N
N

N

HAL

open science

Stability of a low down an incline with respect to
two-dimensional disturbances for Newtonian and

non-Newtonian fluids

Mohamed Hatem Allouche, Séverine Millet, Valéry Botton, Daniel Henry,
Hamda Ben Hadid, F. Rousset

» To cite this version:

Mohamed Hatem Allouche, Séverine Millet, Valéry Botton, Daniel Henry, Hamda Ben Hadid, et al..
Stability of a flow down an incline with respect to two-dimensional disturbances for Newtonian and
non-Newtonian fluids. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2015, 92
(12), pp.063010. 10.1103/PhysRevE.92.063010 . hal-01289061

HAL Id: hal-01289061
https://hal.science/hal-01289061
Submitted on 8 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01289061
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW E 92, 063010 (2015)

Stability of a flow down an incline with respect to two-dimensional and three-dimensional

disturbances for Newtonian and non-Newtonian fluids

M. H. Allouche,! S. Millet,! V. Botton,! D. Henry,' H. Ben Hadid,' and F. Rousset?

! Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon, Ecole Centrale de Lyon/Université Lyon 1/INSA de Lyon,

ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France
2CETHIL, UMR CNRS 5008, Université de Lyon, INSA de Lyon/Université Lyon 1, INSA, Bdtiment Sadi Carnot,
9 rue de la Physique, 69621 Villeurbanne Cedex, France
(Received 23 June 2015; published 9 December 2015)

Squire’s theorem, which states that the two-dimensional instabilities are more dangerous than the three-
dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis
and Squire relationships when available. For flows down inclined planes, one of these Squire relationships
involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional
wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger
slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The
goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at
a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid,
it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire
relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination
angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be
obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected.
For the general stability problem, however, no Squire relationships can be derived and the numerical stability
results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves
at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is
then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down

an inclined plane with a given slope can be three dimensional.

DOI: 10.1103/PhysRevE.92.063010

I. INTRODUCTION

The hydrodynamics of film flows driven by gravity down
an inclined plane have been studied for a long time. Such
flows, which can be encountered in many industrial and
geophysical situations as well as in everyday life, very often
present singular wavy patterns which may become complex,
depending on the slope, the flow speed, and the physical
properties of the fluid. The waves that are triggered in such
flows are initially quasi-plane waves with a large wavelength
compared to the mean flow depth, and they are known
as surface waves. Farther downstream, the waves grow in
amplitude and quickly evolve towards a nonlinear regime.
These waves appear for nonzero Reynolds number, and have
then a convective characteristic. The onset of such waves in
Newtonian fluids is well understood since the early linear
stability studies by Benjamin [1] and Yih [2]. A long-wave
approximation was adopted in these analytical approaches.
They showed that the critical Reynolds number for the onset
of the instabilities only depends on the inclination of the plate
y and is proportional to coty. They also pointed out that
inertia is required to trigger these free surface instabilities. The
experimental works of Liu [3] have confirmed this dependence
with the slope for the linear stability thresholds.

