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Abstract

This paper deals with the analysis of a stochastic reduced-order computational
model in computational linear dynamics for linear viscoelastic composite struc-
tures in the presence of uncertainties. The computational framework proposed
is based on a recent theoretical work that allows for constructing the stochastic
reduced-order model using the nonparametric probabilistic approach. In the
frequency domain, the generalized damping matrix and the generalized stiff-
ness matrix of the stochastic computational reduced-order model are random
matrices. Due to the causality of the dynamical system, these two frequency-
dependent random matrices are statistically dependent and are linked by a com-
patibility equation induced by the causality of the system, involving a Hilbert
transform. The computational aspects related to the nonparametric stochastic
modeling of the reduced stiffness matrix and the reduced damping matrix that
are frequency-dependent random matrices are presented. A dedicated numeri-
cal approach is developed for obtaining an efficient computation of the Cauchy
principal value integrals involved in those equations for which an integration
over a broad frequency domain is required. A computational analysis of the
propagation of uncertainties is conducted for a composite viscoelastic structure
in the frequency range. It is shown that the uncertainties on the damping ma-
trix have a strong influence on the observed statistical dispersion of the stiffness
matrix.
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1. Introduction

In structural engineering, it is nowadays recognized that uncertainties com-
ing from various sources have to be accounted for during the design and the
analysis of a structure using computational models. In the computational mod-
els, the sources of uncertainties are due to the model-parameters uncertainties
(for instance, the mechanical properties of the materials), as well as the model
uncertainties induced by modeling errors (for instance due to the use of kine-
matic reductions such as the use of beams, plates, and shells, the lack of knowl-
edge concerning the boundary conditions, etc). In addition, the computational
models must have the capability to produce robust predictions that take into
account the variability induced by the manufacturing process. In the proba-
bilistic framework, uncertainty quantification has extensively be developed in
the last two decades (see for instance [1, 2, 3, 4, 5] and references included).

The objective of this paper is to present the numerical analysis, the com-
putational aspects, and the validation of an extension (recently proposed in
[6, 7]) of the nonparametric probabilistic approach of uncertainties [2, 5, 8]
in computational linear structural dynamics for viscoelastic composite struc-
tures. The proposed methodology, which is devoted to the development of a
nonparametric probabilistic tool for the stochastic modeling of the uncertain-
ties in computational viscoelastic models, is a strict extension of the previous
works, in particular those devoted to experimental validations (see for instance
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and references included).

The present work is devoted to the frequency-domain analysis of uncertain
viscoelastic structures using the nonparametric probabilistic approach of uncer-
tainty. The approach is formulated for a 3D dissipative composite structure
made up of a linear viscoelastic part coupled with an elastic part. In the frame-
work of linear viscoelasticity (see for instance [22, 23, 24]) and in the frequency
domain, the generalized damping matrix [D(ω)] and the generalized stiffness ma-
trix [K(ω)] of the reduced-order computational model depend on frequency ω.
The nonparametric probabilistic approach of uncertainties consists in modeling
this two frequency-dependent generalized matrices by frequency-dependent ran-
dom matrices [D(ω)] and [K(ω)] respectively. However, as these two matrices
come from a causal dynamical system, the causality implies two compatibility
equations, also known as the Kramers-Kronig relations [25, 26], involving the
Hilbert transform [27]. Consequently, the stochastic modeling of random matri-
ces [D(ω)] and [K(ω)] cannot be constructed as independent random matrices
without violating the causality as explained in [6].

The development of the stochastic model is performed in the framework of
the general theory of the linear viscoelasticity of 3D-continuum media [22]. In
this theory, there are no computational restrictions. The proposed stochastic
model is thus consistent with the general theory and consequently, has also
no restriction for its use. Concerning the construction of the nominal com-
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putational model, it is assumed that any approximation of the general linear
viscoelastic theory, which would be introduced for any reason, stays consistent
with the general theory of linear viscoelasticity.

It should be noted that the Kramers-Kronig relations are automatically sat-
isfied for the frequency-dependent damping and stiffness matrices of the nominal
computational model related to any linear viscoelastic structure for which the
constitutive equations of its viscoelastic parts are chosen in the class of causal
models such as the generalized Maxwell model. However, the objective of this
paper does not consist in revisiting the numerous papers and books related to
the damping models for the damped structures that are not relevant of the lin-
ear viscoelasticity or the viscoelastic models used for constructing the nominal
computational model of a linear viscoelastic structure. The paper concerns the
frequency-dependent generalized damping and stiffness random matrices that
are constructed by using the nonparametric probabilistic approach of uncer-
tainties, for which the Kramers-Kronig relations are not satisfied as explained
before. In this paper, the Kramers-Kronig relations do not need to be evoked for
the nominal computational model under consideration for which the causality is
assumed to be satisfied. Consequently, even if the the nominal linear viscoelas-
tic structure is constructed with causal constitutive equations, it is necessary to
constrain the stochastic construction with Kramers-Kronig relations [6, 7].

In this paper, a Monte Carlo stochastic solver (see for instance [28, 29])
is used to compute the random response of the system as well as statistical
quantities, like confidence regions for instance. The compatibility equations
are then used directly in order to generate compatible realizations of [K(ω)]
and [D(ω)]. As these equations have to be solved for a large number of val-
ues of the frequency, an efficient numerical algorithm has been developed and
has been implemented in a finite element code in order to reduce the compu-
tational cost. Indeed, as the Hilbert transform is involved, it is necessary to
compute an integral of the frequency-dependent matrices over the infinite fre-
quency domain, for an integral that is defined in the Cauchy principal value
sense. The proposed algorithm consists in a mixed integration technique in
order to treat the singularity as well as integrating over an infinite interval,
making use of an interpolation technique for positive-definite matrices and of
orthogonal polynomials approximations (see [30, 31, 32, 33, 34]). In order to
analyze the influence of viscoelasticity and causality in the propagation of un-
certainties, a composite structure is studied in the Low-Frequency (LF) range.
This structure is a multi-layer composite plate made up of two different vis-
coelastic layers and of a central elastic part. For such a structure, the memory
effect induced by the viscoelasticity is clearly observed. The study of the be-
havior of the constructed stochastic model shows a strong influence of the level
of uncertainties on [D(ω)] in the statistical dispersion of [K(ω)]. The statistical
fluctuations increase as a function of frequency because the uncertainties prop-
agate from [D(ω)] to [K(ω)] through the Kramers-Kronig relations. It appears
that a stochastic model, which satisfies the causality property, is necessary in
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order to correctly quantify uncertainties in the dissipative structures.

