is a strictly positive operator.
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Next, using regularity results for linear elliptic equations, we show that F maps Lq(ΩR)
into W 2,q(ΩR) for all q ≥ 2. Hence, the restriction of F to C(Ω̄R), still denoted by F , is
a compact operator from C(Ω̄R) into itself. The last step consists in using the strong form
of the maximum principle together with Hopf’s Lemma: if u ∈ C(Ω̄R), u ≥ 0, u 6= 0 and
v = F (u), then v(y) > 0 for all y ∈ Ω̄R.

Hence, F : C(Ω̄R) → C(Ω̄R) is a strongly positive operator. We conclude by using the
strong form of the Krein-Rutman theorem (see [7, 13]): since F (1̄) = 1̄, the spectral radius
of F is equal to 1 and 1 is a simple eigenvalue of F ∗, the adjoint of F , with a positive
eigenvector. We infer that (A.1) has a unique non-negative solution w1 normalized in L1.

�
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