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ABSTRACT

The purpose of this paper is to revisit the Bianchi identities existing for the Riemann and Weyl
tensors in the combined framework of the formal theory of systems of partial differential equations
(Spencer cohomology, differential systems, formal integrability) and Algebraic Analysis (homolog-
ical algebra, differential modules, duality). In particular, we prove that the n2(n2 − 1)(n− 2)/24
generating Bianchi identities for the Riemann tensor are first order and can be easily described by
means of the Spencer cohomology of the first order Killing symbol in arbitrary dimension n ≥ 2.
Similarly, the n(n2− 1)(n+2)(n− 4)/24 generating Bianchi identities for the Weyl tensor are first
order and can be easily described by means of the Spencer cohomology of the first order conformal
Killing symbol in arbitrary dimension n ≥ 5. As a most surprising result, the 9 generating Bianchi
identities for the Weyl tensor are of second order in dimension n = 4 while the analogue of the Weyl
tensor has 5 components of third order in the metric with 3 first order generating Bianchi identi-
ties in dimension n = 3. The above results, which could not be obtained otherwise, are valid for
any non-degenerate metric of constant riemannian curvature and do not depend on any conformal
factor. They are checked in an Appendix produced by Alban Quadrat (INRIA, Lille) by means of
computer algebra. We finally explain why the work of Lanczos and followers is not coherent with
these results and must therefore be also revisited.

KEY WORDS: Riemann tensor; Weyl tensor; Bianchi identities, Spencer cohomology, Vessiot
structure equations; Poincaré sequence, Differential sequence; Differential modules; Compatibility
conditions; Lanczos tensor.

1) INTRODUCTION

The language of differential modules has been recently introduced in applications as a way to
understand the structural properties of systems of partial differential equations and the Poincaré
duality between geometry and physics by using adjoint operators or variational calculus with differ-
ential constraints ([2],[23],[38]). In order to explain briefly the ideas of Lanczos as a way to justify
the title of this paper, let us revisit briefly the foundation of n-dimensional elasticity theory as it can
be found today in any textbook. If x = (x1, ..., xn) is a point in space and ξ = (ξ1(x), ..., ξn(x)) is
the displacement vector, lowering the indices by means of the Euclidean metric, we may introduce
the ”small” deformation tensor ǫ = (ǫij = ǫji = (1/2)(∂iξj + ∂jξi)) with n(n+ 1)/2 (independent)
components (ǫi≤j). If we study a part of a deformed body by means of a variational principle, we
may introduce the local density of free energy ϕ(ǫ) = ϕ(ǫij |i ≤ j) and vary the total free energy
Φ =

∫

ϕ(ǫ)dx with dx = dx1∧ ...∧dxn by introducing σij = ∂ϕ/∂ǫij for i ≤ j and ”deciding” to de-
fine the stress tensor σ by a symmetric matrix with σij = σji in a purely artificial way within such
a variational principle. Indeed, the usual Cauchy Tetrahedron device (1828) assumes that each
element of a boundary surface is acted on by a surface density of force ~σ with a linear dependence
~σ = (σir(x)nr) on the outward normal unit vector ~n = (nr) and does not make any assumption
on the stress tensor. It is only by an equilibrium of forces and couples, namely the well known
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phenomenological static torsor equilibrium, that one can prove the symmetry of σ. However, if we
assume this symmetry, we may now consider the summation δΦ =

∫

σijδǫijdx =
∫

σir∂rδξidx. An
integration by parts and a change of sign produce the integral

∫

(∂rσ
ir)δξidx leading to the stress

equations ∂rσ
ir = 0. This classical approach to elasticity theory, based on invariant theory with

respect to the group of rigid motions, cannot therefore describe equilibrium of torsors by means
of a variational principle where the proper torsor concept is totally lacking. It is however widely
used through the technique of ” finite elements ” where it can also be applied to electromagnetism
(EM) with similar quadratic (piezoelectricity) or cubic (photoelasticity) lagrangian integrals. In

this situation, the 4-potential A of EM is used in place of ξ while the EM field dA = F = ( ~B, ~E)
is used in place of ǫ.

However, there exists another equivalent procedure dealing with a variational calculus with

constraint. Indeed, as we shall see later on, the deformation tensor is not any symmetric ten-
sor as it must satisfy n2(n2 − 1)/12 Riemann compatibility conditions (CC), that is the only
condition ∂22ǫ11 + ∂11ǫ22 − 2∂12ǫ12 = 0 when n = 2. In this case, introducing the Lagrange

multiplier λ, we have to vary the new integral
∫

[ϕ(ǫ) + λ(∂22ǫ11 + ∂11ǫ22 − 2∂12ǫ12)]dx for an

arbitrary ǫ. Setting λ = −φ, a double integration by parts now provides the parametrization
σ11 = ∂22φ, σ

12 = σ21 = −∂12φ, σ
22 = ∂11φ of the stress equations by means of the Airy function

φ and the formal adjoint of the Riemann CC ([1],[26]). The same variational calculus with con-
straint may thus also be used in order to avoid the introduction of the EM potential A by using
the Maxwell equations dF = 0 in place of the Riemann CC for ǫ but, in all these situations, we
have to eliminate the Lagrange multipliers or use them as potentials.

In arbitrary dimension, the above compatibility conditions are nothing else but the linearized
Riemann tensor in Riemannian geometry, a crucial mathematical tool in the theory of general
relativity and a good reason for studying the work of Cornelius Lanczos (1893-1974) as it can be
found in ([14],[15]) or in a few modern references ([5],[6],[7],[18],[36]). The starting point of Lanczos
has been to take EM as a model in order to introduce a Lagrangian that should be quadratic in
the Riemann tensor (ρkl,ij ⇒ ρij = ρri,rj = ρji ⇒ ρ = ωijρij) while considering it independently

of its expression through the second order derivatives of a metric (ωij) with inverse (ωij) or the
first order derivatives of the corresponding Christoffel symbols (γk

ij). According to the previous
paragraph, the corresponding variational calculusmust involve PD constraints made by the Bianchi
identities and the new lagrangian to vary must therefore contain as many Lagrange multipliers as

the number of generating Bianchi identities that can be written under the form:

∇rρ
k
l,ij +∇iρ

k
l,jr +∇jρ

k
l,ri = 0⇒ ∇rρ

r
l,ij = ∇iρlj −∇jρli

Meanwhile, Lanczos and followers have been looking for a kind of ”parametrization ” by using
the corresponding ”Lanczos potential ”, exactly like the Lagrange multiplier has been used as an

Airy potential for the stress equations. However, we shall prove that the definition of a Riemann

candidate cannot be done without the knowledge of the Spencer cohomology. Moreover, we have
pointed out the existence of well known couplings between elasticity and electromagnetism, namely
piezoelectricity and photoelasticity, which are showing that, in the respective Lagrangians, the EM
field is on equal footing with the deformation tensor and not with the Riemann tensor. The shift

by one step backwards that must be used in the physical interpretation of the differential sequences
involved cannot therefore be avoided. Meanwhile, the ordinary derivatives ∂i can be used in place
of the covariant derivatives ∇i when dealing with the linearized framework as the Christoffel sym-
bols vanish when Euclidean or Minkowskian metrics are used.