A summary of the construction of the deterministic reduced-order computa-
tional model is presented in Section 2. Section 3 deals with the construction of
the nonparametric probabilistic model using the Hilbert transform. Section 4
is devoted to the computational aspects of the proposed methodology used to
circumvent the computational difficulties involved in calculating the Hilbert
transform and in the analysis of the uncertainty propagation. In Section 5 a
numerical example is presented.

Remarks about the notations. In this paper, the Fourier transform with respect
to time t of any function f is denoted by f̂ such that f̂(ω) =

∫
R
e−iωtf(t)dt.

2. Summarizing the deterministic reduced-order computational model

This section is a summary devoted to the construction of the determinis-
tic reduced-order computational dynamical model for a viscoelastic structure
for which the notations, the developments, and the mathematical properties
presented are taken from [7] and [24]. Such a deterministic framework will di-
rectly be used in Section 3 for implementing uncertainties in a nonparametric
probabilistic framework. The boundary value problem (that is formulated in
the frequency domain) is introduced for linear viscoelastic composite structures
and its weak formulation is given in order to derive the computational model.
Finally, the deterministic reduced-order computational model is constructed.

2.1. Boundary value problem for composite structures in the frequency domain

Let Ω = Ωe ∪ Ωve be an open, connected, and bounded domain of R
3,

constituted of two parts Ωe and Ωve. The first part Ωe is occupied by a purely
elastic medium while the second part Ωve is occupied by a linear viscoelastic
medium. It should be noted that the elastic medium Ωe could be replaced
by a viscoelastic medium without memory or by an elastic medium with an
arbitrary damping model. In a cartesian frame (e1, e2, e3), let x = (x1, x2, x3)
be the position vector of any point in Ω and dx = dx1dx2dx3 be the volume
element. Let n be the external unit normal to the boundary ∂Ω of Ω, which is
written as ∂Ω = Γu ∪ Γf , which is made of a part Γu on which a zero Dirichlet
condition is imposed and a part Γf on which a surface force field, fs(x, t), is
given. Let u(x, t) be the displacement field defined on Ω. The linearized strain
tensor is denoted by {εkh}hk and the Cauchy stress tensor by {σij}ij , with i, j,
k, and h in {1, 2, 3}. Let ρ(x) be the mass density of the composite structure.
In the frequency domain, the boundary value problem is written, for all real ω
belonging to the frequency band of analysis B = [−ω lim, ω lim], as

−ω2ρ(x) û(x, ω)− div σ(û(x, ω)) = 0 , in Ω , (1)

û(x, ω) = 0 , on Γu , (2)

σ(û(x, ω))n = f̂s(x, ω) , on Γf . (3)
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This system of equations is then closed by a set of constitutive equations, which
is detailed in the next subsections, and the dependence of the stress tensor σ
with û(x, ω) is denoted (using an abuse of notation) by σ(û(x, ω)).

2.2. Linear elastic constitutive equation for subdomain Ωe

For all x ∈ Ωe, the material is considered to be purely elastic, and as such
we have the following constitutive equation

σ(û(x, ω)) = aelas(x) : ε(û(x, ω)) , (4)

in which the symbol ” : ” stands for the double inner tensor product, where the
strain tensor is written as

εkh(û(x, ω)) =
1

2
(
∂ûk(x, ω)

∂xh
+

∂ûh(x, ω)

∂xk
) ,

and where {aelasijkh}ijkh is the fourth-order elasticity tensor that verifies the usual
properties of symmetry, positivity, and boundness.

2.3. Linear viscoelastic constitutive equation for subdomain Ωve

The theory of linear viscoelasticity is used in order to obtain the constitutive
equation of the viscoelastic medium occupied by domain Ωve. In all Section 2.3,
x is fixed in Ωve.

Constitutive equation in the time domain. For t ≤ 0, the system is assumed to
be at rest,

σ(u(x, t)) = 0 , ε(u(x, t)) = 0 , ∀ t ≤ 0. (5)

In the time domain, the constitutive equation is written as

σ(u(x, t)) =

∫ t

0

G(x, τ) : ε(u̇(x, t− τ))dτ , (6)

in which u̇ is the partial derivative of u with respect to t, where t 7→ G(x, t) is the
relaxation function defined on [0 +∞[ with values in the fourth-order tensor that
satisfies the usual symmetry properties. Function t 7→ G(x, t) is differentiable
with respect to t on ]0,+∞[ and its partial time derivative t 7→ {Ġijkh(x, t)}ijkh
is assumed to be integrable on [0 ,+∞[. At time t = 0, the initial elasticity
tensor G(x, 0) is positive definite. Using Eq. (5) and performing an integration
by part, Eq. (6) can be rewritten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) +

∫ t

0

Ġ(x, τ) : ε(u(x, t− τ))dt . (7)

Let us introduce the fourth-order tensor g(x, t) defined by

g(x, t) = 0 if t < 0 , (8)

g(x, t) = Ġ(x, t) if t ≥ 0 . (9)
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From Eqs. (5), (8), and Eq. (9), it can be deduced that Eq. (7) can be rewrit-
ten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) +

∫ +∞

−∞

g(x, τ) : ε(u(x, t− τ))dt . (10)

Constitutive equation in the frequency domain. Taking the Fourier transform
with respect to t of both sides of Eq. (10), and introducing the real part
ĝR(x, ω) = ℜe{ĝ(x, ω)} and the imaginary part ĝI(x, ω) = ℑm{ĝ(x, ω)}, the
constitutive equation in the frequency domain can be written as

σ(û(x, ω)) = (a(x, ω) + iω b(x, ω)) : ε(û(x, ω)) , (11)

where the components aijkh(x, ω) and bijkh(x, ω) of the fourth-order real tensors
a(x, ω) and b(x, ω) are the viscoelastic coefficients that are such that

a(x, ω) = G(x, 0) + ĝR(x, ω) , ω b(x, ω) = ĝI(x, ω) . (12)

Properties of {aijkh(x, ω)}ijkh and {bijkh(x, ω)}ijkh. The viscoelastic coeffi-
cients aijkh(x, ω) and bijkh(x, ω) of the fourth-order real tensors a(x, ω) and
b(x, ω) are frequency dependent and exhibit several important properties [22,
24, 7], which have to be taken into account for a stochastic modeling (even func-
tions with respect to ω, symmetry and positive definiteness properties). For all
fixed x and ω, tensors a(x, ω) and b(x, ω) are such that:
(i) The tensors are even functions with respect to ω,

a(x,−ω) = a(x, ω) , b(x,−ω) = b(x, ω) ; (13)

(ii) The symmetry property of the tensors is written as

aijkh(x, ω) = ajikh(x, ω) = aijhk(x, ω) = akhij(x, ω) , (14)

bijkh(x, ω) = bjikh(x, ω) = bijhk(x, ω) = bkhij(x, ω) ; (15)

(iii) The positiveness property of the tensors are such that, for all second-order
real symmetric tensors {Xij}ij , there is a positive real constant c0 independent
of ω, such that

aijkh(x, ω)XijXkh ≥ c0XijXij , bijkh(x, ω)XijXij ≥ c0XijXkh , (16)

in which the classical convention for summations over repeated Latin indices is
used.