Most of the studies in the literature on this topic are based
on a Newtonian fluid model. However, the liquids involved
in many engineering applications such as coating processes,
but also in some geophysical phenomena such as glaciers,
mud, and debris flows, very often present complex rheological
behaviors. Focusing more particularly on geophysical flows,
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the viscoplastic rheology was shown to describe quite well the
behavior of the materials involved in debris flows [4,5]. Other
experimental results show that the shear-thinning behavior
is also suitable to describe this rheology [6]. Since most
viscoplastic liquids are not ideal Bingham liquids, they often
behave as shear-thinning liquids with a yield stress. For the
sake of simplicity, we will not take this latter into account; thus
we will focus, in the present paper, on non-Newtonian liquids
for which the measured effective viscosity is always a scalar
function of the shear rate: these fluids are called generalized
Newtonian fluids. For this class of fluids, it is well understood
that the interactions between particles create microscopic
structures that may be deformed and gradually broken down
(e.g., the shear-thinning behavior of clay suspensions or mud)
or aggregated (e.g., the shear-thickening behavior of sand or
cornstarch) when a shear stress is applied. The rheological
behavior of many fluids cannot, then, be properly described by
aNewtonian model and more sophisticated rheological models
involving a nonlinear relationship between stress and strain
would be more appropriate. Fewer studies have been carried
out in the case of generalized Newtonian film flows. Ng and
Mei [7] showed that a linear stability study with a power-law
fluid is not sufficient to suggest a preferred wavelength for
roll waves because the predicted growth rate of the unstable
disturbances increases monotonically with the wave number.
Then, using a long-wave approximation, they demonstrated
a linear evolution of the critical Reynolds number as a
function of both coty and the power-law exponent n. This
study, however, is limited by the singularity introduced by the
viscosity law in the model: a power law describes an infinite
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viscosity at the free surface characterized by a zero shear rate,
which is not physically consistent. To remove this singularity,
some authors considered a regularized power-law model:
Ruyer-Quil et al. [8] by introducing a Newtonian plateau
at small strain rate and Noble and Vila [9] by introducing
a weaker formulation of the Cauchy momentum equations.
They have shown the relevant influence of shear-thinning
properties on the primary instability. Rousset er al. [10]
studied the temporal stability of a Carreau fluid flow down
an inclined plane. They performed an asymptotic analysis
considering a weakly non-Newtonian behavior in the limit
of very long waves and compared it with a more general
numerical approach. It was found that the critical Reynolds
number is lower for shear-thinning fluids than for Newtonian
fluids, while the ratio between the critical wave celerity and
the mean flow velocity at the free surface is more than twice
larger [2]. Particular attention was paid to the situations with
small angles of inclination. Indeed, in these cases, besides the
long-wave free surface mode, another instability identified by
Floryan et al. [11] as a shear mode can occur. It is characterized
by a wavelength on the order of the layer thickness and a wave
celerity lower than the free surface velocity. It was shown that
taking into account the shear dependence of the viscosity can
change the nature of the instability.

Superposed film layers flowing down an inclined plane can
be subjected to interfacial instabilities even in the limit of
zero Reynolds number according to the direction of viscosity
stratification. This situation was first observed with Newtonian
fluids by Kao [12]. Other studies led to the same observations
for non-Newtonian viscosities, such as Balmforth et al. for
power-law shear-thinning fluids [13] and Herschel-Bulkley
viscoplastic fluids [14] and Millet er al. [15] for Carreau
shear-thinning fluids.

Most of the theoretical studies concerning flows down
an incline make the assumption that the waves propagate
in the same direction as the flow (waves denoted as two
dimensional). Since the work of Squire [16], many people
justify this simplification by saying that the two-dimensional
waves are more dangerous than any oblique waves. This was
in fact shown by Squire [16] for a Newtonian unidirectional
forced flow between rigid boundaries. He showed that there
was a relationship between the Reynolds numbers for an
oblique wave and a two-dimensional wave, associated with
a relationship between the wave numbers, so that the critical
Reynolds number for a two-dimensional wave could be shown
to be the smallest. Pearlstein [17] and Hesla et al. [18] reached
the same conclusion for parallel flow of stratified Newtonian
fluids. Yih [19] and, more clearly, Chang and Demekhin
[20] extended these results to Newtonian flows with free
surfaces, interfaces, or density stratification. For free-surface
flows down an incline, Yih [19] showed that there were also
relationships between the two-dimensional and oblique wave
characteristics, allowing one to deduce the stability results for
oblique waves from the results obtained for two-dimensional
waves. These relationships, however, included a relationship
between the slopes of the inclines. This means that the
Reynolds number associated with a two-dimensional wave
can be shown to be smaller than that for an oblique wave, but
this oblique wave being obtained for a larger slope. In other
words, using these Squire relationships, you can deduce any
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three-dimensional threshold for an oblique wave from the two-
dimensional threshold for a longitudinal wave at another plane
slope. This prevents the possibility to directly compare the
thresholds at a given slope. Despite this, some studies as that
of Benjamin [1] use the argument of Squire [16] to justify the
focus on two-dimensional instabilities. Moreover, in the case
of non-Newtonian liquid film flows down an incline, Gupta
and Rai [21] for viscoelastic fluids and Sahu and Matar [22]
for viscoplastic fluids found that, under certain circumstances,
oblique wave instabilities may be the dominant instabilities,
in opposition with Squire’s theorem. In contrast, Nouar et al.
[23] studied the three-dimensional temporal linear stability of
shear-thinning fluid plane Poiseuille flows and showed that the
two-dimensional instabilities seem dominant. They, however,
remark that they cannot make use of Squire relationships,
which only exist for a reduced problem neglecting some terms
connected with the perturbation of the viscosity and not for
the general eigenvalue problem.

