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Introduction

In structural engineering, it is nowadays recognized that uncertainties coming from various sources have to be accounted for during the design and the analysis of a structure using computational models. In the computational models, the sources of uncertainties are due to the model-parameters uncertainties (for instance, the mechanical properties of the materials), as well as the model uncertainties induced by modeling errors (for instance due to the use of kinematic reductions such as the use of beams, plates, and shells, the lack of knowledge concerning the boundary conditions, etc). In addition, the computational models must have the capability to produce robust predictions that take into account the variability induced by the manufacturing process. In the probabilistic framework, uncertainty quantification has extensively be developed in the last two decades (see for instance [START_REF] Ghanem | Stochastic Finite Elements : A Spectral Approach[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Mace | Uncertainty in structural dynamics[END_REF][START_REF] Schueller | Computational methods in stochastic mechanics and reliability analysis[END_REF][START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF] and references included).

The objective of this paper is to present the numerical analysis, the computational aspects, and the validation of an extension (recently proposed in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF]) of the nonparametric probabilistic approach of uncertainties [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF][START_REF] Soize | Stochastic modeling of uncertainties in computational structural dynamics -Recent theoretical advances[END_REF] in computational linear structural dynamics for viscoelastic composite structures. The proposed methodology, which is devoted to the development of a nonparametric probabilistic tool for the stochastic modeling of the uncertainties in computational viscoelastic models, is a strict extension of the previous works, in particular those devoted to experimental validations (see for instance [START_REF] Desceliers | Non-parametric-parametric model for random uncertainties in non-linear structural dynamics: Application to earthquake engineering[END_REF][START_REF] Arnst | A nonparametric probabilistic model for ground-borne vibrations in buildings[END_REF][START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF][START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF][START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Mignolet | Stochastic reduced order models for uncertain nonlinear dynamical systems[END_REF][START_REF] Desceliers | Mixed nonparametricparametric probabilistic model for earthquake reliability of an inelastic reinforced concrete frame structure[END_REF][START_REF] Batou | Experimental identification of an uncertain computational dynamical model representing a family of structures[END_REF][START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three dimensional elasticity[END_REF][START_REF] Murthy | Uncertaintybased experimental validation of nonlinear reduced order models[END_REF][START_REF] Mignolet | Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures[END_REF][START_REF] Batou | Model identification in computational stochastic dynamics using experimental modal data[END_REF][START_REF] Capiez-Lernout | Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation[END_REF] and references included).

The present work is devoted to the frequency-domain analysis of uncertain viscoelastic structures using the nonparametric probabilistic approach of uncertainty. The approach is formulated for a 3D dissipative composite structure made up of a linear viscoelastic part coupled with an elastic part. In the framework of linear viscoelasticity (see for instance [START_REF] Truesdell | Encyclopedia of Physics[END_REF][START_REF] Christensen | Theory of Viscoelasticity[END_REF][START_REF] Soize | Structural Acoustics and Vibration[END_REF]) and in the frequency domain, the generalized damping matrix [D(ω)] and the generalized stiffness matrix [K(ω)] of the reduced-order computational model depend on frequency ω. The nonparametric probabilistic approach of uncertainties consists in modeling this two frequency-dependent generalized matrices by frequency-dependent random matrices [D(ω)] and [K(ω)] respectively. However, as these two matrices come from a causal dynamical system, the causality implies two compatibility equations, also known as the Kramers-Kronig relations [START_REF] Kramers | La diffusion de la lumiere par les atomes[END_REF][START_REF] Kronig | On the theory of dispersion of X-rays[END_REF], involving the Hilbert transform [START_REF] Papoulis | Signal Analysis[END_REF]. Consequently, the stochastic modeling of random matrices [D(ω)] and [K(ω)] cannot be constructed as independent random matrices without violating the causality as explained in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF].

The development of the stochastic model is performed in the framework of the general theory of the linear viscoelasticity of 3D-continuum media [START_REF] Truesdell | Encyclopedia of Physics[END_REF]. In this theory, there are no computational restrictions. The proposed stochastic model is thus consistent with the general theory and consequently, has also no restriction for its use. Concerning the construction of the nominal com-putational model, it is assumed that any approximation of the general linear viscoelastic theory, which would be introduced for any reason, stays consistent with the general theory of linear viscoelasticity.

It should be noted that the Kramers-Kronig relations are automatically satisfied for the frequency-dependent damping and stiffness matrices of the nominal computational model related to any linear viscoelastic structure for which the constitutive equations of its viscoelastic parts are chosen in the class of causal models such as the generalized Maxwell model. However, the objective of this paper does not consist in revisiting the numerous papers and books related to the damping models for the damped structures that are not relevant of the linear viscoelasticity or the viscoelastic models used for constructing the nominal computational model of a linear viscoelastic structure. The paper concerns the frequency-dependent generalized damping and stiffness random matrices that are constructed by using the nonparametric probabilistic approach of uncertainties, for which the Kramers-Kronig relations are not satisfied as explained before. In this paper, the Kramers-Kronig relations do not need to be evoked for the nominal computational model under consideration for which the causality is assumed to be satisfied. Consequently, even if the the nominal linear viscoelastic structure is constructed with causal constitutive equations, it is necessary to constrain the stochastic construction with Kramers-Kronig relations [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF].