Relations on the viscoelastic coefficients induced by the causality. Since g is a
causal function of time, the real part ĝR and imaginary part ĝI of its Fourier
transform ĝ are related through a set of compatibility equations also known
as the Kramers-Kronig relations [25, 26]. These relations involve the Hilbert
transform [27] and are written as

ĝR(x, ω) =
1

π
p.v

∫ +∞

−∞

ĝI(x, ω′)

ω − ω′
dω′, (17)
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ĝI(x, ω) = − 1

π
p.v

∫ +∞

−∞

ĝR(x, ω′)

ω − ω′
dω′, (18)

in which p.v denotes the Cauchy principal value. For any function h that is
integrable over the real line except at a singularity point ω given in R, the p.v
is defined as

p.v

∫ +∞

−∞

h(ω′) dω′ = lim
ζ→+∞,η→0+

{
∫ ω−η

−ζ

h(ω′) dω′ +

∫ ζ

ω+η

h(ω′) dω′} . (19)

It should be noted that Eqs. (17) and (18) are equivalent and consequently,
only one from these two equations can be used. From Eqs. (12) and (17), the
following equation between the viscoelastic tensors a(x, ω) and b(x, ω) can be
deduced

a(x, ω) = a(x, 0) +
ω

π
p.v

∫ +∞

−∞

b(x, ω′)

ω − ω′
dω′ , ∀ω ≥ 0 . (20)

As b(x, ω′) is an even function in ω′, Eq. (20) can be rewritten as

a(x, ω) = a(x, 0) +
2ω2

π
p.v

∫ +∞

0

b(x, ω′)

ω2 − ω′2
dω′ , ∀ω ≥ 0 . (21)

For computational purposes, it is of interest to fix the position of the singularity.
The change of variable ω′ = ω u yields

a(x, ω) = a(x, 0) +
2ω

π
p.v

∫ +∞

0

b(x, ω u)

1− u2
du , (22)

where the singularity is fixed at u = 1. The values for ω < 0 are deduced
using a(x, ω) = a(x,−ω). This relation implies that, in the context of linear
viscoelasticity, tensor-valued functions ω 7→ a(x, ω) and ω 7→ b(x, ω) cannot be
chosen arbitrarily and have to verify Eq. (22) in order to satisfy the causality
principle.

2.4. Rewriting the constitutive equation on domain Ω = Ωe ∪ Ωve

By defining the fourth-order tensors a(x, ω) and b(x, ω) by

a(x, ω) =

{
aelas(x) ∀x ∈ Ωe ,

a(x, ω) ∀x ∈ Ωve ,
(23)

b(x, ω) =

{
0 ∀x ∈ Ωe ,

b(x, ω) ∀x ∈ Ωve ,
(24)

and using Eqs. (4) and (11), the constitutive equation can be written, for all
x ∈ Ω, as

σ(û(x, ω)) = (a(x, ω) + iω b(x, ω)) : ε(û(x, ω)) . (25)
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2.5. Weak formulation of the boundary value problem

Let Cad be a set of C3-valued functions defined on Ω that are sufficiently
differentiable (it is the complex Sobolev space (H1(Ω))3) and let Cad

0 be the
admissible set such that Cad

0 = {v ∈ Cad , v = 0 on Γu}. The weak formulation
of the boundary value problem defined by Eqs. (1) to (3) with Eqs. (22) and
(25) consists, for all ω fixed in B, in finding the function {x 7→ û(x, ω)} ∈ Cad

0

such that, for all v ∈ Cad
0 ,

−ω2 m(û,v) + iω d(û,v;ω) + k0(û,v) + k(û,v;ω) = f(v;ω) , (26)

in which

m(û,v) =

∫

Ω

ρ(x) û · v dx , (27)

d(û,v;ω) =

∫

Ω

{b(x, ω) : ε(û)} : ε(v) dx . (28)

k0(û,v) =

∫

Ω

{a0(x) : ε(û)} : ε(v) dx , (29)

k(û,v;ω) =
2ω

π
p.v

∫ +∞

0

d(û,v;ω u)

1− u2
du . (30)

f(v;ω) =

∫

Γf

f̂s(x, ω) · v ds(x) , (31)

where ds(x) is the surface element on Γf and where a0(x) = a(x, 0). It should
be noted that, if there is an instantaneous linear viscoelastic medium in Ωve,
then b(x, ω) = b(x) is independent of ω, which yields d(û,v;ω) =

∫
Ωve

{b(x) :
ε(û)} : ε(v) dx, and since p.v

∫ +∞

0 (1− u2)−1du = 0, then k(û,v;ω) = 0.

2.6. Computational model

Applying the standard finite element method (see for instance [35, 36]) to
Eq. (26) yields the computational model

(−ω2[M] + iω[D(ω)] + [K0] + [K(ω)]) û(ω) = f̂(ω) , (32)

in which û(ω) is the complex vector of the degrees of freedom, and where f̂(ω),
[M], [D(ω)], [K0], and [K(ω)] correspond to the finite element discretization of f ,
m, d, k0 and k respectively. The symmetric positive real matrix [K(ω)] is such
that

[K(ω)] =
2ω

π
p.v

∫ +∞

0

[D(ωu)]

1− u2
du . (33)

It is assumed that domains Ωe and Ωve that constitute Ω are such that the
symmetric real matrix [K0] is positive definite. In order to later implement the
nonparametric probabilistic approach as well as to reduce the computational
cost for solving the computational model, a reduced-order computational model
is introduced.
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2.7. Reduced-order computational model

As suggested in [7], the reduced-order computational model is constructed
by using the reduced basis represented by the rectangular real matrix [ΦN ]
whose N columns are the first N modes associated with the first N positive
eigenvalues 0 < ω2

1 ≤ . . . ≤ ω2
N of the underlying undamped mechanical system

for which the mass matrix is [M] and the stiffness matrix is [K0]. Consequently,
the (N ×N) real matrices [M] and [K0], which are defined by

[M] = [ΦN ]T [M][ΦN ] , [K0] = [ΦN ]T [K0][ΦN ] , (34)

are diagonal, positive definite, and [K0]pp = ω2
p [M]pp. The reduced-order com-

putational model is then written as

û
(N)(ω) = [ΦN ] q̂(ω) , (35)

(−ω2[M] + iω [D(ω)] + [K0] + [K(ω)]) q̂(ω) = f̂(ω) , (36)

in which f̂(ω) = [ΦN ]T f̂(ω) and where the full (N ×N) real matrices [D(ω)] =
[ΦN ]T [D(ω)][ΦN ] and [K(ω)] = [ΦN ]T [K(ω)][ΦN ] are symmetric positive, and
are linked by the following equation,

[K(ω)] =
2ω

π
p.v

∫ +∞

0

1

1− u2
[D(ωu)] du , ω ≥ 0 . (37)

A convergence analysis is carried out in order to determine the value of N such
that û(ω) ≈ û(N)(ω) for all ω in frequency band B. It is assumed that the basis
[ΦN ] is such that for all ω ≥ 0, matrix [D(ω)] is positive definite and matrix
[K(ω)] is positive or positive definite.