In this study, we focus on non-Newtonian fluid film
flows down an incline and want to compare the thresholds
of oblique waves to those of two-dimensional waves for a
given slope in order to reach the dominant instability in a
given flow configuration. We will consider both Newtonian
and generalized Newtonian fluids (in particular, Carreau
fluids), with a particular distinction between the shear-thinning
(0 < n < 1) and the shear-thickening cases (n > 1), n being
the power-law index. We will also look for the existence or
not of Squire relationships, and see whether they can be used
in the comparison between the thresholds associated with the
different waves.

II. MODEL AND EQUATIONS

We want to model a film flow developing down a plate
inclined to the horizontal at an angle y. We make use of
a Cartesian coordinate system in which the origin is taken
at the unperturbed free surface, the x axis—parallel to the
plate—points down the slope, the z axis is horizontal, and the
y axis is taken normal to the plate and oriented toward it. Let
y = ¢(x,z,t) be the equation of the free surface at time .

We will consider both Newtonian fluids with a constant
viscosity 1o and generalized Newtonian fluids with a viscosity
7 following the four-parameter Carreau inelastic model:

N — N
1Mo — Neo

= [1+ (8y)* 1"V, (1

with 79 and 7. the limit Newtonian viscosities at low and
high shear rate, respectively, § a characteristic time, n a
dimensionless parameter, and y the local shear rate. With
O<n<1@m>1)and ne < 19 (Moo > 7o), this law suitably
describes the rheological behavior of shear-thinning (shear-
thickening) fluids. Note that the Carreau model predicts a
power-law behavior at moderate shear rate. However, unlike
the power-law model, it predicts a viscosity that remains finite
and tends to 7y as the shear rate approaches zero. This feature
makes the Carreau law particularly suitable for free-surface
flow issues. For a given flow rate Q, the layer thickness d
cannot be explicitly calculated and will depend on the different
Carreau law parameters: therefore, it cannot be taken as a
length scale as often done. Using the dimensionless variables
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proposed by Weinstein [24] [length scale d; = (%)V},
velocity scale Q/d;, time scale ds2 / Q, viscosity scale 1], the

Carreau law for the dimensionless viscosity 1 becomes

du;, 29q(n—1)/2
U=I+(1—1)[1+<LE>} , (2)

where I = 19/No0, L = SQ(%)Z/3 and u; is the dimen-
sionless basic flow velocity.
The dimensionless equations governing the flow are

a_u + a_v + a_w =0
dx dy 0z ’

ou ou ou ou
G(E i + va + 8_1)

t 0 ay 0z
=—Rea—p 00y | 99y | 99y + coty,
ay ox ay Z
R ow n Jw n ow n ow
e| — — tv— 4+ w—
t ox ay 9z

ad d0,, 00y, 0
P+( o; + UZ}+ Uzz>’ (3)

ax dy 0z

where u, v, and w are the dimensionless velocities along the
x, ¥, and z directions, respectively; p is the dimensionless
pressure (dimensionalized by pQ?/d?); o; ; 1s the dimension-
less viscous strain tensor; and Re is the Reynolds number
defined by Re = pQ/no. This system has to be solved with

au’ v ouw’
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the associated boundary conditions at the bottom y = d and at
the free surface y = 0.

The system (3) has a steady solution u;, featuring a uniform
longitudinal flow only depending on the normal direction y.
For this basic solution, the equations are reduced to

do?, zi n@ _ 1
dy dy\ dy ’

dp, _coty
dy  Re

, “4)

and the boundary conditions correspond to no slip at the bottom
and no friction stress at the flat free surface:

up(y =d) =0,

ol (y=0)=0, (5)
where afv = n’fi—”y” is the only nonzero component of the
viscous strain tensor for the basic flow. In the general
case where n is given by the Carreau law (2), there is no

analytical solution to these equations and u;, has to be obtained
numerically.