The next tentative of Lanczos has been to extend his approach to the Weyl tensor:

τkl,ij = ρkl,ij −
1

(n− 2)
(δki ρlj − δkj ρli + ωljω

ksρsi − ωliω
ksρsj) +

1

(n− 1)(n− 2)
(δki ωlj − δkj ωli)ρ

The main problem is now that the Spencer cohomology of the symbols of the conformal Killing
equations, in particular the 2-acyclicity, will be absolutely needed in order to provide the Weyl
tensor and its relation with the Riemann tensor. It will follow that the CC for the Weyl tensor
may not be first order contrary to the CC for the Riemann tensor made by the Bianchi identities,
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another reason for justifying the shift by one step already quoted. In order to provide an idea of
the difficulty involved, let us define the following tensors:

Schouten = (σij = ρij −
1

2(n− 1)
ωijρ)⇒ Cotton = (σk,ij = ∇iσkj −∇jσki)

An elementary but tedious computation allows to prove the formula:

∇rτ
r
k,ij =

(n− 3)

(n− 2)
σk,ij

Then, of course, if Einstein equations in vacuum are valid, the Schouten and Cotton tensors vanish
but the left member is by no way a differential identity for the Weyl tensor and great care must be

taken when mixing up mathematics with physics.

The author thanks Prof. Lars Andersson (Einstein Institute, Postdam) for having suggested
him to study the Lanczos potential within this new framework and Alban Quadrat (INRIA, Lille),
a specialist of control theory and computer algebra, for having spent time checking directly in an
Appendix the many striking results contained in this paper.

2) HOMOLOGICAL ALGEBRA

We now need a few definitions and results from homological algebra ([3],[9],[17],[23],[37]). In the
following two classical theorems, A,B,C,D,K,L,M,N,Q,R, S, T will be modules over a ring A or
vector spaces over a field k and the linear maps are making the diagrams commutative. We start
recalling the well known Cramer’s rule for linear systems through the exactness of the ker/coker
sequence for modules. When f : M → N is a linear map (homomorphism), we introduce the
so-called ker/coker long exact sequence:

0 −→ ker(f) −→M
f
−→ N −→ coker(f) −→ 0

In the case of vector spaces over a field k, we successively have rk(f) = dim(im(f)), dim(ker(f)) =
dim(M) − rk(f) and dim(coker(f)) = dim(N) − rk(f) is the proper number of compatibility
conditions. We obtain by substraction:

dim(ker(f))− dim(M) + dim(N)− dim(coker(f)) = 0

In the case of modules, we may replace the dimension by the rank with rkA(M) = r when F ≃ Ar

is the greatest free submodule of M and obtain the same relations because of the additive property
of the rank ([23],[24],[33]). The following theorems will be crucially used through the whole paper:

SNAKE THEOREM 2.1: When one has the following commutative diagram resulting from
the two central vertical short exact sequences by exhibiting the three corresponding horizontal
ker/coker exact sequences:

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓f ↓f ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
↓ ↓g ↓g′ ↓

0 −→ M −→ C −→ C′ −→ S −→ 0
↓ ↓ ↓
0 0 0

then there exists a connecting map M −→ Q both with a long exact sequence:

0 −→ K −→ L −→M −→ Q −→ R −→ S −→ 0.
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Proof: We construct the connecting map by using the following succession of elements:

a · · · a′ −→ q
... ↓
b −→ b′

↓
...

m −→ c · · · 0

Indeed, starting with m ∈ M , we may identify it with c ∈ C in the kernel of the next horizontal
map. As g is an epimorphism, we may find b ∈ B such that c = g(b) and apply the next horizontal
map to get b′ ∈ B′ in the kernel of g′ by the commutativity of the lower square. Accordingly, there
is a unique a′ ∈ A′ such that b′ = f ′(a′) and we may finally project a′ to q ∈ Q. The map is well
defined because, if we take another lift for c in B, it will differ from b by the image under f of a
certain a ∈ A having zero image in Q by composition. The remaining of the proof is similar. The
above explicit procedure is called ” chase ” and will not be repeated.

Q.E.D.

We may now introduce cohomology theory through the following definition:

DEFINITION 2.2: If one has a sequence L
f
−→ M

g
−→ N , that is if g ◦ f = 0, then one may

introduce the submodules coboundary = B = im(f) ⊆ ker(g) = cocycle = Z ⊆ M and define
the cohomology at M to be the quotient H = Z/B. The sequence is said to be exact at M if
im(f) = ker(g).

COHOMOLOGY THEOREM 2.3: The following commutative diagram where the two central
vertical sequences are long exact sequences and the horizontal lines are ker/coker exact sequences:

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓f ↓f ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
· · · · · · ↓ · · · ↓g · · · ↓g′ · · · ↓ · · · · · · · · · cut
0 −→ M −→ C −→ C′ −→ S −→ 0

↓ ↓h ↓h′ ↓
0 −→ N −→ D −→ D′ −→ T −→ 0

↓ ↓ ↓
0 0 0

induces an isomorphism between the cohomology at M in the left vertical column and the kernel
of the morphism Q→ R in the right vertical column.

Proof: Let us “cut” the preceding diagram along the dotted line. We obtain the following two
commutative and exact diagrams with im(g) = ker(h), im(g′) = ker(h′):

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓f ↓f ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
↓ ↓g ↓g′

0 −→ cocycle −→ im(g) −→ im(g′)
↓ ↓
0 0
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0 0 0
↓ ↓ ↓

0 −→ cocycle −→ ker(h) −→ ker(h′)
↓ ↓ ↓

0 −→ M −→ C −→ C′

↓ ↓h ↓h′

0 −→ N −→ D −→ D′

↓ ↓
0 0

Using the snake theorem, we successively obtain the following long exact sequences:

=⇒ ∃ 0 −→ K −→ L
g
−→ cocycle −→ Q −→ R

=⇒ ∃ 0 −→ coboundary −→ cocycle −→ ker (Q −→ R) −→ 0
=⇒ cohomology ≃ ker (Q −→ R)

Q.E.D.