3. Stochastic reduced-order computational model

For N fixed as explained before, the nonparametric probabilistic approach of
uncertainties consists in substituting in Eqs. (36) and (37), the deterministic ma-
trices [M], [D(ω)], [K0], and [K(ω)], by the (N ×N) real random matrices [M],
[D(ω)], [K0], and [K(ω)] respectively, in preserving the positive-definiteness
property of [M], [D(ω)], [K0], and the positiveness property of [K(ω)]. Conse-

quently q̂(ω) and û(N)(ω) become the random vectors Q̂(ω) and Û(N)(ω) such
that

Û
(N)(ω) = [ΦN ] Q̂(ω) , (38)

(−ω2[M] + iω [D(ω)] + [K0] + [K(ω)]) Q̂(ω) = f̂(ω) , (39)

[K(ω)] =
2ω

π
p.v

∫ +∞

0

1

1− u2
[D(ωu)] du , ω ≥ 0 . (40)

It should be noted that Eq. (40) means that the probabilistic model of random
matrix [K(ω)] is completely defined by the probabilistic model of random ma-
trix [D(ω)]. We then obtain a probabilistic model for random matrix [K(ω)]
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which satisfies almost-surely the causality principle. Hereinafter, this probabilis-
tic model is referred to as the probabilistic model with almost-sure causality.
Consequently, only the probabilistic models of random matrices [M], [K0] and
[D(ω)] have to be constructed. In the framework of the nonparametric prob-
abilistic approach of uncertainties, these random matrices are constructed as
explained in [2, 5, 6]. These random matrices are statistically independent and
are defined by

[M] = [LM ]T [GM ] [LM ] , (41)

[K0] = [LK0
]T [GK ] [LK0

] , (42)

[D(ω)] = [LD(ω)]T [GD] [LD(ω)] . (43)

in which [LM ], [LK0
], and [LD(ω)] are the deterministic upper triangular ma-

trices such that

[M] = [LM ]T [LM ] , [K0] = [LK0
]T [LK0

] , [D(ω)] = [LD(ω)]T [LD(ω)] .

The random matrices [GM ], [GK ], and [GD] are positive-definite (N ×N) real
random matrices that are statistically independent, which are defined by

[GM ] = [LGM
]T [LGM

] , [GK ] = [LGK
]T [LGK

] , [GD] = [LGD
]T [LGD

] ,

in which the upper triangular random matrices [LGM
], [LGK

], and [LGD
] are

defined by

[LGM
]jj′ = σ(δM )V M

jj′ , [LGM
]jj = σ(δM )

√
2h(αj(δM ), V M

jj ) , (44)

[LGK
]jj′ = σ(δK)V K

jj′ , [LGK
]jj = σ(δK)

√
2h(αj(δK), V K

jj ) , (45)

[LGD
]jj′ = σ(δD)Vjj′ , [LGD

]jj = σ(δD)
√
2h(αj(δD), V D

jj ) , (46)

in which {VM
jj′ , V

K
jj′ , V

D
jj′ , 1 ≤ j ≤ j′ ≤ N} is a set of independent real-valued

normalized Gaussian random variables. The real parameters σ and αj depend

on a hyperparameter δ such that 0 < δ < (N+1
N+5)

1
2 and are defined by σ(δ) =

δ(N+1)−
1
2 and αj(δ) =

N+1
2δ2 + 1−j

2 . The function h(α, V ) is written as h(α, V ) =

F−1
Γα

(FV (v)) where FV and FΓα
are the cumulative distribution functions of a

standard Gaussian random variable V and a Gamma random variable Γα with
parameter α. The hyperparameters δM , δK , and δD allow for controling the level
of uncertainties for each matrix of the reduced-order computational model.

Remarks.

• With the stochastic construction defined by Eq. (40), it must be verified
that, for all ω ≥ 0, [K(ω)] is a positive-definite random matrix. In [6],
it is proven the following sufficient condition. If for all real vector y =
(y1, . . . , yN ), the random function ω 7→ yT [D(ω)]y is decreasing in ω for
ω ≥ 0, then, for all ω ≥ 0, [K(ω)] is a positive-definite random matrix.
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• If the causality principle was not taken into account for the construction of
the stochastic model of random matrix [K(ω)], then the stochastic model
that would be constructed would be causal in average but would not be
almost-surely causal. Such a model that would be causal only in mean,
would be erroneous from the point of view of the theory of physically real-
izable systems. In the following, such an erroneous stochastic construction
will be referred as the probabilistic model with a causality in mean. Such
a model can be constructed by rewriting Eq. (39) as

([M] + iω[D(ω)] + [K̃(ω)]) Q̂(ω) = f̂ (ω) , (47)

where [K̃(ω)] = [K0] + [K(ω)]. The random matrices [M] and [D(ω)] are
constructed as previously, but now the probabilistic model of the random
matrix [K̃(ω)] would be written as

[K̃(ω)] = [LK̃(ω)]T [GK ][LK̃(ω)] , (48)

where [LK̃(ω)] corresponds to the Cholesky factorization of the positive-

definite random matrix [K̃(ω)] = [K0] + [K(ω)].