III. STABILITY ANALYSIS

We perform a temporal linear stability study on this prob-
lem. The basic flow is perturbed by fluctuations of the velocity,
u', v, and w’, and of the pressure p’ and by the fluctuation of
the free surface, ¢’. We obtain u = u,(y) + u'(x,y,z,t), v =
v'(x,y,2,1), w=w'(x,y,z,1), p= pp(y)+ p'(x,y,2,0), { =
$'(x,z,t),and oy = Uxby(y) + o)éy(x,y,z,t). These expressions
are substituted into the system (3) and after linearization, we
get

ox Tay oz
ou’ ou duy, op’ do’ do, do;
R o - 270y Re— XX Y Xz ,
e(a;“‘”a Udy) “ox T\ Ty T e
v ' P’ doy,. 0oy, 0o,
Re( — 4+ up— ) = —Re— + + =+ =,
( ar T "ax ) dy ( ax | ay | oz
ow’ ow’ ap’ do/ 00, do!
R + = —ReX + X 4 Y 2z , 6
( ar ax) 9z ( ax 9y | oz ©
where the strain perturbations are
ou’ v’ dw’
A . [ . [
Oyx _zna_x’ Gy}’ - 2”5’ GZZ - 2]7 az ’
, ou’ n ow' , 4 dw’ '~ u’ n v’ )
o, =0+ ) o,= © O =50 T o )
xz =1 0z 0x e =1 dy i dy  Ox

Note that in the expression of the perturbed viscous strain in the (x,y) plane, a new viscosity 6 appears [10,23]. This is due to
the fact that, in this plane, the velocity perturbations induce viscosity perturbations. 6 is given by

2 29(n-3)/2
9=1+(1—1)[1+n(Ldﬂ) ][1+(Ldﬂ> ] . (8)
dy dy
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The boundary conditions associated with this perturbation
problem are the no-slip condition at the bottom:

W=v=w=0 aty=d, 9)
the kinematic condition at the free surface:
W + U o¢’ 0 at 0 (10)
VvV = — —_— = a =V,
o Pox Y

the zero viscous strain at the perturbed free surface, which
gives

o);y—é"=0
0, =0 aty =0, (11)
ol =0

and the normal strain balance at the perturbed free surface,
which gives

av/ 1 aZ;/ 82§/
"cot Rep —2n— 4+ — =0
¢ ooty +Rep ”ay+Ca<ax2+az2)
aty =0, (12)

where Ca = % is the capillary number and o is the surface

tension.

The perturbations of velocity, 1/, v/, and w’, and of pressure
p’ and the fluctuation of the free surface, ¢’, are expressed as
three-dimensional normal modes:

i(ax+pz—act)
9

[w' v, w', p'l(x,y,z,t) =[2,0,d,pl(y) e

Z/(X,Z,Z) — Eei(a)H»ﬂZ*OtCt)’ (13)

where (ii,0,W, ﬁ,f) are complex variables, («,0,8) is the real
wave vector (with o2 + ,32 = k?), and c is the dimensionless
complex celerity of the wave. Its real part ¢, gives the
dimensionless phase velocity and its imaginary part ¢; gives the
growth rate w; = ac;. A stable (unstable) flow will correspond
to negative (positive) values of ¢; and the perturbations will
be called three-dimensional if 8 # 0 and two-dimensional if
B = 0.Introducing this formulation in the governing equations
for the perturbations (6) and combining these equations
appropriately, we obtain a system of two coupled equations
for the unknowns (0, ):

ia Re[(up — c)(D* — k%) — D*(up)]d
= —4k>D(nDD) + [D*6 +2D6D + 6(D? + k?)]
x (D* + k)0 +iB(D*+kH)[(O—n) (D + ipDd)],  (14)

iaRe(up — c)(ifd — DW) — i ReDup
= 20D + k>*D(nw) — iBO(D? + «®)d + 3iBD(nDD)

—iB(D* + BH(0) — (D* + B*)(n D), (15)
where D = diy is the derivative with respect to the normal

direction y. The first equation is a generalized Orr-Sommerfeld
equation for the normal velocity perturbation 9, which,
however, cannot be solved alone in the general case due to
the presence of the underlined term involving the perturbation
w. To satisfy the boundary conditions, we must note that, at

the free surface, the basic flow shear is zero (Du; = 0), so that
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n =0 = land Dn = DO = 0. These boundary conditions are

V=Db=w=0

&

ty=d, (16)

(14 (up —c)D*+kH]o=0 aty=0, (17)

iBO+Dw =0 aty=0, (18)
—BDO+i(®> —pHw =0 aty=0, (19)
k2
—ik2(02+k2)[ +—}3 + 4k*Db + io Re(uy, — ¢)
atany «oCa

xDo — D[(D*> 4+ k»)9]=0 aty=0. (20)