In this paper, a Monte Carlo stochastic solver (see for instance [START_REF] Rubinstein | Simulations and the Monte Carlo Methods[END_REF][START_REF] Kalos | Monte Carlo Methods[END_REF]) is used to compute the random response of the system as well as statistical quantities, like confidence regions for instance. The compatibility equations are then used directly in order to generate compatible realizations of [K(ω)] and [D(ω)]. As these equations have to be solved for a large number of values of the frequency, an efficient numerical algorithm has been developed and has been implemented in a finite element code in order to reduce the computational cost. Indeed, as the Hilbert transform is involved, it is necessary to compute an integral of the frequency-dependent matrices over the infinite frequency domain, for an integral that is defined in the Cauchy principal value sense. The proposed algorithm consists in a mixed integration technique in order to treat the singularity as well as integrating over an infinite interval, making use of an interpolation technique for positive-definite matrices and of orthogonal polynomials approximations (see [START_REF] Gautschi | Gauss-type quadrature rules for rational functions[END_REF][START_REF] Gautschi | The use of rational functions in numerical quadrature[END_REF][START_REF] Gautschi | Orthogonal polynomials and special Functions[END_REF][START_REF] Soize | Computational aspects for constructing realizations of polynomial chaos in high dimension[END_REF][START_REF] Perrin | Identification of polynomial chaos representations in high dimension from a set of realizations[END_REF]). In order to analyze the influence of viscoelasticity and causality in the propagation of uncertainties, a composite structure is studied in the Low-Frequency (LF) range. This structure is a multi-layer composite plate made up of two different viscoelastic layers and of a central elastic part. For such a structure, the memory effect induced by the viscoelasticity is clearly observed. The study of the behavior of the constructed stochastic model shows a strong influence of the level of uncertainties on [D(ω)] in the statistical dispersion of [K(ω)]. The statistical fluctuations increase as a function of frequency because the uncertainties propagate from [D(ω)] to [K(ω)] through the Kramers-Kronig relations. It appears that a stochastic model, which satisfies the causality property, is necessary in order to correctly quantify uncertainties in the dissipative structures.

A summary of the construction of the deterministic reduced-order computational model is presented in Section 2. Section 3 deals with the construction of the nonparametric probabilistic model using the Hilbert transform. Section 4 is devoted to the computational aspects of the proposed methodology used to circumvent the computational difficulties involved in calculating the Hilbert transform and in the analysis of the uncertainty propagation. In Section 5 a numerical example is presented.

Remarks about the notations. In this paper, the Fourier transform with respect to time t of any function f is denoted by f such that f (ω) = R e -i ωt f (t)dt.

Summarizing the deterministic reduced-order computational model

This section is a summary devoted to the construction of the deterministic reduced-order computational dynamical model for a viscoelastic structure for which the notations, the developments, and the mathematical properties presented are taken from [START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF] and [START_REF] Soize | Structural Acoustics and Vibration[END_REF]. Such a deterministic framework will directly be used in Section 3 for implementing uncertainties in a nonparametric probabilistic framework. The boundary value problem (that is formulated in the frequency domain) is introduced for linear viscoelastic composite structures and its weak formulation is given in order to derive the computational model. Finally, the deterministic reduced-order computational model is constructed.

Boundary value problem for composite structures in the frequency domain

Let Ω = Ω e ∪ Ω ve be an open, connected, and bounded domain of R 3 , constituted of two parts Ω e and Ω ve . The first part Ω e is occupied by a purely elastic medium while the second part Ω ve is occupied by a linear viscoelastic medium. It should be noted that the elastic medium Ω e could be replaced by a viscoelastic medium without memory or by an elastic medium with an arbitrary damping model. In a cartesian frame (e 1 , e 2 , e 3 ), let x = (x 1 , x 2 , x 3 ) be the position vector of any point in Ω and dx = dx 1 dx 2 dx 3 be the volume element. Let n be the external unit normal to the boundary ∂Ω of Ω, which is written as ∂Ω = Γ u ∪ Γ f , which is made of a part Γ u on which a zero Dirichlet condition is imposed and a part Γ f on which a surface force field, f s (x, t), is given. Let u(x, t) be the displacement field defined on Ω. The linearized strain tensor is denoted by {ε kh } hk and the Cauchy stress tensor by {σ ij } ij , with i, j, k, and h in {1, 2, 3}. Let ρ(x) be the mass density of the composite structure. In the frequency domain, the boundary value problem is written, for all real ω belonging to the frequency band of analysis B = [-ω lim , ω lim ], as

-ω 2 ρ(x) u(x, ω) -div σ( u(x, ω)) = 0 , in Ω , (1) 
u(x, ω) = 0 , on Γ u , (2) 
σ( u(x, ω)) n = f s (x, ω) , on Γ f . (3) 
This system of equations is then closed by a set of constitutive equations, which is detailed in the next subsections, and the dependence of the stress tensor σ with u(x, ω) is denoted (using an abuse of notation) by σ( u(x, ω)).

Linear elastic constitutive equation for subdomain Ω e

For all x ∈ Ω e , the material is considered to be purely elastic, and as such we have the following constitutive equation

σ( u(x, ω)) = a elas (x) : ε( u(x, ω)) , (4) 
in which the symbol " : " stands for the double inner tensor product, where the strain tensor is written as

ε kh ( u(x, ω)) = 1 2 ( ∂ u k (x, ω) ∂x h + ∂ u h (x, ω) ∂x k ) ,
and where {a elas ijkh } ijkh is the fourth-order elasticity tensor that verifies the usual properties of symmetry, positivity, and boundness.

Linear viscoelastic constitutive equation for subdomain Ω ve

The theory of linear viscoelasticity is used in order to obtain the constitutive equation of the viscoelastic medium occupied by domain Ω ve . In all Section 2.3, x is fixed in Ω ve .

Constitutive equation in the time domain. For t ≤ 0, the system is assumed to be at rest, σ(u(x, t)) = 0 , ε(u(x, t)) = 0 , ∀ t ≤ 0.

In the time domain, the constitutive equation is written as

σ(u(x, t)) = t 0 G(x, τ ) : ε( u(x, t -τ ))dτ , (6) 
in which u is the partial derivative of u with respect to t, where t → G(x, t) is the relaxation function defined on [0 +∞[ with values in the fourth-order tensor that satisfies the usual symmetry properties. Function t → G(x, t) is differentiable with respect to t on ]0, +∞[ and its partial time derivative t → { Ġijkh (x, t)} ijkh is assumed to be integrable on [0 , +∞[. At time t = 0, the initial elasticity tensor G(x, 0) is positive definite. Using Eq. ( 5) and performing an integration by part, Eq. ( 6) can be rewritten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) + t 0 Ġ(x, τ ) : ε(u(x, t -τ ))dt . (7) 
Let us introduce the fourth-order tensor g(x, t) defined by

g(x, t) = 0 if t < 0 , (8) g(x, t) = Ġ(x, t) if t ≥ 0 . (9) 
From Eqs. ( 5), [START_REF] Soize | Stochastic modeling of uncertainties in computational structural dynamics -Recent theoretical advances[END_REF], and Eq. ( 9), it can be deduced that Eq. ( 7) can be rewritten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) + +∞ -∞ g(x, τ ) : ε(u(x, t -τ ))dt . ( 10 
)
Constitutive equation in the frequency domain. Taking the Fourier transform with respect to t of both sides of Eq. ( 10), and introducing the real part g R (x, ω) = ℜe{ g(x, ω)} and the imaginary part g I (x, ω) = ℑm{ g(x, ω)}, the constitutive equation in the frequency domain can be written as