We finally quote for a later use:

PROPOSITION 2.4: If one has a short exact sequence:

0 −→M ′ f
−→M

g
−→M ′′ −→ 0

then the following conditions are equivalent:
• There exists an epimorphism u : M →M ′ such that u ◦ f = idM ′ (left inverse of f).
• There exists a monomorphism v : M ′′ →M such that g ◦ v = idM ′′ (right inverse of g).

DEFINITION 2.5: In the above situation, we say that the short exact sequence splits. The
relation f ◦ u + v ◦ g = idM provides an isomorphism (u, g) : M → M ′ ⊕ M ′′ with inverse
f + v : M ′ ⊕M”→M . The short exact sequence 0→ Z→ Q→ Q/Z→ 0 cannot split over Z.

3) DIFFERENTIAL SYSTEMS

If E is a vector bundle over the base manifold X with projection π and local coordinates
(x, y) = (xi, yk) projecting onto x = (xi) for i = 1, ..., n and k = 1, ...,m, identifying a map
with its graph, a (local) section f : U ⊂ X → E is such that π ◦ f = id on U and we write
yk = fk(x) or simply y = f(x). For any change of local coordinates (x, y)→ (x̄ = ϕ(x), ȳ = A(x)y)
on E, the change of section is y = f(x) → ȳ = f̄(x̄) such that f̄ l(ϕ(x) ≡ Al

k(x)f
k(x). The

new vector bundle E∗ obtained by changing the transition matrix A to its inverse A−1 is called
the dual vector bundle of E. In particular, let T be the tangent vector bundle of vector fields
on X , T ∗ be the cotangent vector bundle of 1-forms on X and SqT

∗ be the vector bundle of
symmetric q-covariant tensors on X . Differentiating with respect to xi and using new coor-
dinates yki in place of ∂if

k(x), we obtain ȳlr∂iϕ
r(x) = Al

k(x)y
k
i + ∂iA

l
k(x)y

k. Introducing a
multi-index µ = (µ1, ..., µn) with length | µ |= µ1 + ... + µn and prolonging the procedure up
to order q, we may construct in this way, by patching coordinates, a vector bundle Jq(E) over
X , called the jet bundle of order q with local coordinates (x, yq) = (xi, ykµ) with 0 ≤| µ |≤ q

and yk0 = yk. We have therefore epimorphisms πq+r
q : Jq+r(E) → Jq(E), ∀q, r ≥ 0 and the

short exact sequences 0 → SqT
∗ ⊗ E → Jq(E)

π
q
q−1

−→ Jq−1(E) → 0. For a later use, we shall set
µ + 1i = (µ1, ..., µi−1, µi + 1, µi+1, ..., µn) and define the operator jq : E → Jq(E) : f → jq(f)
on sections by the local formula jq(f) : (x) → (∂µf

k(x) | 0 ≤| µ |≤ q, k = 1, ...,m). Moreover, a
jet coordinate ykµ is said to be of class i if µ1 = ... = µi−1 = 0, µi 6= 0. We finally inroduce the

Spencer operator D : Jq+1(E)→ T ∗⊗Jq(E) : fq+1 → j1(fq)−fq+1 with (Dfq+1)
k
µ,i = ∂if

k
µ−f

k
µ+1i .

DEFINITION 3.1: A system of PD equations of order q on E is a vector subbundle Rq ⊂ Jq(E)
locally defined by a constant rank system of linear equations for the jets of order q of the
form aτµk (x)ykµ = 0. Its first prolongation Rq+1 ⊂ Jq+1(E) will be defined by the equations
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aτµk (x)ykµ = 0, aτµk (x)ykµ+1i + ∂ia
τµ
k (x)ykµ = 0 which may not provide a system of constant rank as

can easily be seen for xyx − y = 0⇒ xyxx = 0 where the rank drops at x = 0.

The next definition of formal integrability will be crucial for our purpose.

DEFINITION 3.2: A system Rq is said to be formally integrable if the Rq+r are vector bundles
∀r ≥ 0 (regularity condition) and no new equation of order q + r can be obtained by prolonging
the given PD equations more than r times, ∀r ≥ 0 or, equivalently, we have induced epimorphisms
πq+r+1
q+r : Rq+r+1 → Rq+r, ∀r ≥ 0 allowing to compute ” step by step ” formal power series solutions.

A formal test first sketched by C. Riquier in 1910, has been improved by M. Janet in 1920
([10],[19]) and by E. Cartan in 1945 ([4]), finally rediscovered in 1965, totally independently, by B.
Buchberger who introduced Gröbner bases, using the name of his thesis advisor ([25]). However
all these tentatives have been largely superseded and achieved in an intrinsic way, again totally
independently of the previous approaches, by D.C. Spencer in 1965 ([19],[22],[39]).

DEFINITION 3.3: The family gq+r of vector spaces over X defined by the purely linear equa-
tions aτµk (x)vkµ+ν = 0 for | µ |= q, | ν |= r is called the symbol at order q+r and only depends on gq.

The following procedure, where one may have to change linearly the independent variables if

necessary, is the key towards the next definition which is intrinsic even though it must be checked
in a particular coordinate system called δ-regular (See [19],[22],[23] and [39] for more details):

• Equations of class n: Solve the maximum number βn
q of equations with respect to the jets of

order q and class n. Then call (x1, ..., xn) multiplicative variables.

−−− −−−−−−−−−−−−−

• Equations of class i: Solve the maximum number of remaining equations with respect to the
jets of order q and class i. Then call (x1, ..., xi) multiplicative variables and (xi+1, ..., xn) non-

multiplicative variables.

−−−−−−−−−−−−−−−−−

• Remaining equations equations of order ≤ q − 1: Call (x1, ..., xn) non-multiplicative variables.

DEFINITION 3.4: The above multiplicative and non-multiplicative variables can be visualized
respectively by integers and dots in the corresponding Janet board. A system of PD equations is
said to be involutive if its first prolongation can be achieved by prolonging its equations only with
respect to the corresponding multiplicative variables. The following numbers are called characters:

αi
q = m(q + n− i− 1)!/((q − 1)!(n− i)!)− βi

q, ∀1 ≤ i ≤ n ⇒ α1
q ≥ ... ≥ αn

q

For an involutive system, (yβ
n
q +1, ..., ym) can be given arbitrarily.