In the case of two-dimensional perturbations (8 = 0, k = «),
the system (14)-(15) for generalized Newtonian fluids is
reduced to Eq. (14) without the underlined term, i.e., a
generalized Orr-Sommerfeld equation given in [10]:

ia Re[(up — c)(D* — k%) — D*(up)]d
= —4k>D(nDD)+[D*04+2D0 D+6(D>*+k*)|(D>*+k>)D,
(21)

which, for two-dimensional perturbations, is solved with
o =k. Conversely, the three-dimensional perturbations for
a Newtonian fluid (0@ =n =1) satisfy the usual Orr-
Sommerfeld equation deduced from (14):

ia Re[(up — c)(D? — k) — D*(up)]d = (D? — kH%0. (22)

IV. NUMERICAL PROCEDURE

A spectral Tau collocation method based on Chebyshev
polynomials is used for the discretization of the generalized
eigenvalue problem (14)—(20). The resulting system of al-
gebraic equations, solved on the Gauss-Lobatto collocation
points [y; = cos(jz/N) for j =0,N] in the layer, can be
written in the abbreviated form

[A]X = w[B]X, (23)

where X is the vector containing the algebraic values of
and © at each collocation point. The dimension of the square
matrices [A] and [B] is twice the number of modes N + 1.
The eigenvalues obtained when solving (23) are the complex
angular frequencies w = « ¢, and the imaginary part of w is
the growth rate w;.

From the spectra obtained by solving (23), we compute
neutral curves (values of Re for which an eigenmode has a
zero growth rate, whereas all the other eigenmodes have a
negative growth rate) depending on the wave numbers « and
B, from which critical Reynolds number Re, can be obtained
by minimization along « and 8. This numerical procedure has
been validated in former studies [10,15].

V. RESULTS FOR A NEWTONIAN FLUID

In the case of a Newtonian fluid, the three-dimensional
stability problem is governed by the Orr-Sommerfeld equation
(22) and the associated boundary conditions [those on D
deduced from (16), (17), and (20)]. As already shown by
Yih [19] and Chang and Demekhin [20], we have different
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relationships between the characteristics of the oblique waves
and of the two-dimensional waves, which we will denote with
the subscripts 3D and 2D, respectively. If the wave number
for the two-dimensional waves, a;p, is directly denoted as k
(aop = k in this case) and the wave numbers for the oblique
waves simply as « and B, the different relationships are

o+ B =k (24)

o Resp = kReyp, 25)

o tan ysp = k tan yop, (26)
a Cazp = k Cayp. 27)

Equations (24) and (25) come from the Orr-Sommerfeld
equation (as for rigid boundaries), and (26) and (27) from
the boundary conditions. These relationships indicate that the
stability results for the oblique waves can be obtained from
those for the two-dimensional waves, but for different involved
plate inclinations. Then we cannot easily conclude for the
comparison at a given plate inclination.

It is then interesting to compare numerically the three-
dimensional and the two-dimensional instability thresholds.
This comparison is given in Fig. 1 for a plate inclination y = 2°
and 1/Ca = 0. The neutral curves, Re versus «, have been first
obtained for given values of the transverse wave number f8
[Fig. 1(a)] and then for given values of the wave obliquity angle
iop defined as tan(io,) = B/« [Fig. 1(b)]. Remember that below
(above) these neutral curves, the film flow is stable (unstable)
with respect to the corresponding wave. The two-dimensional
neutral curve decreases regularly when decreasing « and
tends towards a minimum value when the longitudinal wave
number « becomes small. In contrast, when decreasing «, the
three-dimensional neutral curves obtained at given values of
B decrease towards a minimum reached for a finite value of «
and then strongly increase when o becomes small. A decrease
of B induces a drift of the minimum towards lower values of
both o and Re; the increase at small « is thus observed to be
steeper. In any case, these neutral curves appear to be above
the two-dimensional neutral curve. When obtained at given
obliquity angle [Fig. 1(b)], the neutral curves look more similar
to the two-dimensional curve, with a monotonous variation and
a minimum reached asymptotically for small «. These curves,
still above the two-dimensional curve, continuously tend to
this curve when the obliquity angle i, is decreased to 0°. It
is then interesting to see that the neutral curves obtained in
Fig. 1 are physically equivalent, and that some properties of
these three-dimensional neutral curves can be inferred from
the Squire relationships (24)—(27).