σ( u(x, ω)) = (a(x, ω) + i ω b(x, ω)) : ε( u(x, ω)) , (11) 
where the components a ijkh (x, ω) and b ijkh (x, ω) of the fourth-order real tensors a(x, ω) and b(x, ω) are the viscoelastic coefficients that are such that

a(x, ω) = G(x, 0) + g R (x, ω) , ω b(x, ω) = g I (x, ω) . ( 12 
)
Properties of {a ijkh (x, ω)} ijkh and {b ijkh (x, ω)} ijkh . The viscoelastic coefficients a ijkh (x, ω) and b ijkh (x, ω) of the fourth-order real tensors a(x, ω) and b(x, ω) are frequency dependent and exhibit several important properties [START_REF] Truesdell | Encyclopedia of Physics[END_REF][START_REF] Soize | Structural Acoustics and Vibration[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF], which have to be taken into account for a stochastic modeling (even functions with respect to ω, symmetry and positive definiteness properties). For all fixed x and ω, tensors a(x, ω) and b(x, ω) are such that: (i) The tensors are even functions with respect to ω,

a(x, -ω) = a(x, ω) , b(x, -ω) = b(x, ω) ; (13) 
(ii) The symmetry property of the tensors is written as

a ijkh (x, ω) = a jikh (x, ω) = a ijhk (x, ω) = a khij (x, ω) , ( 14 
) b ijkh (x, ω) = b jikh (x, ω) = b ijhk (x, ω) = b khij (x, ω) ; (15) 
(iii) The positiveness property of the tensors are such that, for all second-order real symmetric tensors {X ij } ij , there is a positive real constant c 0 independent of ω, such that

a ijkh (x, ω)X ij X kh ≥ c 0 X ij X ij , b ijkh (x, ω)X ij X ij ≥ c 0 X ij X kh , (16) 
in which the classical convention for summations over repeated Latin indices is used.

Relations on the viscoelastic coefficients induced by the causality. Since g is a causal function of time, the real part g R and imaginary part g I of its Fourier transform g are related through a set of compatibility equations also known as the Kramers-Kronig relations [START_REF] Kramers | La diffusion de la lumiere par les atomes[END_REF][START_REF] Kronig | On the theory of dispersion of X-rays[END_REF]. These relations involve the Hilbert transform [START_REF] Papoulis | Signal Analysis[END_REF] and are written as

g R (x, ω) = 1 π p.v +∞ -∞ g I (x, ω ′ ) ω -ω ′ dω ′ , (17) 
g I (x, ω) = - 1 π p.v +∞ -∞ g R (x, ω ′ ) ω -ω ′ dω ′ , (18) 
in which p.v denotes the Cauchy principal value. For any function h that is integrable over the real line except at a singularity point ω given in R, the p.v is defined as

p.v +∞ -∞ h(ω ′ ) dω ′ = lim ζ→+∞,η→0 + { ω-η -ζ h(ω ′ ) dω ′ + ζ ω+η h(ω ′ ) dω ′ } . (19)
It should be noted that Eqs. ( 17) and ( 18) are equivalent and consequently, only one from these two equations can be used. From Eqs. ( 12) and ( 17), the following equation between the viscoelastic tensors a(x, ω) and b(x, ω) can be deduced

a(x, ω) = a(x, 0) + ω π p.v +∞ -∞ b(x, ω ′ ) ω -ω ′ dω ′ , ∀ ω ≥ 0 . (20) 
As b(x, ω ′ ) is an even function in ω ′ , Eq. ( 20) can be rewritten as

a(x, ω) = a(x, 0) + 2 ω 2 π p.v +∞ 0 b(x, ω ′ ) ω 2 -ω ′2 dω ′ , ∀ ω ≥ 0 . (21) 
For computational purposes, it is of interest to fix the position of the singularity. The change of variable ω ′ = ω u yields

a(x, ω) = a(x, 0) + 2 ω π p.v +∞ 0 b(x, ω u) 1 -u 2 du , (22) 
where the singularity is fixed at u = 1. The values for ω < 0 are deduced using a(x, ω) = a(x, -ω). This relation implies that, in the context of linear viscoelasticity, tensor-valued functions ω → a(x, ω) and ω → b(x, ω) cannot be chosen arbitrarily and have to verify Eq. ( 22) in order to satisfy the causality principle.

Rewriting the constitutive equation on domain Ω = Ω e ∪ Ω ve

By defining the fourth-order tensors a(x, ω) and b(x, ω) by

a(x, ω) = a elas (x) ∀x ∈ Ω e , a(x, ω) ∀x ∈ Ω ve , (23) b 
(x, ω) = 0 ∀x ∈ Ω e , b(x, ω) ∀x ∈ Ω ve , (24) 
and using Eqs. ( 4) and ( 11), the constitutive equation can be written, for all x ∈ Ω, as

σ( u(x, ω)) = (a(x, ω) + iω b(x, ω)) : ε( u(x, ω)) . (25) 
2.5. Weak formulation of the boundary value problem Let C ad be a set of C 3 -valued functions defined on Ω that are sufficiently differentiable (it is the complex Sobolev space (H 1 (Ω)) 3 ) and let C ad 0 be the admissible set such that

C ad 0 = {v ∈ C ad , v = 0 on Γ u }.
The weak formulation of the boundary value problem defined by Eqs. ( 1) to (3) with Eqs. ( 22) and ( 25) consists, for all ω fixed in B, in finding the function {x

→ u(x, ω)} ∈ C ad 0 such that, for all v ∈ C ad 0 , -ω 2 m( u, v) + iω d( u, v; ω) + k 0 ( u, v) + k( u, v; ω) = f (v; ω) , (26) 
in which m( u, v) = Ω ρ(x) u • v dx , (27) 
d( u, v; ω) = Ω {b(x, ω) : ε( u)} : ε(v) dx . ( 28 
)
k 0 ( u, v) = Ω {a 0 (x) : ε( u)} : ε(v) dx , (29) 
k( u, v; ω) = 2 ω π p.v +∞ 0 d( u, v; ω u) 1 -u 2 du . (30) 
f (v; ω) = Γ f f s (x, ω) • v ds(x) , (31) 
where ds(x) is the surface element on Γ f and where a 0 (x) = a(x, 0). It should be noted that, if there is an instantaneous linear viscoelastic medium in Ω ve , then b(x, ω) = b(x) is independent of ω, which yields d( u, v; ω) = Ωve {b(x) :

ε( u)} : ε(v) dx, and since p.v +∞ 0 (1 -u 2 ) -1 du = 0, then k( u, v; ω) = 0.