For an involutive system of order q in the above solved form, we shall use to denote by ypri
the principal jet coordinates, namely the leading terms of the solved equations in the sense of
involution, and any formal derivative of a principal jet coordinate is again a principal jet coor-
dinate. The remaining jet coordinates will be called parametric jet coordinates and denoted by ypar.

PROPOSITION 3.5: Using the Janet board and the definition of involutivity, we get:

dim(gq+r) =
∑n

i=1

(r + i− 1)!

r!(i − 1)!
αi
q ⇒ dim(Rq+r) = dim(Rq−1) +

∑n

i=1

(r + i)!

r!i!
αi
q

Let now ∧sT ∗ be the vector bundle of s-forms on X with usual bases {dxI = dxi1 ∧ ... ∧ dxis}
where we have set I = (i1 < ... < is). . Moreover, if ξ, η ∈ T are two vector fields on X , we may
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define their bracket [ξ, η] ∈ T by the local formula ([ξ, η])i(x) = ξr(x)∂rη
i(x)−ηs(x)∂sξ

i(x) leading
to the Jacobi identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0, ∀ξ, η, ζ ∈ T . We may finally introduce
the exterior derivative d : ∧rT ∗ → ∧r+1T ∗ : ω = ωIdx

I → dω = ∂iωIdx
i ∧ dxI with d2 = d ◦ d ≡ 0

in the Poincaré sequence:

∧0T ∗ d
−→ ∧1T ∗ d

−→ ∧2T ∗ d
−→ ...

d
−→ ∧nT ∗ −→ 0

In a purely algebraic setting, one has ([19],[22],[23],[24],[39]):

PROPOSITION 3.6: There exists a map δ : ∧sT ∗ ⊗ Sq+1T
∗ ⊗ E → ∧s+1T ∗ ⊗ SqT

∗ ⊗E which
restricts to δ : ∧sT ∗ ⊗ gq+1 → ∧

s+1T ∗ ⊗ gq and δ2 = δ ◦ δ = 0.

Proof: Let us introduce the family of s-forms ω = {ωk
µ = vkµ,Idx

I} and set (δω)kµ = dxi ∧ωk
µ+1i .

We obtain at once (δ2ω)kµ = dxi ∧ dxj ∧ ωk
µ+1i+1j = 0.

Q.E.D.

The kernel of each δ in the first case is equal to the image of the preceding δ but this may no
longer be true in the restricted case and we set (See [22], p 85-88 for more details):

DEFINITION 3.7: We denote by Bs
q+r(gq) ⊆ Zs

q+r(gq) and Hs
q+r(gq) = Zs

q+r(gq)/B
s
q+r(gq)

respectively the coboundary space, cocycle space and cohomology space at ∧sT ∗ ⊗ gq+r of the
restricted δ-sequence which only depend on gq and may not be vector bundles. The symbol gq is
said to be s-acyclic if H1

q+r = ... = Hs
q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and finite type if

gq+r = 0 becomes trivially involutive for r large enough. For a later use, we notice that a symbol
gq is involutive and of finite type if and only if gq = 0. Finally, SqT

∗⊗E is involutive ∀q ≥ 0 if we
set S0T

∗ ⊗ E = E. We shall prove later on that any symbol gq is 1-acyclc.

CRITERION THEOREM 3.8: If πq+1
q : Rq+1 → Rq is an epimorphism of vector bundles and

gq is 2-acyclic (involutive), then Rq is formally integrable (involutive).

EXAMPLE 3.9: The system R2 defined by the three PD equations

Φ3 ≡ y33 = 0, Φ2 ≡ y23 − y11 = 0, Φ1 ≡ y22 = 0

is homogeneous and thus automatically formally integrable but g2 and g3 are not involutive though
finite type because g4 = 0 and the sequence 0→ ∧3T ∗ ⊗ g3 → 0 is not exact. Elementary compu-
tations of ranks of matrices shows that the δ-map:

0→ ∧2T ∗ ⊗ g3
δ
−→ ∧3T ∗ ⊗ g2 → 0

is a 3 × 3 isomorphism and thus g3 is 2-acyclic with dim(g3) = 1, a crucial intrinsic property
totally absent from any ”old” work and quite more easy to handle than its Koszul dual. We invite
the reader to treat similarly the system y33 − y11 = 0, y23 = 0, y22 − y11 = 0 and compare.

The main use of involution is to construct differential sequences that are made up by successive
compatibility conditions (CC) of order one. In particular, when Rq is involutive, the differential

operator D : E
jq
→ Jq(E)

Φ
→ Jq(E)/Rq = F0 of order q with space of solutions Θ ⊂ E is said to be

involutive and one has the canonical linear Janet sequence ([22], p 144):

0 −→ Θ −→ E
D
−→ F0

D1−→ F1
D2−→ ...

Dn−→ Fn −→ 0

where each other operator is first order involutive and generates the CC of the preceding one with
the Janet bundles Fr = ∧rT ∗ ⊗ Jq(E)/(∧rT ∗ ⊗ Rq + δ(∧r−1T ∗ ⊗ Sq+1T

∗ ⊗ E)). As the Janet
sequence can be ”cut at any place”, that is can also be constructed anew from any intermediate
operator, the numbering of the Janet bundles has nothing to do with that of the Poincaré sequence

for the exterior derivative, contrary to what many physicists still believe (n = 3 with D = div pro-
vides the simplest example). Moreover, the fiber dimension of the Janet bundles can be computed
at once inductively from the board of multiplicative and non-multiplicative variables that can be
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exhibited for D by working out the board for D1 and so on. For this, the number of rows of this
new board is the number of dots appearing in the initial board while the number nb(i) of dots in
the column i just indicates the number of CC of class i for i = 1, ..., n with nb(i) < nb(j), ∀i < j.

MAIN THEOREM 3.10: When Rq ⊂ Jq(E) is not involutive but formally integrable and its

symbol gq becomes 2-acyclic after exactly s prolongations, the generating CC are of order s+1 (See
[22], Example 6, p 120 and previous Example).