Since surface tension only shifts the neutral curves without
any influence on the associated thresholds for the long
wavelength instabilities considered here [8], we will still
assume for simplicity that 1/Ca = 0. If we first consider
purely transverse instabilities, i.e., 8 # 0 and ¢ = 0 (k = ),
the relation (26) gives y»p = 0. As there is no instability in
the horizontal situation, Re,p — oo and the film is linearly
stable. Finally, the relation (25) gives Resp > Reyp, so that
Resp — o0. We then obtain that for any nonzero wave vector
B, the neutral curve obtained for a given inclination y;3p tends
towards infinity when o decreases to zero, which is observed

PHYSICAL REVIEW E 92, 063010 (2015)
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FIG. 1. (Color online) Three-dimensional wave stability results
for the flow down an incline in the case of a Newtonian fluid and
for a fixed inclination of the plate y = 2° (1/Ca = 0). The neutral
curves, expressed as the Reynolds number Re versus the streamwise
wave number o, are given for different values of the transverse wave
number S (a), or for different obliquity angles of the waves i, (b). The
film flow is stable (unstable) below (above) the curves, with respect
to the different waves considered. In (a), for each value of B, the
points corresponding to « = B are indicated. These points correspond
to those shown in (b) for iy, = 45°, showing the correspondence
between the two plots. The two-dimensional wave neutral curve is
given as a red heavy solid line for comparison.

in Fig. 1(a). Conversely, if we now consider that the waves
have a given obliquity angle io, (iop 7% 90°), relation (26)
gives tan(y»p) = tan(ysp) cos(iep), SO that y»p is nonzero and
Reyp is finite. Relation (25) then gives Resp = Reyp/ cos(iop),
indicating that Re;p also remains finite. We then obtain that for
a given obliquity angle iy, # 90°, the neutral curve obtained
for a given inclination ysp remains finite when o decreases to
zero, which is observed in Fig. 1(b).

The comparison shown above seems to indicate that
the three-dimensional thresholds are larger than the two-
dimensional thresholds. To justify this, it is interesting to
consider the two-dimensional wave stability results which are
shown in Fig. 2 as heavy dashed lines. When the inclination
of the plate y increases, the neutral curves [Fig. 2(a)] globally
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FIG. 2. Two-dimensional wave stability results for the flow down
an incline in the case of generalized Newtonian fluids (1/Ca = 0):
(a) neutral curves expressed as the Reynolds number Re versus the
streamwise wave number « for different inclinations y of the plate; (b)
stability curve showing the critical Reynolds number Re, as a function
of the inclination y. The film flow is stable (unstable) below (above)
the curves, with respect to the different waves considered. In (a) and
(b), the cases corresponding to a Newtonian fluid (heavy dashed lines,
n = 1) are compared to those corresponding to a shear-thinning fluid
(L =0.5,n=0.5, 1 =0) (solid lines) and those corresponding to
a shear-thickening fluid (L = 0.5, n = 1.5, I = 0) (dashed-dotted
lines).

decrease, as well as the minimum value Re. reached for
small «. The stability curve showing Re, versus y [Fig. 2(b),
heavy dashed line] is then a continuously decreasing curve,
below (above) which the film flow is stable (unstable) for
these two-dimensional instabilities. Returning to the Squire
relationships used for 1/Ca = 0, we can write

Resp(y3p) > Reap(y2p), (28)
from (25) and y3p > y»p from (26). The decrease of the curves

in Fig. 2 then indicates that Re;p(y2p) > Reap(ysp), and the
combination with (28) finally gives that

Resp(ysp) > Reap(ysp). (29)
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Using the Squire relationships together with the results
obtained for two-dimensional waves, it is thus possible to
show that, for a Newtonian fluid flowing down an incline
at a given slope, the two-dimensional waves are always the
more dangerous. Note that this proof uses a property of the
two-dimensional stability study result, namely, that Re;p(y2p)
monotonically decreases. In this case, Squire’s theorem is thus
extended to the dominance of two-dimensional instabilities at
a given slope. However, this property can only be deduced
a posteriori rather than stated prior to the two-dimensional
study.