Computational model

Applying the standard finite element method (see for instance [START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Zienkiewicz | The Finite Element Method Set (Sixth Edition)[END_REF]) to Eq. ( 26) yields the computational model

(-ω 2 [M] + iω[D(ω)] + [K 0 ] + [K(ω)]) u(ω) = f(ω) , (32) 
in which u(ω) is the complex vector of the degrees of freedom, and where f(ω),

[M], [D(ω)], [K 0 ]
, and [K(ω)] correspond to the finite element discretization of f , m, d, k 0 and k respectively. The symmetric positive real matrix [K(ω)] is such that

[K(ω)] = 2 ω π p.v +∞ 0 [D(ωu)] 1 -u 2 du . ( 33 
)
It is assumed that domains Ω e and Ω ve that constitute Ω are such that the symmetric real matrix [K 0 ] is positive definite. In order to later implement the nonparametric probabilistic approach as well as to reduce the computational cost for solving the computational model, a reduced-order computational model is introduced.

Reduced-order computational model

As suggested in [START_REF] Ohayon | Advanced Computational Vibroacoustics[END_REF], the reduced-order computational model is constructed by using the reduced basis represented by the rectangular real matrix [Φ N ] whose N columns are the first N modes associated with the first N positive eigenvalues 0 < ω 2 1 ≤ . . . ≤ ω 2 N of the underlying undamped mechanical system for which the mass matrix is [M] and the stiffness matrix is [K 0 ]. Consequently, the (N × N ) real matrices [M] and [K 0 ], which are defined by

[M] = [Φ N ] T [M][Φ N ] , [K 0 ] = [Φ N ] T [K 0 ][Φ N ] , (34) 
are diagonal, positive definite, and

[K 0 ] pp = ω 2 p [M] pp .
The reduced-order computational model is then written as

u (N ) (ω) = [Φ N ] q(ω) , (35) 
(-ω 2 [M] + iω [D(ω)] + [K 0 ] + [K(ω)]) q(ω) = f (ω) , (36) 
in which f (ω) = [Φ N ] T f(ω) and where the full (N × N ) real matrices [D(ω)] = [Φ N ] T [D(ω)][Φ N ] and [K(ω)] = [Φ N ] T [K(ω)][Φ N ]
are symmetric positive, and are linked by the following equation,

[K(ω)] = 2 ω π p.v +∞ 0 1 1 -u 2 [D(ωu)] du , ω ≥ 0 . (37) 
A convergence analysis is carried out in order to determine the value of N such that u(ω) ≈ u (N ) (ω) for all ω in frequency band B. It is assumed that the basis [Φ N ] is such that for all ω ≥ 0, matrix [D(ω)] is positive definite and matrix [K(ω)] is positive or positive definite.

Stochastic reduced-order computational model

For N fixed as explained before, the nonparametric probabilistic approach of uncertainties consists in substituting in Eqs. ( 36) and ( 37 . Consequently q(ω) and u (N ) (ω) become the random vectors Q(ω) and U (N ) (ω) such that

U (N ) (ω) = [Φ N ] Q(ω) , (38) 
(-ω 2 [M] + iω [D(ω)] + [K 0 ] + [K(ω)]) Q(ω) = f (ω) , ( 39 
) [K(ω)] = 2 ω π p.v +∞ 0 1 1 -u 2 [D(ωu)] du , ω ≥ 0 . ( 40 
)
It should be noted that Eq. ( 40) means that the probabilistic model of random matrix [K(ω)] is completely defined by the probabilistic model of random matrix [D(ω)]. We then obtain a probabilistic model for random matrix [K(ω)] which satisfies almost-surely the causality principle. Hereinafter, this probabilistic model is referred to as the probabilistic model with almost-sure causality. Consequently, only the probabilistic models of random matrices [M], [K 0 ] and [D(ω)] have to be constructed. In the framework of the nonparametric probabilistic approach of uncertainties, these random matrices are constructed as explained in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF][START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF]. These random matrices are statistically independent and are defined by

[M] = [L M ] T [G M ] [L M ] , (41) 
[K 0 ] = [L K0 ] T [G K ] [L K0 ] , (42) 
[D(ω)] = [L D (ω)] T [G D ] [L D (ω)] . ( 43 
) in which [L M ], [L K0 ],
and [L D (ω)] are the deterministic upper triangular matrices such that

[M] = [L M ] T [L M ] , [K 0 ] = [L K0 ] T [L K0 ] , [D(ω)] = [L D (ω)] T [L D (ω)] . The random matrices [G M ], [G K ],
and [G D ] are positive-definite (N × N ) real random matrices that are statistically independent, which are defined by

[G M ] = [L GM ] T [L GM ] , [G K ] = [L GK ] T [L GK ] , [G D ] = [L GD ] T [L GD ] ,
in which the upper triangular random matrices [L GM ], [L GK ], and [L GD ] are defined by

[L GM ] jj ′ = σ(δ M ) V M jj ′ , [L GM ] jj = σ(δ M ) 2h(α j (δ M ), V M jj ) , (44) 
[L GK ] jj ′ = σ(δ K ) V K jj ′ , [L GK ] jj = σ(δ K ) 2h(α j (δ K ), V K jj ) , (45) 
[L GD ] jj ′ = σ(δ D ) V jj ′ , [L GD ] jj = σ(δ D ) 2h(α j (δ D ), V D jj ) , (46) 
in which

{V M jj ′ , V K jj ′ , V D jj ′ , 1 ≤ j ≤ j ′ ≤ N
} is a set of independent real-valued normalized Gaussian random variables. The real parameters σ and α j depend on a hyperparameter δ such that 0 < δ < ( N +1 N +5 )

1 2 and are defined by

σ(δ) = δ(N +1) -1 2 and α j (δ) = N +1 2δ 2 + 1-j 2 . The function h(α, V ) is written as h(α, V ) = F -1 Γα (F V (v))
where F V and F Γα are the cumulative distribution functions of a standard Gaussian random variable V and a Gamma random variable Γ α with parameter α. The hyperparameters δ M , δ K , and δ D allow for controling the level of uncertainties for each matrix of the reduced-order computational model.