Proof: We may introduce the canonical epimorphism Φ = Jq(E)→ Jq(E)/Rq = F0 and denote by
D = Φ ◦ jq : E → F0 the corresponding differential operator. As before, we may write formally
Φτ (x, yq) ≡ aτµ,k(x)y

k
µ = zτ , obtain diΦ

τ ≡ aτµ,k(x)y
k
µ+1i + ∂ia

τ
µ,k(x)y

k
µ = zτi for the first prolonga-

tion ρ1(Φ) : Jq+1(E) → j1(F0) and so on with ρr(Φ) : Jq+r(E) → Jr(F0) defined by dνΦ
τ = zτν

with 0 ≤| ν |≤ r. Setting Br = im(ρr(Φ)) ⊆ Jr(F0), we may introduce the canonical epimorphism
Ψ : Js+1(F0) → Js+1(F0)/Bs+1 = F1. Taking into account the formal integrability of Rq (care),
we obtain by composition of jets the following commutative prolongation diagrams ∀r ≥ 1:

0 0 0 0
↓ ↓ ↓ ↓

0→ gq+r+s+1 → Sq+r+s+1T
∗ ⊗ E

σr+s+1(Φ)
−→ Sr+s+1T

∗ ⊗ F0
σr(Ψ)
−→ SrT

∗ ⊗ F1

↓ ↓ ↓ ↓

0→ Rq+r+s+1 → Jq+r+s+1(E)
ρr+s+1(Φ)
−→ Jr+s+1(F0)

ρr(Ψ)
−→ Jr(F1)

↓ ↓ ↓ ↓

0→ Rq+r+s → Jq+r+s(E)
ρr+s(Φ)
−→ Jr+s(F0)

ρr−1(Ψ)
−→ Jr−1(F1)

↓ ↓ ↓ ↓
0 0 0 0

and the only thing we know is that the bottom sequence is exact for r = 1 by construction and
that the upper induced sequence is exact when r = 0 when σ0(Ψ) = σ(Ψ) is the restriction of Ψ
to Ss+1T

∗ ⊗ F0 ⊂ Js+1(F0) after a chase in the following commutative diagram:

0 0 0 0
↓ ↓ ↓ ↓

0→ gq+s+1 → Sq+s+1T
∗ ⊗ E

σs+1(Φ)
−→ Ss+1T

∗ ⊗ F0
σ(Ψ)
−→ F1

↓ ↓ ↓ ↓

0→ Rq+s+1 → Jq+s+1(E)
ρs+1(Φ)
−→ Js+1(F0)

Ψ
−→ F1

↓ ↓ ↓

0→ Rq+s → Jq+s(E)
ρs(Φ)
−→ Js(F0)

↓ ↓ ↓
0 0 0

because Rq is formally integrable (care). Appying now the δ-maps to the upper row of the previous
prolongation diagram and proceeding by induction, starting from r = 1, we shall prove that the
upper row is exact. Indeed, setting hr+s = im(σr+s(Φ)) ⊆ Sr+sT

∗ ⊗ F0, we may cut the full
commutative diagram thus obtained as in the proof of the previous ”cohomology theorem” into
the following two commutative diagrams:

0 0 0
↓ ↓ ↓

0→ gq+r+s+1 → Sq+r+s+1T
∗ ⊗ E → hr+s+1 → 0

↓ ↓ ↓
0→ T ∗ ⊗ gq+r+s → T ∗ ⊗ Sq+r+sT

∗ ⊗ E → T ∗ ⊗ hr+s → 0
↓ ↓ ↓

0→ ∧2T ∗ ⊗ gq+r+s−1 → ∧2T ∗ ⊗ Sq+r+s−1T
∗ ⊗ E → ∧2T ∗ ⊗ hr+s−1 → 0

↓ ↓
0→ ∧3T ∗ ⊗ Sq+r+s−2T

∗ ⊗ E = ∧3T ∗ ⊗ Sq+r+s−2T
∗ ⊗ E

8



0 0 0
↓ ↓ ↓

0→ hr+s+1 → Sr+s+1T
∗ ⊗ F0 → SrT

∗ ⊗ F1

↓ ↓ ↓
0→ T ∗ ⊗ hr+s → T ∗ ⊗ Sr+sT

∗ ⊗ F0 → T ∗ ⊗ Sr−1T
∗ ⊗ F1

↓ ↓
0→ ∧2T ∗ ⊗ hr+s−1 → ∧2T ∗ ⊗ Sr+s−1T

∗ ⊗ F0

An easy chase is showing that gq is always 1-acyclic and that we have an induced monomorphism
0→ hr+s+1 → T ∗⊗hr+s. The crucial result that no classical approach could provide is that, when-
ever gq+s is 2-acyclic, then the full right column of the first diagram is also exact or, equivalently,
hr+s+1 ⊆ Sr+s+1T

∗ ⊗ F0 is the r-prolongation of the symbol hs+1 ⊆ Ss+1T
∗ ⊗ F0. Using finally

the second diagram, it follows by induction and a chase that the upper row is exact whenever the
central row is exact, a result achieving the first part of the proof.
We may also use an inductive chase in the full diagram, showing directly that the cohomology at
Sr+s+1T

∗ ⊗ F0 of the upper sequence:

0→ gq+r+s+1 → Sq+r+s+1T
∗ ⊗ E

σr+s+1(Φ)
−→ Sr+s+1T

∗ ⊗ F0
σr(Ψ)
−→ SrT

∗ ⊗ F1

is the same as the δ-cohomology of the left column at ∧2T ∗⊗gq+r+s−1 because all the other vertical
δ-sequences are exact.
Finally, starting from the ker/coker long exact sequence allowing to define Ψ and ending with
F1 while taking into account that the upper symbol row of the prolongation diagram is exact,
we deduce by an inductive chase that the central row is also exact. It follows that Br+s+1 is the
r-prolongation of Bs+1 which is formally integrable because a chase shows that Br+s+1 projects
onto Br+s, ∀r ≥ 1.The case of an involutive symbol can be studied similarly by choosing s = 0
and explains why all the CC operators met in the Janet sequence are first order involutive operators.

Q.E.D.

As we shall see through explicit examples, in particular the conformal Killing system, there is
no rule in general in order to decide about the minimum number s′ ≥ 0 such that hs+s′+1 becomes
2-acyclic in order to repeat the above procedure. However, replacing r by s′ + 2 and chasing in
the first of the last two diagrams, we have:

COROLLARY 3.11: The symbol hs+s′+1 becomes 2-acyclic whenever the symbol gq+s+s′ be-

comes 3-acyclic.

DEFINITION 3.12: More generally, a differential sequence is said to be formally exact if each
operator generates the CC of the operator preceding it.