VI. RESULTS FOR A GENERALIZED NEWTONIAN FLUID

The general system we have to solve for a generalized
Newtonian fluid flowing down an incline is given by Eqgs. (14)
and (15) with associated boundary conditions. As already
shown, for two-dimensional waves, the system is reduced
to Eq. (21) with @ = k. The two-dimensional wave results
obtained in the shear-thinning case for L = 0.5, n = 0.5,
and I =0 and in the shear-thickening case for L = 0.5,
n = 1.5, and I = 0 are also given in Fig. 2 with solid lines
and dashed-dotted lines, respectively. These stability results
obtained for generalized Newtonian fluids look similar to those
obtained for Newtonian fluids, with similar neutral curves
decreasing as a whole when y is increased [Fig. 2(a)] and
a stability curve decreasing as well [Fig. 2(b)]. All these
values, however, are smaller (larger) for the shear-thinning
fluid (shear-thickening fluid) than for the Newtonian fluid.
The influence of L on the critical Reynolds number for these
generalized Newtonian fluids is shown in Fig. 3 for a fixed
inclination angle y = 2°. As expected, we observe a decrease
of the critical Reynolds number with L for the shear-thinning
fluids (0 < n < 1) and an increase for the shear-thickening
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FIG. 3. (Color online) Two-dimensional wave stability results
for the flow down an incline for a fixed inclination of the plate, y = 2°
(I =0, 1/Ca = 0): stability curves showing the critical Reynolds
number Re, as a function of L. The results are obtained for different
values of the power-law index for shear-thinning (solid lines) and
shear-thickening (dashed-dotted lines) fluids. The constant value
obtained in the Newtonian case is given as a heavy (red) dashed
line for comparison.
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FIG. 4. (Color online) Three-dimensional wave stability results for the flow down an incline in the case of a shear-thinning fluid and for
a fixed inclination of the plate, y =2° (n = 0.5, I =0, 1/Ca = 0). The neutral curves, expressed as the Reynolds number Re versus the
streamwise wave number «, are given for different obliquity angles of the wave, iy, and for different values of L, L = 0.5 (a), L = 0.7 (b),
L = 0.8 (c), and L =1 (d). The results obtained in the general case (3D,, dashed lines) are compared with those obtained with the reduced
model (3Dy, solid lines). The curve for iy, = 26.565° corresponds to 8 = «/2. For each value of L, the two-dimensional wave neutral curve is

given as a heavy (red) solid line for comparison.

fluids (n > 1). Note also the symmetry around the Newtonian
case (n = 1) in the neutral curves between the shear-thickening
(n = 1.2, 1.5, and 1.65) and the shear-thinning (n = 0.8, 0.5,
and 0.35) cases.

Following the same assumptions as Nouar et al. [23], a
mathematical simplification of the three-dimensional wave
problem can be obtained if we consider that 6 = n in the
underlined term in Eq. (14). This assumes that the perturba-
tions of viscosity are neglected in this term, which could be
thought as a weak assumption as the instability is known to
be driven by the shear at the free surface, where 6 = n = 1.
With this assumption, the system to solve is reduced to
a single Orr-Sommerfeld equation given by (21). For this
equation and the associated boundary conditions, the same
Squire relationships as in (24)—(27) can be derived, indicating
that the same type of neutral curves as in Fig. 1 can be
obtained for this three-dimensional wave reduced problem.
Moreover, the Squire relationships and the decrease of the two-
dimensional wave stability curves [Fig. 2(b)] also indicate that,
for shear-thinning fluids as well as for shear-thickening fluids,

the two-dimensional wave thresholds are smaller than the
three-dimensional wave thresholds obtained for this reduced
problem.

Before claiming that Squire’s theorem is extended to
generalized Newtonian fluid film flows, it is now useful to
solve the general system (14)—(15) and check if the indications
obtained with the reduced problem can be confirmed or not.
The neutral curves obtained for an inclination y = 2°,n = 0.5
(shear-thinning case), I = 0, and different obliquity angles of
the three-dimensional waves are shown in Fig. 4, both for the
general problem (denoted as 3D,) and the reduced problem
(denoted as 3D;). The two-dimensional results (iop = 0°)
are also given for comparison. Each graph corresponds to a
different value of the parameter L, L = 0.5, 0.7, 0.8, and 1.
As expected, the neutral Reynolds number values obtained
with the reduced problem are above those obtained in the
two-dimensional case. The values for the general problem,
however, are below those for the reduced problem, sometimes
much below, indicating that the assumption used to reduce the
three-dimensional problem is not so weak in the shear-thinning
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FIG. 5. (Color online) Three-dimensional wave stability results
for the flow down an incline in the case of a shear-thinning fluid
and for a fixed inclination of the plate, y =2° (n =0.5, I =0,
1/Ca=0): stability curves showing the critical Reynolds number
Re, as a function of L. The results are obtained for different obliquity
angles of the waves (from i, = 0 to 30°), for the general problem
(3D,, dashed lines) and for the reduced model (3D, solid lines). The
two-dimensional wave stability results are given as a heavy (red) solid
line for comparison.