Remarks.

• With the stochastic construction defined by Eq. (40), it must be verified that, for all ω ≥ 0, [K(ω)] is a positive-definite random matrix. In [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF], it is proven the following sufficient condition. If for all real vector y = (y 1 , . . . , y N ), the random function ω → y T [D(ω)] y is decreasing in ω for ω ≥ 0, then, for all ω ≥ 0, [K(ω)] is a positive-definite random matrix.

• If the causality principle was not taken into account for the construction of the stochastic model of random matrix [K(ω)], then the stochastic model that would be constructed would be causal in average but would not be almost-surely causal. Such a model that would be causal only in mean, would be erroneous from the point of view of the theory of physically realizable systems. In the following, such an erroneous stochastic construction will be referred as the probabilistic model with a causality in mean. Such a model can be constructed by rewriting Eq. ( 39) as

([M] + iω[D(ω)] + [ K(ω)]) Q(ω) = f (ω) , (47) 
where

[ K(ω)] = [K 0 ] + [K(ω)]
. The random matrices [M] and [D(ω)] are constructed as previously, but now the probabilistic model of the random matrix [ K(ω)] would be written as

[ K(ω)] = [L K (ω)] T [G K ][L K (ω)] , (48) 
where [L K (ω)] corresponds to the Cholesky factorization of the positivedefinite random matrix [

K(ω)] = [K 0 ] + [K(ω)].

Computational aspects

Computation of the Hilbert transform

The computation of statistically independent realizations of random matrix [K(ω)] using Eq. (40) can be tricky. It requires the knowledge of the function ω → [D(ω)] for all ω ≥ 0 and not only on the frequency band B of analysis. A first naive approach would be to truncate the infinite interval of integration in order to obtain a finite interval. Such an approximation would require that each entry of matrix [D(ω)] decreases fast enough when ω increases, which might not be the case in the presence of strongly dissipative materials. To circumvent this problem, the integral in Eq. ( 40) is split into two integrals, one over [0, u g ] and another one over [u g , +∞[, where u g should be greater than 1,

[K(ω)] = 2ω π { [I 1 (ω)] + [I 2 (ω)] } , (49) 
where the two random matrices [I 1 (ω)] and [I 2 (ω)] are such that

[I 1 (ω)] = p.v ug 0 1 1 -u 2 [D(ωu)]du , ( 50 
) [I 2 (ω)] = +∞ ug 1 1 -u 2 [D(ωu)]du . ( 51 
)
For computing random matrix [I 1 (ω)], which involves an integration on an interval that includes a singularity at u = 1, the integrand is evaluated for a high number of values of u and a trapezoidal rule with N u points is used. For materials that are strongly dissipative over a large frequency band, that is, when and where p H is a function defined on [-1, 1 ] with values in R + , such that

p H (η) = 2u g µ(η 2 -2η + 1 -4u 2 g ) , η ∈ [-1, 1 ] , u g > 1 . (58) 
Positive-valued function p H , which is such that

1 -1 p H (η) dη = 1 , (59) 
can then be viewed as the probability density function of a [-1, 1 ]-valued random variable H defined on a probability space (Ξ, T , P) (this property will be used after). In the following, a N q -points Gaussian quadrature rule with respect to the measure p H (η) dη on [-1, 1 ] is constructed and [I 2 (ω)] is then calculated by

[I 2 (ω)] ≈ N q q=1 w q [D(ω U(η q ))] , (60) 
where η q is the q-th Gauss point and w q is its associated Gauss weight.

(i) Construction of the quadrature rule for the computation of [I 2 (ω)].

The procedure to construct the quadrature rule associated with any measure is detailed, for instance, by W. Gautschi in [START_REF] Gautschi | The use of rational functions in numerical quadrature[END_REF]. The construction is based on the three-term relation that can be expressed between monic polynomials (univariate polynomials in which the nonzero coefficient of highest degree is equal to 1) that are orthogonal with respect to measure p H (η) dη on [-1, 1 ]. Let H = L 2 p H (η)dη ([-1, 1 ]) be the Hilbert space of all the square integrable real functions defined on [-1, 1 ] with respect to the probability measure p H (η) dη, equipped with the inner product and the associated norm,

< g , g ′ >= 1 -1 g(η) g ′ (η) p H (η) dη , g =< g , g > 1/2 . (61) 
For k = 0, . . . , N q , let π k (η) be the k-th order monic orthogonal polynomial in H with degree k. Consequently, for k and k ′ in {0, 1, . . . , N q },

< π k , π k ′ >= 0 for k = k ′ . ( 62 
)
The three-term relation between this family of orthogonal polynomials is written as

π k+1 (η) = (η -α k ) π k (η) -β k π k-1 (η) , k = 0, 1, ..., N q -1 , (63) 
π 0 (η) = 1 , π -1 (η) = 0 . ( 64 
)
for which the coefficients α k and β k are written as

α k =< η π k π k , π k π k > , k = 0, ..., N q -1 , (65) 
β k = ( π k π k-1 -1 ) 2 , k = 1, ..., N q -1 . ( 66 
)
in which π k π k-1 -1 can be calculated by the equation,

π k π k-1 -1 =< η π k-1 π k-1 , π k π k > , k = 1, ..., N q -1 . ( 67 
)
The value of the coefficient β 0 is arbitrary and defined by convention as

β 0 = π 0 2 = 1 -1 p H (η) dη = 1 . ( 68 
)
Once the coefficients are known, one has to construct the following Jacobi matrix:

[J Nq ] =        α 0 √ β 1 √ β 1 α 1 √ β 2 √ β 2 α 2 √ β 3 . . . . . . . . . β Nq-1 α Nq-1        (69)
The quadrature rule is then deduced by computing the eigenvalues η 1 , . . . , η Nq and the normalized eigenvectors v 1 , . . . , v Nq of this Jacobi matrix, [J Nq ] v q = η q v q , q = 1, . . . , N q .