EXAMPLE 3.13: ([16],§38, p 40) The second order system y11 = 0, y13−y2 = 0 is neither formally
integrable nor involutive. Indeed, we get d3y11− d1(y13− y2) = y12 and d3y12− d2(y13− y2) = y22,
that is to say each first and second prolongation does bring a new second order PD equation.
Considering the new system y22 = 0, y12 = 0, y13 − y2 = 0, y11 = 0, the (evident !) permutation
of coordinates (1, 2, 3) → (3, 2, 1) provides the following involutive second order system with one
equation of class 3, 2 equations of class 2 and 1 equation of clas 1:















Φ4 ≡ y33 = 0
Φ3 ≡ y23 = 0
Φ2 ≡ y22 = 0
Φ1 ≡ y13 − y2 = 0

1 2 3
1 2 •
1 2 •
1 • •

We have α3
2 = 0, α2

2 = 0, α1
2 = 2 and we get therefore the (formally exact) Janet sequence:

0 −→ Θ −→ 1 −→ 4 −→ 4 −→ 1 −→ 0
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However, keeping only Φ1 and Φ4 while using the fact that d33 commutes with d13−d2, we get the
formally exact sequence 0→ Θ→ 1→ 2→ 1→ 0 which is not a Janet sequence though the Euler-
Poincaré characteristics vanishes in both cases with 1−4+4−1 = 1−2+1 = 0 ([22], p 159 and [23]).

EXAMPLE 3.14: Coming back to Example 3.9 while intoducing the three second order oper-
ators P = d22, Q = d23 − d11, R = d33 which are commuting between themselves, we have now
q = 2, s = 1 and we obtain the second order CC:

Ψ3 ≡ PΦ2 −QΦ1 = 0, Ψ2 ≡ RΦ1 − PΦ3 = 0, Ψ1 = QΦ3 −RΦ2 = 0

Exactly like in the Poincaré sequence, we finally get the new second order CC:

PΨ1 +QΨ2 +RΨ3 = 0

Writing out only the number of respective equations, we obtain the formally exact differential
sequence with vanishing Euler-Poincaré characteristics:

0→ Θ→ 1→ 3→ 3→ 1→ 0

which is not a Janet sequence. We let the reader check that h2 is not 2-acyclic but that h3 is
2-acyclic and thus s′ = 1 because 2 + 1 + 1 = 4 and g4 = 0 is trivially involutive. A similar
situation will be met with the conformal Killing equations.

We may finally extend the restriction D : Rq+1 → T ∗ ⊗Rq of the Spencer operator to:

D : ∧rT ∗ ⊗Rq+1 → ∧
r+1T ∗ ⊗Rq : α⊗ fq+1 → dα⊗ fq + (−1)rα ∧Dfq+1 ⇒ D2 = D ◦D ≡ 0

in order to construct the first Spencer sequence which is another resolution of Θ because the kernel
of the first D is such that fq+1 ∈ Rq+1, Dfq+1 = 0 ⇔ fq+1 = jq+1(f), f ∈ Θ when q is large
enough. This standard notation for the Spencer operator must not be confused with the same no-
tation used in the next section for the ring of differential operators but the distinction will always
be pointed out whenever a confusion could exist.

4) DIFFERENTIAL MODULES

Let K be a differential field, that is a field containing Q with n commuting derivations

{∂1, ..., ∂n} with ∂i∂j = ∂j∂i = ∂ij , ∀i, j = 1, ..., n such that ∂i(a + b) = ∂ia + ∂ib, ∂i(ab) =
(∂ia)b + a∂ib, ∀a, b ∈ K and ∂i(1/a) = −(1/a2)∂ia, ∀a ∈ K. Using an implicit summation
on multi-indices, we may introduce the (noncommutative) ring of differential operators D =
K[d1, ..., dn] = K[d] with elements P = aµdµ such that | µ |< ∞ and dia = adi + ∂ia. The
highest value of |µ| with aµ 6= 0 is called the order of the operator P and the ring D with multi-
plication (P,Q) −→ P ◦Q = PQ is filtred by the order q of the operators. We have the filtration

0 ⊂ K = D0 ⊂ D1 ⊂ ... ⊂ Dq ⊂ ... ⊂ D∞ = D. Moreover, it is clear that D, as an algebra, is
generated by K = D0 and T = D1/D0 with D1 = K ⊕ T if we identify an element ξ = ξidi ∈ T
with the vector field ξ = ξi(x)∂i of differential geometry, but with ξi ∈ K now. It follows that
D = DDD is a bimodule over itself, being at the same time a left D-module DD by the composition
P −→ QP and a right D-module DD by the composition P −→ PQ with DrDs = Dr+s, ∀r, s ≥ 0.

If we introduce differential indeterminates y = (y1, ..., ym), we may extend diy
k
µ = ykµ+1i to

Φτ ≡ aτµk ykµ
di−→ diΦ

τ ≡ aτµk ykµ+1i + ∂ia
τµ
k ykµ for τ = 1, ..., p. Therefore, setting Dy1 + ...+Dym =

Dy ≃ Dm and calling I = DΦ ⊂ Dy the differential module of equations, we obtain by residue
the differential module or D-module M = Dy/DΦ, denoting the residue of ykµ by ȳkµ when there
can be a confusion. Introducing the two free differential modules F0 ≃ Dm0 , F1 ≃ Dm1 , we obtain

equivalently the free presentation F1
d1−→ F0 → M → 0 of order q when m0 = m,m1 = p and

d1 = D = Φ ◦ jq with (P1, ..., Pp) → (P1, ..., Pp) ◦ D = (Q1, ..., Qm). We shall moreover assume
that D provides a strict morphism, namely that the corresponding system Rq is formally inte-
grable. It follows that M can be endowed with a quotient filtration obtained from that of Dm

which is defined by the order of the jet coordinates yq in Dqy. We have therefore the inductive
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limit 0 = M−1 ⊆ M0 ⊆ M1 ⊆ ... ⊆ Mq ⊆ ... ⊆ M∞ = M with diMq ⊆ Mq+1 but it is important
to notice that DrDq = Dq+r ⇒ DrMq = Mq+r, ∀q, r ≥ 0 ⇒ M = DMq, ∀q ≥ 0 in this particular

case. It also follows from noetherian arguments and involution that DrIq = Iq+r , ∀r ≥ 0 though
we have in general only DrIs ⊆ Ir+s, ∀r ≥ 0, ∀s < q. As K ⊂ D, we may introduce the forgetful

functor for : mod(D)→ mod(K) : DM → KM .