4. Computational aspects

4.1. Computation of the Hilbert transform

The computation of statistically independent realizations of random matrix
[K(ω)] using Eq. (40) can be tricky. It requires the knowledge of the function
ω 7→ [D(ω)] for all ω ≥ 0 and not only on the frequency band B of analysis. A
first naive approach would be to truncate the infinite interval of integration in
order to obtain a finite interval. Such an approximation would require that each
entry of matrix [D(ω)] decreases fast enough when ω increases, which might not
be the case in the presence of strongly dissipative materials. To circumvent this
problem, the integral in Eq. (40) is split into two integrals, one over [0, ug] and
another one over [ug,+∞[, where ug should be greater than 1,

[K(ω)] =
2ω

π
{ [I1(ω)] + [I2(ω)] } , (49)

where the two random matrices [I1(ω)] and [I2(ω)] are such that

[I1(ω)] = p.v

∫ ug

0

1

1− u2
[D(ωu)]du , (50)

[I2(ω)] =

∫ +∞

ug

1

1− u2
[D(ωu)]du . (51)

For computing random matrix [I1(ω)], which involves an integration on an in-
terval that includes a singularity at u = 1, the integrand is evaluated for a high
number of values of u and a trapezoidal rule with Nu points is used. For ma-
terials that are strongly dissipative over a large frequency band, that is, when
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the entries of matrix [D(ω)] are slowly decreasing with ω, the computation of
random matrix [I2(ω)] can be costly if a standard Newton-Cotes integration
scheme over a truncated finite interval [ug, a] is used with a large upper bound
a. For this purpose, the integration over [ug,+∞[ is rewritten as an integration
over [−1, 1] using a change of variable and then, an ad hoc Gaussian quadra-
ture rule is introduced to compute [I2(ω)] with a very small number Nq of
quadrature points. The details concerning the computation of [I1(ω)] are given
in Section 4.1.1 and those concerning the computation of [I2(ω)], notably the
construction of the quadrature rule, are given in Section 4.1.2.

4.1.1. Computation of random matrix [I1(ω)]

Section 4.1.1 is devoted to the numerical method adopted to compute [I1(ω)],
which is written as

[I1(ω)] = lim
η→0+

{
∫ 1−η

0

1

1− u2
[D(ωu)] du+

∫ ug

1+η

1

1− u2
[D(ωu)] du} , (52)

in which the constant ug > 1 can arbitrarily be chosen. The limit η → 0+

is taken into account by sampling the values of the integrand at the sampling
points {ui , i = 1, . . . , Nu , ui 6= 1} with a constant step ui+1 − ui ≪ 1 of the
interval [0, ug]. The use of a trapezoidal integration rule yields

[I1(ω)] =

Nu−1∑

i=1

(
ui+1 − ui

2
)(

[D(ωui)]

1− u2
i

+
[D(ωui+1)]

1− u2
i+1

) . (53)

4.1.2. Computation of random matrix [I2(ω)]

Section 4.1.2 deals with the numerical method adopted to compute

[I2(ω)] =

∫ +∞

ug

1

1− u2
[D(ωu)]du , (54)

for materials that are strongly dissipative over a large frequency band, and for
ug > 1. As explained before, a change of variable and an ad hoc quadrature
rule are introduced to compute [I2(ω)]. The following change of variable η 7→
u = U(η) from [−1, 1[ into [ug ,+∞[ is introduced,

U(η) = 2 ug

1− η
, ug > 1 . (55)

Eq. (54) can then be rewritten as

[I2(ω)] = µ

∫ 1

−1

[D(ω U(η))] pH(η) dη , (56)

in which the negative real constant µ is defined by

µ =
1

2
log

(ug − 1)

(ug + 1)
< 0 , ug > 1 , (57)
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and where pH is a function defined on [−1, 1 ] with values in R+, such that

pH(η) =
2ug

µ(η2 − 2η + 1− 4u2
g)

, η ∈ [−1, 1 ] , ug > 1 . (58)

Positive-valued function pH , which is such that

∫ 1

−1

pH(η) dη = 1 , (59)

can then be viewed as the probability density function of a [−1, 1 ]-valued ran-
dom variable H defined on a probability space (Ξ, T ,P) (this property will be
used after). In the following, a Nq-points Gaussian quadrature rule with respect
to the measure pH(η) dη on [−1, 1 ] is constructed and [I2(ω)] is then calculated
by

[I2(ω)] ≈
Nq∑

q=1

wq [D(ω U(ηq))] , (60)

where ηq is the q-th Gauss point and wq is its associated Gauss weight.

(i) Construction of the quadrature rule for the computation of [I2(ω)].
The procedure to construct the quadrature rule associated with any measure
is detailed, for instance, by W. Gautschi in [31]. The construction is based
on the three-term relation that can be expressed between monic polynomials
(univariate polynomials in which the nonzero coefficient of highest degree is
equal to 1) that are orthogonal with respect to measure pH(η) dη on [−1, 1 ].
Let H = L2

p
H
(η)dη([−1, 1 ]) be the Hilbert space of all the square integrable real

functions defined on [−1, 1 ] with respect to the probability measure pH(η) dη,
equipped with the inner product and the associated norm,

< g , g′ >=

∫ 1

−1

g(η) g′(η) pH(η) dη , ‖g‖ =< g , g >1/2 . (61)

For k = 0, . . . , Nq, let πk(η) be the k-th order monic orthogonal polynomial in
H with degree k. Consequently, for k and k′ in {0, 1, . . . , Nq},

< πk , πk′ >= 0 for k 6= k′ . (62)

The three-term relation between this family of orthogonal polynomials is writ-
ten as

πk+1(η) = (η − αk)πk(η) − βk πk−1(η) , k = 0, 1, ..., Nq − 1 , (63)

π0(η) = 1 , π−1(η) = 0 . (64)

for which the coefficients αk and βk are written as

αk =< η
πk

‖πk‖
,

πk

‖πk‖
> , k = 0, ..., Nq − 1 , (65)
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βk = (‖πk‖ ‖πk−1‖−1)2 , k = 1, ..., Nq − 1 . (66)

in which ‖πk‖ ‖πk−1‖−1 can be calculated by the equation,

‖πk‖ ‖πk−1‖−1 =< η
πk−1

‖πk−1‖
,

πk

‖πk‖
> , k = 1, ..., Nq − 1 . (67)

The value of the coefficient β0 is arbitrary and defined by convention as

β0 = ‖π0‖2 =

∫ 1

−1

pH(η) dη = 1 . (68)

Once the coefficients are known, one has to construct the following Jacobi ma-
trix:

[JNq
] =




α0

√
β1√

β1 α1

√
β2√

β2 α2

√
β3

. . .
. . .

. . .√
βNq−1 αNq−1




(69)

The quadrature rule is then deduced by computing the eigenvalues η1, . . . , ηNq

and the normalized eigenvectors v1, . . . ,vNq
of this Jacobi matrix,

[JNq
]vq = ηq vq , q = 1, . . . , Nq . (70)

The desired abscissa are η1, . . . , ηNq
and the associated weights w1, . . . , wNq

are
such that

wq = β0 {vq}21 = {vq}21 , q = 1, . . . , Nq , (71)

where {vq}1 is the first component of the q-th normalized eigenvector vq.
It should be noted that, since the quadrature rule we constructed on [−1, 1]

is exact for polynomials of degree 2Nq − 1 and because of Eq. (55), the inte-
grands of the form 1/P (u), where P (u) is a polynomial of degree 2Nq − 1 at
most, should be computed correctly.