(70)

The desired abscissa are η 1 , . . . , η Nq and the associated weights w 1 , . . . , w Nq are such that w q = β 0 {v q } 2 1 = {v q } 2 1 , q = 1, . . . , N q , (71

)
where {v q } 1 is the first component of the q-th normalized eigenvector v q .

It should be noted that, since the quadrature rule we constructed on [-1, 1] is exact for polynomials of degree 2N q -1 and because of Eq. ( 55), the integrands of the form 1/P (u), where P (u) is a polynomial of degree 2N q -1 at most, should be computed correctly.

(ii) Generation of orthogonal polynomials and computation of the coefficients α k and β k . We thus have to construct the family of the monic orthogonal polynomials in H. The Gram-Schmidt process is a common technique to generate a set of orthogonal polynomials from a starting set of polynomials (often taken as monomials of increasing order). However, this process is numerically unstable, especially as the number of polynomials to orthogonalize increases. In order to avoid such stability issues, we make use of an alternative method detailed in [START_REF] Perrin | Identification of polynomial chaos representations in high dimension from a set of realizations[END_REF], which was successfully applied to the computation of polynomial chaos in high dimension with respect to an arbitrary measure. The method is numerically stable and is based on probability theory. Let us introduced the orthonormal polynomials {Ψ 0 , Ψ 1 , . . . , Ψ Nq } associated with the orthogonal polynomials {π 0 , π 1 , . . . , π Nq },

Ψ k (η) = π k (η) π k -1 , k = 0, 1, . . . , N q -1 , (72) 
Consequently, for all k and k ′ in {0, 1, . . . , N q -1}, it can be deduced that

E{Ψ k (H) Ψ k ′ (H)} = 1 -1 Ψ k (η) Ψ k ′ (η) p H (η) dη = δ kk ′ , ( 73 
)
in which E denotes the mathematical expectation and where δ kk ′ is the Kronecker symbol. Let H(ξ 1 ), . . . , H(ξ ns ) be n s independent realizations of random variable H with ξ 1 , . . . , ξ ns in Ξ. These realizations are usually computed using the probability density function p H (η). For n s sufficiently large, we have

E{Ψ k (H) Ψ k ′ (H)} ≈ 1 n s ns ℓ=1 Ψ k (H(ξ ℓ )) Ψ k ′ (H(ξ ℓ )) . ( 74 
)
Let [P] be the (N q × n s ) real matrix such that

[P] κℓ = Ψ κ-1 (H(ξ ℓ )) , κ = 1, . . . , N q , ℓ = 1, . . . , n s . ( 75 
)
It can then be deduced that

lim ns→+∞ 1 n s -1 [P][P] T = [I Nq ] . (76) 
Let [M] be the (N q × n s ) real matrix of realizations of the monomials such that

[M] κℓ = H(ξ ℓ ) κ-1 , κ = 1, . . . , N q , ℓ = 1, . . . , n s . ( 77 
)
The algorithm is then the following:

• Compute matrix [M] defined by Eq. ( 77), and then compute the (N q × N q ) real matrix

[F] = 1 ns-1 [M] [M] T .
It is assumed that n s > N q in order that matrix [F] is positive definite.

• Compute the lower triangular (N q × N q ) real matrix [L] from the Cholesky decomposition [L] [L] T of positive-definite symmetric matrix [F].

• Compute the (N q × n s ) real matrix [P] as the solution of the linear matrix equation

[L] [P] = [M].
The coefficients α k and β k are calculated by using Eqs. ( 65) and (66) in which

< η π k π k , π k π k >= E{H Ψ k (H) 2 } , k = 0, ..., N q -1 , (78) 
π k π k-1 -1 = E{H Ψ k-1 (H) Ψ k (H)} , k = 1, ..., N q -1 . ( 79 
)
for which, for k = 0, ..., N q -1, the following approximations are used,

E{H Ψ k (H) 2 } ≈ 1 n s ns ℓ=1 H(ξ ℓ ) Ψ k (H(ξ ℓ )) 2 , ( 80 
)
E{H Ψ k-1 (H) Ψ k (H)} ≈ 1 n s ns ℓ=1 H(ξ ℓ ) Ψ k-1 (H(ξ ℓ )) Ψ k (H(ξ ℓ )) . (81) 
4.2. Evaluation of the frequency-dependent matrices for a large number of frequency sampling points As explained in Section 4.1, the numerical calculation of the integrals are performed by sampling the matrix-valued function ω → [D(ω)] for a large number of frequency points. A large number of construction and then of reduction of the damping matrix of the computational model can be computationally costly. We thus propose a way of sampling positive-definite matrices by interpolation. Such a method can be used for the purpose of performing the computation of the Hilbert transform. It can also be used to sample the frequency-dependent stiffness and damping matrices at a higher number of frequency points for the computation of the response of the system.

Interpolation method for positive-definite matrices. When the matrices are interpolated, one must worry about preserving their properties. In our case, we want to interpolate a function x → [A(x)] with values in the set of all the symmetric positive-definite (N × N ) real matrices. For that, the interpolation is performed on the upper triangular matrix coming from the Cholesky factorization as follows:

• Compute the upper triangular matrix [L A (x)] from the Cholesky factorization of matrix [A(x)] at a number N r of reference points {x r i , i = 1, ..., N r } using a regular or log-scale slicing.

• At each point x j , j = 1, ..., M , where we want to interpolate, a componentby-component interpolation of [L A (x j )] is performed with a Newton-Cotes formula, using the nearest points from set {x r i } i .

• If necessary, the symmetric positive-definite matrix [A(x j )] is reconstructed using

[A(x j )] = [L A (x j )] T [L A (x j )].
The precision level of the interpolation is controlled directly by the number N r of reference points x r i and their spacing.