More generally, introducing the successive CC as in the preceding section while changing slightly
the numbering of the respective operators, we may finally obtain the free resolution of M , namely

the exact sequence ...
d3−→ F2

d2−→ F1
d1−→ F0 −→ M −→ 0. In actual practice, one must never

forget that D = Φ ◦ jq acts on the left on column vectors in the operator case and on the right on

row vectors in the module case. Also, with a slight abuse of language, when D = Φ ◦ jq is involu-
tive as in section 3 and thus Rq = ker(Φ) is involutive, one should say that M has an involutive

presentation of order q or that Mq is involutive.

DEFINITION 4.1: Setting P = aµdµ ∈ D
ad
←→ ad(P ) = (−1)|µ|dµa

µ ∈ D, we have ad(ad(P )) =
P and ad(PQ) = ad(Q)ad(P ), ∀P,Q ∈ D. Such a definition can be extended to any matrix of
operators by using the transposed matrix of adjoint operators and we get:

< λ,Dξ >=< ad(D)λ, ξ > + div (...)

from integration by part, where λ is a row vector of test functions and <> the usual contraction.
We quote the useful formulas [ad(ξ), ad(η)] = ad(ξ)ad(η) − ad(η)ad(ξ) = −ad([ξ, η]), ∀ξ, η ∈ T
(care about the minus sign) and rkD(D) = rkD(ad(D)) as in ([23], p 610-612).

REMARK 4.2: As can be seen from the last two examples of Section 3, when D is involutive, then
ad(D) may not be involutive. In the differential framework, we may set rkD(D) = m− αn

q = βn
q .

Comparing to similar concepts used in differential algebra, this number is just the maximum num-
ber of differentially independent equations to be found in the differential module I of equations.
Indeed, pointing out that differential indeterminates in differential algebra are nothing else than jet
coordinates in differential geometry and using standard notations, we have K{y} = limq→∞K[yq].
In that case, the differential ideal I automatically generates a prime differential ideal p ⊂ K{y}
providing a differential extension L/K with L = Q(K{y}/p) and differential transcendence degree

diff trd(L/K) = αn
q , a result explaining the notations ([12],[22]). Now, from the dimension for-

mulas of Rq+r, we obtain at once rkD(M) = αn
q and thus rkD(D) = m − rkD(M) in a coherent

way with any free presentation of M starting with D. However, D acts on the left in differential
geometry but on the right in the theory of differential modules. For an operator of order zero, we
recognize the fact that the rank of a matrix is eqal to the rank of the transposed matrix.

PROPOSITION 4.3: If f ∈ aut(X) is a local diffeomorphisms on X , we may set x = f−1(y) =
g(y) and we have the identity:

∂

∂yk
(

1

∆(g(y))
∂if

k(g(y))) ≡ 0 ⇒
∂

∂yk
(
1

∆

∂fk

∂xi
Ai) =

1

∆

∂fk

∂xi

∂Ai

∂yk
=

1

∆
∂iA

i

and the adjoint of the well defined intrinsic operator ∧0T ∗ d
−→ ∧1T ∗ = T ∗ : A −→ ∂iA is (mi-

nus) the well defined intrinsic operator ∧nT ∗ d
←− ∧nT ∗ ⊗ T ≃ ∧n−1T ∗ : ∂iA

i ←− Ai. Hence,

if we have an operator E
D
−→ F , we obtain the formal adjoint operator ∧nT ∗⊗E∗ ad(D)

←− ∧nT ∗⊗F ∗.

Having in mind that D is a K-algebra, that K is a left D-module with the standard action
(D,K) −→ K : (P, a) −→ P (a) : (di, a) −→ ∂ia and that D is a bimodule over itself, we have only

two possible constructions leading to the following two definitions:

DEFINITION 4.4: We may define the inverse system R = homK(M,K) of M and introduce
Rq = homK(Mq,K) as the inverse system of order q.

DEFINITION 4.5: We may define the right differential module M∗ = homD(M,D) by using
the bimodule structure of D = DDD.
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THEOREM 4.6: When M and N are left D-modules, then homK(M,N) and M⊗KN are left
D-modules. In particular R = homK(M,K) is also a left D-module for the Spencer operator.

Proof: For any f ∈ homK(M,N), let us define:

(af)(m) = af(m) = f(am) ∀a ∈ K, ∀m ∈M

(ξf)(m) = ξf(m)− f(ξm) ∀ξ = ξidi ∈ T, ∀m ∈M

It is easy to check that ξa = aξ+ξ(a) in the operator sense and that ξη−ηξ = [ξ, η] is the standard
bracket of vector fields. We have in particular with d in place of any di:

((da)f)(m) = (d(af))(m) = d(af(m))− af(dm) = (∂a)f(m) + ad(f(m))− af(dm)
= (a(df))(m) + (∂a)f(m)
= ((ad+ ∂a)f)(m)

For any m⊗ n ∈M⊗KN with arbitrary m ∈M and n ∈ N , we may then define:

a(m⊗ n) = am⊗ n = m⊗ an ∈M⊗KN

ξ(m⊗ n) = ξm⊗ n+m⊗ ξn ∈M⊗KN

and conclude similarly with:

(da)(m ⊗ n) = d(a(m⊗ n)) = d(am⊗ n)
= d(am)⊗ n+ am⊗ dn
= (∂a)m⊗ n+ a(dm)⊗ n+ am⊗ dn
= (ad+ ∂a)(m⊗ n)

Using K in place of N , we finally get (dif)
k
µ = (dif)(y

k
µ) = ∂if

k
µ−fk

µ+1i that is we recognize exactly

the Spencer operator with now Df = dxi ⊗ dif and thus:

(di(djf))
k
µ = ∂ijf

k
µ − (∂if

k
µ+1j + ∂jf

k
µ+1i) + fk

µ+1i+1j ⇒ di(djf) = dj(dif) = dijf

In fact, R is the projective limit of πq+r
q : Rq+r → Rq in a coherent way with jet theory ([2],[27],[38]).

Q.E.D.

COROLLARY 4.7: If M and N are right D-modules, then homK(M,N) is a left D-module.
Moreover, if M is a left D-module and N is a right D-module, then M⊗KN is a right D-module.

Proof: If M and N are right D-modules, we just need to set (ξf)(m) = f(mξ) − f(m)ξ, ∀ξ ∈
T, ∀m ∈M and conclude as before. Similarly, if M is a left D-module and N is a right D-module,
we just need to set (m⊗ n)ξ = m⊗ nξ − ξm⊗ n.

Q.E.D.