(ii) Generation of orthogonal polynomials and computation of the coefficients
αk and βk.
We thus have to construct the family of the monic orthogonal polynomials in H.
The Gram-Schmidt process is a common technique to generate a set of orthog-
onal polynomials from a starting set of polynomials (often taken as monomials
of increasing order). However, this process is numerically unstable, especially
as the number of polynomials to orthogonalize increases. In order to avoid
such stability issues, we make use of an alternative method detailed in [34],
which was successfully applied to the computation of polynomial chaos in high
dimension with respect to an arbitrary measure. The method is numerically
stable and is based on probability theory. Let us introduced the orthonor-
mal polynomials {Ψ0,Ψ1, . . . ,ΨNq

} associated with the orthogonal polynomials
{π0, π1, . . . , πNq

},

Ψk(η) = πk(η)‖πk‖−1 , k = 0, 1, . . . , Nq − 1 , (72)
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Consequently, for all k and k′ in {0, 1, . . . , Nq − 1}, it can be deduced that

E{Ψk(H)Ψk′(H)} =

∫ 1

−1

Ψk(η)Ψk′(η) pH(η) dη = δkk′ , (73)

in which E denotes the mathematical expectation and where δkk′ is the Kro-
necker symbol. Let H(ξ1), . . . , H(ξns

) be ns independent realizations of random
variable H with ξ1, . . . , ξns

in Ξ. These realizations are usually computed using
the probability density function pH(η). For ns sufficiently large, we have

E{Ψk(H)Ψk′ (H)} ≈ 1

ns

ns∑

ℓ=1

Ψk(H(ξℓ))Ψk′(H(ξℓ)) . (74)

Let [P] be the (Nq × ns) real matrix such that

[P]κℓ = Ψκ−1(H(ξℓ)) , κ = 1, . . . , Nq , ℓ = 1, . . . , ns . (75)

It can then be deduced that

lim
ns→+∞

1

ns − 1
[P][P]T = [INq

] . (76)

Let [M] be the (Nq × ns) real matrix of realizations of the monomials such that

[M]κℓ = H(ξℓ)
κ−1 , κ = 1, . . . , Nq , ℓ = 1, . . . , ns . (77)

The algorithm is then the following:

• Compute matrix [M] defined by Eq. (77), and then compute the (Nq×Nq)
real matrix [F] = 1

ns−1 [M] [M]T . It is assumed that ns > Nq in order that
matrix [F] is positive definite.

• Compute the lower triangular (Nq×Nq) real matrix [L] from the Cholesky
decomposition [L] [L]T of positive-definite symmetric matrix [F].

• Compute the (Nq×ns) real matrix [P] as the solution of the linear matrix
equation [L] [P] = [M].

The coefficients αk and βk are calculated by using Eqs. (65) and (66) in which

< η
πk

‖πk‖
,

πk

‖πk‖
>= E{H Ψk(H)2} , k = 0, ..., Nq − 1 , (78)

‖πk‖ ‖πk−1‖−1 = E{H Ψk−1(H)Ψk(H)} , k = 1, ..., Nq − 1 . (79)

for which, for k = 0, ..., Nq − 1, the following approximations are used,

E{H Ψk(H)2} ≈ 1

ns

ns∑

ℓ=1

H(ξℓ)Ψk(H(ξℓ))
2 , (80)

E{H Ψk−1(H)Ψk(H)} ≈ 1

ns

ns∑

ℓ=1

H(ξℓ)Ψk−1(H(ξℓ))Ψk(H(ξℓ)) . (81)
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4.2. Evaluation of the frequency-dependent matrices for a large number of fre-
quency sampling points

As explained in Section 4.1, the numerical calculation of the integrals are
performed by sampling the matrix-valued function ω 7→ [D(ω)] for a large num-
ber of frequency points. A large number of construction and then of reduction of
the damping matrix of the computational model can be computationally costly.
We thus propose a way of sampling positive-definite matrices by interpolation.
Such a method can be used for the purpose of performing the computation of
the Hilbert transform. It can also be used to sample the frequency-dependent
stiffness and damping matrices at a higher number of frequency points for the
computation of the response of the system.

Interpolation method for positive-definite matrices. When the matrices are in-
terpolated, one must worry about preserving their properties. In our case, we
want to interpolate a function x 7→ [A(x)] with values in the set of all the sym-
metric positive-definite (N × N) real matrices. For that, the interpolation is
performed on the upper triangular matrix coming from the Cholesky factoriza-
tion as follows:

• Compute the upper triangular matrix [LA(x)] from the Cholesky factoriza-
tion of matrix [A(x)] at a number Nr of reference points {xr

i , i = 1, ..., Nr}
using a regular or log-scale slicing.

• At each point xj , j = 1, ...,M , where we want to interpolate, a component-
by-component interpolation of [LA(xj)] is performed with a Newton-Cotes
formula, using the nearest points from set {xr

i }i.

• If necessary, the symmetric positive-definite matrix [A(xj)] is reconstructed
using [A(xj)] = [LA(xj)]

T [LA(xj)].

The precision level of the interpolation is controlled directly by the number Nr

of reference points xr
i and their spacing.

4.3. Remarks concerning the stochastic solver and the parallel computing

The Monte Carlo method is used as a stochastic solver. Among its at-
tributes, it should be noted that it is non-intrusive with respect to commercial
software (black box) and that the speed of convergence can both be controlled
during the computation and is independent of the dimension. Some advanced
Monte Carlo procedures can also be employed in order to improve convergence
speed (see for instance [37]). Such a stochastic solver is well-suited for massively
parallel computing and consequently, can naturally be chosen as the first level
of parallel computing. A second level of parallelization can easily be imple-
mented for solving Eqs. (38) and (39) with respect to the sampled frequencies.
Finally, a third level of parallelization can be considered for the calculation of
Eqs. (53) and (60) related to the Hilbert transform for which the numerical cost
is mainly due to the construction of the reduced-damping matrix. Nevertheless,
as an interpolation approach is proposed, the gain given by such a third level of
parallelization would stay small enough.
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5. Numerical examples

Hereinafter, an example is given for which the proposed probabilistic model
is carried out. The quantification of uncertainties is compared between two
probabilistic approaches : a) for a model with almost-sure causality (the pro-
posed model) and b) a model with causality in mean.