Remarks concerning the stochastic solver and the parallel computing

The Monte Carlo method is used as a stochastic solver. Among its attributes, it should be noted that it is non-intrusive with respect to commercial software (black box) and that the speed of convergence can both be controlled during the computation and is independent of the dimension. Some advanced Monte Carlo procedures can also be employed in order to improve convergence speed (see for instance [START_REF] Pradlwarter | On advanced Monte Carlo simulation procedures in stochastic structural dynamics[END_REF]). Such a stochastic solver is well-suited for massively parallel computing and consequently, can naturally be chosen as the first level of parallel computing. A second level of parallelization can easily be implemented for solving Eqs. (38) and (39) with respect to the sampled frequencies. Finally, a third level of parallelization can be considered for the calculation of Eqs. ( 53) and (60) related to the Hilbert transform for which the numerical cost is mainly due to the construction of the reduced-damping matrix. Nevertheless, as an interpolation approach is proposed, the gain given by such a third level of parallelization would stay small enough.

Numerical examples

Hereinafter, an example is given for which the proposed probabilistic model is carried out. The quantification of uncertainties is compared between two probabilistic approaches : a) for a model with almost-sure causality (the proposed model) and b) a model with causality in mean.

Description of the numerical model

The structure that is considered is a thin multilayered plate of length L = 1 m, width W = 0.3 m and thickness H = 0.1 m, under a nodal load of F = 1 N applied in direction e 3 at the point located at (0.5067 m, 0.1565 m, 0.1 m) (see Fig. 1). The three layers are made up of a homogenous elastic medium occupying domain Ω e that is sandwiched between two homogenous viscoelastic media occupying the domain Ω ve = Ω 1 ∪Ω 2 in which the domain Ω 1 is the upper layer and the domain Ω 2 is the lower layer. For the elastic medium, the material is assumed to be isotropic with Young's modulus E = 210 GPa, Poisson's ratio ν = 0.3, and a density ρ = 7, 850 kg/m 3 . Its thickness is h = 4H/5 in which H is the total thickness of the plate. For the viscoelastic homogenous medium occupying domain Ω k , with k = 1, 2, the material is assumed to be isotropic with a Poisson ratio ν (k) and a time-dependent viscoelastic coefficient E (k) (t). Let E (k) (ω) be the Fourier transform of E (k) (t). In the case of a single-branch generalized Maxwell model, we have

E k (ω) = E (k) ∞ + E (k) 1 (τ (k) 1 ω) 2 1 + (τ (k) 1 ω) 2 + i ω E (k) 1 τ (k) 1 1 + (τ (k) 1 ω) 2 . ( 82 
)
This makes use of rational functions for which the quadrature method presented earlier is exact. The viscoelastic coefficients used in the simulations are listed in Table 1.

Upper layer Lower layer

k = 1 k = 2 ν (k) 0.27 0.47 E (k) ∞ (GPa) 240 220 E (k) 1 (GPa) 126.5 50 τ (k) 1 (s) 7.351 × 10 -2 1.103 × 10 -1
Table 1 Parameters of the single-branch generalized Maxwell model

Finite element model

The finite element mesh of the structure is constituted of 8-nodes 3D finite elements with 150 elements along direction e 1 (length), 46 elements along e 2 (thickness), and 21 elements along e 3 (thickness). The total number of degrees of freedom is 468, 402. Figs. 1 and2 show the finite element mesh of the structure. 

ω → e r (ω) = [K ref (ω)] -[ K(ω)] F [K ref (ω)] F ,
in which . F denotes the Frobenius norm, where [K ref (ω)] is the generalized stiffness matrix that is directly computed using the analytical expression of a(x, ω) defined by Eq. ( 23) (and called the reference), and where [ K(ω)] = [K 0 ] + [K(ω)] for which [K(ω)] is computed using Eq. (37) with the numerical scheme presented in Section 4 for which u g = 100, N u = 10, 000 and N q = 2. A convergence analysis has been performed with respect to N u and N q yielding those values. It can be seen that the relative error is less than 10 -5 in the frequency band B ν of analysis and consequently, the computation of the Hilbert transform is very accurate. Figures 4 confirms that convergence is effectively reached. Fig. 5 displays the two graphs of the function ω → q(ω) that correspond (1) to the reference obtained by using [K ref (ω)] and (2) to the use of [K(ω)] that is computed with Eq. [START_REF] Pradlwarter | On advanced Monte Carlo simulation procedures in stochastic structural dynamics[END_REF]. It can be seen that there are almost no differences between the two graphs, and consequently, a validation of the method proposed is obtained. 

Uncertainty quantification

The Monte Carlo numerical method is used to solve the stochastic problem defined by Eqs. (39) and (40). The convergence analysis is carried out in analyzing the function

N s → conv(N s ) defined by conv(N s ) = 1 N s Ns k=1 B Q(θ k , ω) 2 dω , (85) 
in which θ 1 , . . . , θ Ns correspond to N s independent realizations. Fig. 6 displays the graph of N s → conv(N s ). It can be seen that a reasonable mean-square convergence is reached for N s = 640. Hereinafter, the two random models with almost-sure causality (see Eqs. ( 39) and ( 40)) and with the causality in mean (see Eqs. ( 47) and ( 48)) are compared.

It is assumed that [M] remains deterministic (δ M = 0), and that δ K = 0.15 and

δ D = 0.7. Let U (N ) k (ω) = { U (N ) (ω)} k be the k-th component of U (N ) (ω) = [Φ N ] Q(ω). Let u (N ) k (ω) = { u (N ) (ω)} k be the k-th component of the response calculated with computational model. The numbering of degrees of freedom is such that, for k = 1, 2, 3, U (N ) k
(ω) is related to the degree of freedom in direction e k of the node located, respectively, at (0.5067 m, 0.1630 m, 0.1 m) (see Fig. 1), at (0.2 m, 0.1174 m, 0 m) (see Fig. 3), and at (1 m, 0.1696 m, 0.1 m) (see Fig. 1). For k = 1 and k = 2, the confidence region of the stochastic response ω → | U In Figs. 7 to 10, it can be seen that the confidence region is not the same for the probabilistic model with almost-sure causality and for the probabilistic model with causality in mean. The mean values are also different. It is important to note that in some cases, it can be seen that the values given by the computational model are outside of the 95% confidence interval for some frequencies, revealing that the computational model is not robust with respect to uncertainties for these frequencies. 