case. For small values of L as L < 0.7, the two-dimensional
neutral values seem to remain the smallest. In contrast, for
larger values of L, the neutral curves of the general problem
can be below the two-dimensional neutral curves, particularly
for large values of the obliquity angle i,,. The critical curves,
Re, versus L, obtained in the different approximations of
the problem are also shown in Fig. 5 for different obliquity
angles. In any case, the curves decrease when L is increased.
The critical curves for the general problem, however, decrease
more rapidly than those obtained for the reduced problem. This
effect is particularly important for the large obliquity angles,
where the departure between the two curves corresponding to
the different approximations strongly increases with L. As a
result, the critical curves for the general problem can decrease
below the two-dimensional wave curves when L is increased,
and this effect seems to occur at smaller L values when the
obliquity angle i, is increased. These results thus indicate
that three-dimensional wave instabilities can be the more
dangerous in shear-thinning fluids, particularly those with a
large obliquity angle, and for sufficient values of L. Another
conclusion is that the perturbations of viscosity cannot be
neglected in this three-dimensional wave instability problem
for shear-thinning fluids.

The three-dimensional wave instability curves obtained by
solving either the general problem or the reduced problem
in the shear-thickening case are also given in Fig. 6. For the
shear-thickening case, both types of critical curves increase
when L is increased, but the curves obtained for the general
problem increase more rapidly than those obtained for the
reduced problem. As was previously shown that the instability
thresholds for the reduced problem are higher than the
two-dimensional thresholds, the critical curves for the general
problem in the shear-thickening case will remain above the
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FIG. 6. (Color online) Three-dimensional wave stability results
for the flow down an incline in the case of a shear-thickening fluid
and for a fixed inclination of the plate, y =2° (n =1.5, I =0,
1/Ca=0): stability curves showing the critical Reynolds number
Re, as a function of L. The results are obtained for different obliquity
angles of the waves (from iy, = 0 to 30°), for the general problem
(3D,, dashed lines) and for the reduced model (3D, solid lines). The
two-dimensional wave stability results are given as a heavy (red) solid
line for comparison.

corresponding two-dimensional critical curve for all values
of the obliquity angle i,,. These results thus indicate that,
in the shear-thickening case, the oblique wave instabilities
are never the dominant instabilities for any value of L, even
if the Squire relationships cannot be derived for the general
problem in this case.

VII. CONCLUSION

This study has been focused on the possible occurrence of
three-dimensional wave instabilities as the dominant instabil-
ity in flows down an incline. The two cases of Newtonian fluids
and generalized Newtonian fluids have been considered. For
Newtonian fluids, it was possible to extend Squire’s theorem
and show that the three-dimensional wave instabilities are
never the dominant instabilities at a given inclined plane
slope, so that the well known long wavelength free-surface
two-dimensional waves remain the more dangerous. This
result cannot be obtained from the Squire relationships alone,
but needs to make use of the particular variation of the
two-dimensional critical curve with regard to the slope. The
result was further confirmed by some three-dimensional wave
stability results. In contrast, for generalized Newtonian fluids,
Squire relationships only exist for a reduced problem neglect-
ing some terms connected with the perturbation of the viscosity
and not for the general problem. For this nonphysical reduced
problem, we can still conclude that the long wavelength free-
surface two-dimensional waves are the more dangerous. For
the general problem, however, no conclusion can be obtained
from Squire considerations as Squire relationships cannot be
derived for these generalized Newtonian fluids. Nevertheless,
some numerical stability calculations have shown that the
thresholds for oblique waves can be smaller than the thresholds
for two-dimensional waves obtained at the same inclined
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plane slope, particularly for large obliquity angles and strong
shear-thinning properties, whereas the thresholds for oblique
waves are always higher than the two-dimensional thresholds
for shear-thickening fluids.

In conclusion, Squire’s theorem, which says that the two-
dimensional instabilities are the more dangerous and is known
to be valid in a channel flow of Newtonian fluid, has been

PHYSICAL REVIEW E 92, 063010 (2015)

shown to remain valid for a flow down an incline for a
Newtonian fluid, considering longitudinal and oblique waves
at the same inclination angle. It seems to be also valid for
shear-thickening fluids. In contrast, for shear-thinning fluids,
this theorem is no more valid, as cases have been found in
which the oblique waves are the more dangerous instabilities
at a given inclination angle.
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