5.1. Description of the numerical model

The structure that is considered is a thin multilayered plate of length L = 1
m, width W = 0.3 m and thickness H = 0.1 m, under a nodal load of F = 1
N applied in direction e3 at the point located at (0.5067 m, 0.1565 m, 0.1 m)
(see Fig. 1). The three layers are made up of a homogenous elastic medium
occupying domain Ωe that is sandwiched between two homogenous viscoelastic
media occupying the domain Ωve = Ω1∪Ω2 in which the domain Ω1 is the upper
layer and the domain Ω2 is the lower layer. For the elastic medium, the material
is assumed to be isotropic with Young’s modulus E = 210 GPa, Poisson’s ratio
ν = 0.3, and a density ρ = 7, 850 kg/m3. Its thickness is h = 4H/5 in which
H is the total thickness of the plate. For the viscoelastic homogenous medium
occupying domain Ωk, with k = 1, 2, the material is assumed to be isotropic
with a Poisson ratio ν(k) and a time-dependent viscoelastic coefficient E(k)(t).

Let Ê(k)(ω) be the Fourier transform of E(k)(t). In the case of a single-branch
generalized Maxwell model, we have

Êk(ω) = E(k)
∞ +

E
(k)
1 (τ

(k)
1 ω)2

1 + (τ
(k)
1 ω)2

+ iω
E

(k)
1 τ

(k)
1

1 + (τ
(k)
1 ω)2

. (82)

This makes use of rational functions for which the quadrature method presented
earlier is exact. The viscoelastic coefficients used in the simulations are listed
in Table 1.

Upper layer Lower layer
k = 1 k = 2

ν(k) 0.27 0.47

E
(k)
∞ (GPa) 240 220

E
(k)
1 (GPa) 126.5 50

τ
(k)
1 (s) 7.351 × 10−2 1.103 × 10−1

Table 1 Parameters of the single-branch generalized Maxwell model

5.1.1. Finite element model

The finite element mesh of the structure is constituted of 8-nodes 3D finite
elements with 150 elements along direction e1 (length), 46 elements along e2
(thickness), and 21 elements along e3 (thickness). The total number of degrees of
freedom is 468, 402. Figs. 1 and 2 show the finite element mesh of the structure.
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The frequency response is analyzed in the frequency band of analysis Bν =
[0 , 400] Hz.

Figure 1 Finite element mesh of the plate with force applied F = 1 N and observation dofs
Û1 and Û3. Angle of observation: azimuth = −37.5°, elevation = 30°

Figure 2 Finite element mesh of the plate with observation dof Û2. Angle of observation:
azimuth = −37.5°, elevation = −30°

5.1.2. Quantification of the viscoelasticity effects on the stiffness of the compu-
tational model

In this section the viscoelasticity effects are analyzed on the stiffness of the
computational model and are quantified by comparing the solutions q̂′(ω) and
q̂(ω) of the following reduced-order computational models,

(−ω2[M] + iω[D(w)] + [K0]) q̂
′(ω) = f̂(ω) , (83)

(−ω2[M] + iω[D(w)] + [K0] + [K(ω)]) q̂(ω) = f̂(ω) , (84)

for which N = 400, the eigenfrequencies being from about 3 Hz to about 1, 100
Hz. In Eq. (83), the generalized stiffness is [K0] and does not include the addi-
tional frequency-dependent matrix [K(ω)] which is related to the viscoelasticity
of the materials in the upper and the lower layers. In Eq. (84), the additional
frequency-dependent matrix [K(ω)] is constructed directly using the expression
of a(x, ω) defined by Eq. (23) without computing the Hilbert transform of re-
duced matrix [D(ω)]. The graphs of ν 7→ ‖q̂′(2πν)‖ and ν 7→ ‖q̂(2πν)‖ for
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ν in Bν are shown in Fig. 3. The effects of the frequency-dependent stiffness
matrix on the response of the structure are clearly seen in the frequency band
of analysis.

0 50 100 150 200 250 300 350 400
10

-7

10
-6

10
-5

10
-4

10
-3

Figure 3 Graphs of ν 7→ ‖q̂′(2πν)‖ (blue line) and ν 7→ ‖q̂(2πν)‖ (red line). Horizontal axis:
frequency ν in Hz.

Fig. 4 displays the graph of the relative error function

ω 7→ er(ω) =
‖[K ref(ω)]− [K̃(ω)]‖F

‖[K ref(ω)]‖F
,

in which ‖.‖F denotes the Frobenius norm, where [K ref(ω)] is the generalized
stiffness matrix that is directly computed using the analytical expression of
a(x, ω) defined by Eq. (23) (and called the reference), and where [K̃(ω)] =
[K0] + [K(ω)] for which [K(ω)] is computed using Eq. (37) with the numerical
scheme presented in Section 4 for which ug = 100, Nu = 10, 000 and Nq =
2. A convergence analysis has been performed with respect to Nu and Nq

yielding those values. It can be seen that the relative error is less than 10−5

in the frequency band Bν of analysis and consequently, the computation of
the Hilbert transform is very accurate. Figures 4 confirms that convergence is
effectively reached. Fig. 5 displays the two graphs of the function ω 7→ ‖q̂(ω)‖
that correspond (1) to the reference obtained by using [K ref(ω)] and (2) to the
use of [K(ω)] that is computed with Eq. (37). It can be seen that there are
almost no differences between the two graphs, and consequently, a validation of
the method proposed is obtained.
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Figure 4 Graph of the relative error function ν 7→ er(2πν). Horizontal axis: frequency ν in
Hz.
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Figure 5 Graphs of ν 7→ ‖q̂(2πν)‖ corresponding to the reference (black crossed line) and by
using the Hilbert transform of [D(ω)] (red circles). Horizontal axis: frequency ν in Hz.

5.1.3. Uncertainty quantification

The Monte Carlo numerical method is used to solve the stochastic prob-
lem defined by Eqs. (39) and (40). The convergence analysis is carried out in
analyzing the function Ns 7→ conv(Ns) defined by

conv(Ns) =
1

Ns

Ns∑

k=1

∫

B

∥∥∥Q̂(θk, ω)
∥∥∥
2

dω , (85)

in which θ1, . . . , θNs
correspond to Ns independent realizations. Fig. 6 displays

the graph of Ns 7→ conv(Ns). It can be seen that a reasonable mean-square
convergence is reached for Ns = 640.
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Figure 6 Graph of Ns 7→ conv(Ns). Horizontal axis: number Ns of independent realizations.