Conclusion

In the framework of the nonparametric probabilistic approach of uncertainties, a new stochastic modeling has been proposed for taking into account uncertainties in the computational models of linear viscoelastic dynamical structures. This method is based on the construction of a compatibility equation that allows for satisfying the causality principle for the stochastic dynamical system in order to obtain compatible realizations of the random stiffness matrix and the random damping matrix at each frequency point of analysis. The numerical developments that are necessary for implementing the compatibility equation in the frequency domain has been detailed. The Cauchy principal-value integrals over a half-infinite interval are computed using a Gaussian quadrature for a certain class of functions, and an efficient interpolation technique has been introduced for computing a function with values in the positive-definite matrices, for a large number of sampling frequency points. The theory and the developments presented have been used for analyzing the propagation of uncertainties in a computational model of a composite viscoelastic structure. The results obtained show that it is very important to construct a probabilistic model which satisfies the causality principle. The theory presented has been done in the frequency domain and is independent of the choice of the reduced-order basis that is chosen for constructing the reduced-order model (any basis of the admissible vector space of the solution can be used). The method proposed could be used for a linear dynamical system made up of a linear viscoelastic structure that exhibits one or several rotating parts with a constant rotation speed. The reduced-order basis must be selected as explained in the literature and the stochastic model would be applied to each sub-domain described in the rotating frame. Concerning the capability of the model proposed to be applied to a linear viscoelastic structure with some local nonlinearities (such as stops), all the developments presented could be reused by using a Fourier transform to go from the time domain to the frequency domain, and then to come back in the time domain with an inverse Fourier transform.

  ), the deterministic matrices [M], [D(ω)], [K 0 ], and [K(ω)], by the (N × N ) real random matrices [M], [D(ω)], [K 0 ], and [K(ω)] respectively, in preserving the positive-definiteness property of [M], [D(ω)], [K 0 ], and the positiveness property of [K(ω)]
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 3 Figure 3 Graphs of ν → q ′ (2πν) (blue line) and ν → q(2πν) (red line). Horizontal axis: frequency ν in Hz.
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 45 Figure 4 Graph of the relative error function ν → er(2πν). Horizontal axis: frequency ν in Hz.
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 6 Figure 6 Graph of Ns → conv(Ns). Horizontal axis: number Ns of independent realizations.

  | with a probability level p c = 0.95, its statistical mean value, and the deterministic response ω → | u (N ) k (ω)|, are displayed, for the random model with almost-sure causality, in Fig.7(for k = 1) and in Fig.9(for k = 2), and are displayed, for the random model with causality in mean, in Fig.8(for k = 1) and in Fig.10(for k = 2).
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 78 Figure 7 Graph of ν → | U (N) 1 (2πν)| for the probabilistic model with almost-sure causality: 95% confidence region (yellow region) and mean value (red line). Graph of ν → | u 1 (2πν)| (blue line). Horizontal axis: frequency ν in Hz.
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 9 Figure 9 Graph of ν → | U (N) 2 (2πν)| for the probabilistic model with almost-sure causality: 95% confidence region (yellow region) and mean value (red line). Graph of ν → | u 2 (2πν)| (blue line). Horizontal axis: frequency ν in Hz.
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 10 Figure 10 Graph of ν → | U (N) 2 (2πν)| for the probabilistic model with causality in mean: 95% confidence region (yellow region) and mean value (red line). Graph of ν → | u 2 (2πν)| (blue line). Horizontal axis: frequency ν in Hz.

  (ω)|. Figs. 11, 12, and 13 display the graphs of u → p | U3| (u; 2πν) at frequencies ν = 2 Hz, ν = 200 Hz, and ν = 400 Hz, for the two probabilistic models with almostsure causality (red line) and with causality in mean (blue line). Figs. 11 to 13show that the probabilistic model with causality in mean does not give a good prediction (except for the low frequency 2 Hz that corresponds to a quasistatic response because the fundamental eigenfrequency is about 3 Hz).
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 11121321414 Figure 11 Graph of u → p | U 3 | (u; 2πν) at frequency ν = 2 Hz. Probabilistic model with almost-sure causality (red line) and probabilistic model with causality in mean (blue line).

the entries of matrix [D(ω)] are slowly decreasing with ω, the computation of random matrix [I 2 (ω)] can be costly if a standard Newton-Cotes integration scheme over a truncated finite interval [u g , a] is used with a large upper bound a. For this purpose, the integration over [u g , +∞[ is rewritten as an integration over [-1, 1] using a change of variable and then, an ad hoc Gaussian quadrature rule is introduced to compute [I 2 (ω)] with a very small number N q of quadrature points. The details concerning the computation of [I 1 (ω)] are given in Section 4.1.1 and those concerning the computation of [I 2 (ω)], notably the construction of the quadrature rule, are given in Section 4.1.2.

Computation of random matrix [I 1 (ω)]

Section 4.1.1 is devoted to the numerical method adopted to compute [I 1 (ω)], which is written as

in which the constant u g > 1 can arbitrarily be chosen. The limit η → 0 + is taken into account by sampling the values of the integrand at the sampling points

The use of a trapezoidal integration rule yields

) .

(53)

4.1.2. Computation of random matrix [I 2 (ω)] Section 4.1.2 deals with the numerical method adopted to compute

for materials that are strongly dissipative over a large frequency band, and for u g > 1. As explained before, a change of variable and an ad hoc quadrature rule are introduced to compute

Eq. ( 54) can then be rewritten as

in which the negative real constant µ is defined by

The frequency response is analyzed in the frequency band of analysis B ν = [0 , 400] Hz. .1.2. Quantification of the viscoelasticity effects on the stiffness of the computational model In this section the viscoelasticity effects are analyzed on the stiffness of the computational model and are quantified by comparing the solutions q ′ (ω) and q(ω) of the following reduced-order computational models,

for which N = 400, the eigenfrequencies being from about 3 Hz to about 1, 100 Hz. In Eq. (83), the generalized stiffness is [K 0 ] and does not include the additional frequency-dependent matrix [K(ω)] which is related to the viscoelasticity of the materials in the upper and the lower layers. In Eq. (84), the additional frequency-dependent matrix [K(ω)] is constructed directly using the expression of a(x, ω) defined by Eq. ( 23) without computing the Hilbert transform of reduced matrix [D(ω)]. The graphs of ν → q ′ (2πν) and ν → q(2πν) for