Hereinafter, the two random models with almost-sure causality (see Eqs. (39)
and (40)) and with the causality in mean (see Eqs. (47) and (48)) are compared.
It is assumed that [M] remains deterministic (δM = 0), and that δK = 0.15 and

δD = 0.7. Let Û
(N)
k (ω) = {Û(N)(ω)}k be the k-th component of Û

(N)(ω) =

[ΦN ] Q̂(ω). Let û
(N)
k (ω) = {û(N)(ω)}k be the k-th component of the response

calculated with computational model. The numbering of degrees of freedom is

such that, for k = 1, 2, 3, Û
(N)
k (ω) is related to the degree of freedom in direction

ek of the node located, respectively, at (0.5067 m, 0.1630 m, 0.1 m) (see Fig. 1),
at (0.2 m, 0.1174 m, 0 m) (see Fig. 3), and at (1 m, 0.1696 m, 0.1 m) (see
Fig. 1). For k = 1 and k = 2, the confidence region of the stochastic response

ω 7→ |Û (N)
k (ω)| with a probability level pc = 0.95, its statistical mean value,

and the deterministic response ω 7→ |û(N)
k (ω)|, are displayed, for the random

model with almost-sure causality, in Fig. 7 (for k = 1) and in Fig. 9 (for k = 2),
and are displayed, for the random model with causality in mean, in Fig. 8 (for
k = 1) and in Fig. 10 (for k = 2).
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Figure 7 Graph of ν 7→ |Û
(N)
1 (2πν)| for the probabilistic model with almost-sure causality:

95% confidence region (yellow region) and mean value (red line). Graph of ν 7→ |û1(2πν)|
(blue line). Horizontal axis: frequency ν in Hz.
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Figure 8 Graph of ν 7→ |Û
(N)
1 (2πν)| for the probabilistic model with causality in mean: 95%

confidence region (yellow region) and mean value (red line). Graph of ν 7→ |û1(2πν)| (blue
line). Horizontal axis: frequency ν in Hz.
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Figure 9 Graph of ν 7→ |Û
(N)
2 (2πν)| for the probabilistic model with almost-sure causality:

95% confidence region (yellow region) and mean value (red line). Graph of ν 7→ |û2(2πν)|
(blue line). Horizontal axis: frequency ν in Hz.
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Figure 10 Graph of ν 7→ |Û
(N)
2 (2πν)| for the probabilistic model with causality in mean: 95%

confidence region (yellow region) and mean value (red line). Graph of ν 7→ |û2(2πν)| (blue
line). Horizontal axis: frequency ν in Hz.

In Figs. 7 to 10, it can be seen that the confidence region is not the same for the
probabilistic model with almost-sure causality and for the probabilistic model
with causality in mean. The mean values are also different. It is important to
note that in some cases, it can be seen that the values given by the computational
model are outside of the 95% confidence interval for some frequencies, revealing
that the computational model is not robust with respect to uncertainties for
these frequencies.
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Let u 7→ p
|Û

(N)
3 |

(u;ω) be the probability density function of |Û (N)
3 (ω)|. Figs. 11,

12, and 13 display the graphs of u 7→ p|Û3|
(u; 2πν) at frequencies ν = 2 Hz,

ν = 200 Hz, and ν = 400 Hz, for the two probabilistic models with almost-
sure causality (red line) and with causality in mean (blue line). Figs. 11 to 13
show that the probabilistic model with causality in mean does not give a good
prediction (except for the low frequency 2 Hz that corresponds to a quasistatic
response because the fundamental eigenfrequency is about 3 Hz).
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Figure 11 Graph of u 7→ p
|Û3|

(u; 2πν) at frequency ν = 2 Hz. Probabilistic model with

almost-sure causality (red line) and probabilistic model with causality in mean (blue line).
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Figure 12 Graph of u 7→ p
|Û3|

(u; 2πν) at frequency ν = 200 Hz. Probabilistic model with

almost-sure causality (red line) and probabilistic model with causality in mean (blue line).
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Figure 13 Graph of u 7→ p
|Û3|

(u; 2πν) at frequency ν = 400 Hz. Probabilistic model with

almost-sure causality (red line) and probabilistic model with causality in mean (blue line).

Let δ[K̃](ω) be the dispersion coefficient of the random matrix [K̃(ω)] = [K0] +

[K(ω)], which is defined by

δ[K̃](ω) =
E{

∥∥∥[K̃(ω)]− E{[K̃(ω)]}
∥∥∥
2

F
} 1

2

∥∥∥E{[K̃(ω)]}
∥∥∥
F

.

Fig. 14 displays the graph of ω 7→ δ[K̃](ω) for the two probabilistic models, the

one with almost-sure causality (red line) and the other one with causality in
mean (blue line). It can be seen that, for the probabilistic model with causality
in mean, ω 7→ δ[K̃](ω) is approximatively constant in the frequency band of

analysis, while for the probabilistic model with almost-sure causality, function
ω 7→ δ[K̃](ω) strongly increases in the frequency band of analysis and becomes

constant with a multiplicative factor that is about 3. Such a result is consistent
with the results presented in Figs. 7 to 13.
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Figure 14 Graph of ν 7→ δ
[K̃]

(2πν). Probabilistic model with almost-sure causality (red line)

and probabilistic model with causality in mean (blue line). Horizontal axis: frequency ν in
Hz.
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6. Conclusion

In the framework of the nonparametric probabilistic approach of uncertain-
ties, a new stochastic modeling has been proposed for taking into account uncer-
tainties in the computational models of linear viscoelastic dynamical structures.
This method is based on the construction of a compatibility equation that al-
lows for satisfying the causality principle for the stochastic dynamical system
in order to obtain compatible realizations of the random stiffness matrix and
the random damping matrix at each frequency point of analysis. The numerical
developments that are necessary for implementing the compatibility equation in
the frequency domain has been detailed. The Cauchy principal-value integrals
over a half-infinite interval are computed using a Gaussian quadrature for a
certain class of functions, and an efficient interpolation technique has been in-
troduced for computing a function with values in the positive-definite matrices,
for a large number of sampling frequency points. The theory and the develop-
ments presented have been used for analyzing the propagation of uncertainties
in a computational model of a composite viscoelastic structure. The results ob-
tained show that it is very important to construct a probabilistic model which
satisfies the causality principle. The theory presented has been done in the
frequency domain and is independent of the choice of the reduced-order basis
that is chosen for constructing the reduced-order model (any basis of the ad-
missible vector space of the solution can be used). The method proposed could
be used for a linear dynamical system made up of a linear viscoelastic struc-
ture that exhibits one or several rotating parts with a constant rotation speed.
The reduced-order basis must be selected as explained in the literature and the
stochastic model would be applied to each sub-domain described in the rotat-
ing frame. Concerning the capability of the model proposed to be applied to a
linear viscoelastic structure with some local nonlinearities (such as stops), all
the developments presented could be reused by using a Fourier transform to go
from the time domain to the frequency domain, and then to come back in the
time domain with an inverse Fourier transform.
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