REMARK 4.8: When M = DM ∈ mod(D) and N = ND, , then homK(N,M) cannot be en-
dowed with any left or right differential structure. When M = MD and N = ND, then M⊗KN
cannot be endowed with any left or right differential structure (See [2], p 24 for more details).

As M∗ = homD(M,D) is a right D-module, let us define the right D-module ND by the

ker/coker long exact sequence 0←− ND ←− F ∗
1

D∗

←− F ∗
0 ←−M∗ ←− 0.

COROLLARY 4.9: We have the side changing procedure ND → N = DN = homK(∧nT ∗, ND)
with inverse M = DM →MD = ∧nT ∗⊗KM whenever M,N ∈ mod(D).

Proof: According to the above Theorem, we just need to prove that ∧nT ∗ has a natural right
module structure over D. For this, if α = adx1 ∧ ... ∧ dxn ∈ T ∗ is a volume form with coefficient
a ∈ K, we may set α.P = ad(P )(a)dx1 ∧ ... ∧ dxn when P ∈ D. As D is generated by K and T ,

12



we just need to check that the above formula has an intrinsic meaning for any ξ = ξidi ∈ T . In
that case, we check at once:

α.ξ = −∂i(aξ
i)dx1 ∧ ... ∧ dxn = −L(ξ)α

by introducing the Lie derivative of α with respect to ξ, along the intrinsic formula L(ξ) = i(ξ)d+
di(ξ) where i() is the interior multiplication and d is the exterior derivative of exterior forms.
According to well known properties of the Lie derivative, we get :

α.(aξ) = (α.ξ).a − α.ξ(a), α.(ξη − ηξ) = −[L(ξ),L(η)]α = −L([ξ, η])α = α.[ξ, η].

Q.E.D.

Collecting the previous results, if a differential operator D is given in the framework of differ-
ential geometry, we may keep the same notation D in the framework of differential modules which
are left modules over the ring D of linear differential operators and apply duality, provided we use
the notation D∗ and deal with right differential modules or use the notation ad(D) and deal again
with left differential modules by using the left↔ right conversion procedure.

DEFINITION 4.10: If an operator ξ
D
−→ η is given, a direct problem is to look for (generating)

compatibility conditions (CC) as an operator η
D1−→ ζ such that Dξ = η ⇒ D1η = 0. Conversely,

given η
D1−→ ζ, the inverse problem will be to look for ξ

D
−→ η such that D1 generates the CC of D

and we shall say that D1 is parametrized by D if such an operator D is existing.

As ad(ad(P )) = P, ∀P ∈ D, any operator is the adjoint of a certain operator and we get:

DOUBLE DUALITY CRITERION 4.11: An operator D1 can be parametrized by an oper-
ator D if, whenever ad(D) generates the CC of ad(D1), then D1 generates the CC of D. However,
as shown in the example below, many other parametrizations may exist.

Reversing the arrows, we finally obtain:

TORSION-FREE CRITERION 4.12: A differential module M having a finite free presenta-

tion F1
D1−→ F0 →M → 0 is torsion-free, that is to say t(M) = {m ∈M | ∃0 6= P ∈ D,Pm = 0} =

0, if and only if there exists a free differential module E and an exact sequence F1
D1−→ F0

D
−→ E

providing the parametrization M ⊆ E.

REMARK 4.13: Of course, solving the direct problem (Janet, Spencer) is necessary for solv-
ing the inverse problem. However, though the direct problem always has a solution, the inverse
problem may not have a solution at all and the case of the Einstein operator is one of the best
non-trivial PD counterexamples ([24],[30]). It is rather striking to discover that, in the case of OD
operators, it took almost 50 years to understand that the possibility to solve the inverse problem
was equivalent to the controllability of the corresponding control system ([24],[34]).

EXAMPLE 4.14: (contact transformations) With n = 3,K = Q(x1, x2, x3), let us consider the
Lie pseudogroup of transfomations preserving the first order geometric object ω like a 1-form but
up to the square root of ∆. The infinitesimal transformations are among the solutions Θ of the
general system:

Ωi ≡ (L(ξ)ω)i ≡ ωr(x)∂iξ
r − (1/2)ωi(x)∂rξ

r + ξr∂rωi(x) = 0

When ω = (1,−x3, 0), we obtain the special involutive system:

∂3ξ
3 + ∂2ξ

2 + 2x3∂1ξ
2 − ∂1ξ

1 = 0, ∂3ξ
1 − x3∂3ξ

2 = 0, ∂2ξ
1 − x3∂2ξ

2 + x3∂1ξ
1 − (x3)2∂1ξ

2 − ξ3 = 0

with 2 equations of class 3, 1 equation of class 2 and thus only 1 first order CC for the second
members coming from the linearization of the Vessiot structure equation:

ω1(∂2ω3 − ∂3ω2) + ω2(∂3ω1 − ∂1ω3) + ω3(∂1ω2 − ∂2ω1) = c
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involving the only structure constant c. This system can be parametrized by a single potential θ:

−x3∂3θ + θ = ξ1,−∂3θ = ξ2, ∂2θ − x3∂1θ = ξ3 ⇒ ξ1 − x3ξ2 = θ

and we have the formally exact differential sequence 0→ 1
D−1

−→ 3
D
−→ 3

D1−→ 1→ 0.

However, we have yet not proved the most difficult result that could not be obtained without
homological algebra and the next example will explain ths additional difficulty.

EXAMPLE 4.15: With ∂22ξ = η2, ∂12ξ = η1 for D, we get ∂1η
2−∂2η

1 = ζ for D1. Then ad(D1)
is defined by µ2 = −∂1λ, µ

1 = ∂2λ while ad(D) is defined by ν = ∂12µ
1 + ∂22µ

2 but the CC of
ad(D1) are generated by ν′ = ∂1µ

1 + ∂2µ
2. In the operator framework, we have the differential

sequences:

ξ
D
−→ η

D1−→ ζ → 0

0← ν
ad(D)
←− µ

ad(D1)
←− λ

where the upper sequence is formally exact at η but the lower sequence is not formally exact at µ.
Passing to the module framework, we obtain the sequences:

0→ D
D1−→ D2 D

−→ D → M → 0

D
ad(D1)
←− D2 ad(D)

←− D ← 0

where the lower sequence is not exact at D2.

Therefore, we have to find out situations in which ad(D) generates the CC of ad(D1) whenever
D1 generates the CC of D and conversely. This problem will be studied in Section 5, Part C.

5) APPLICATIONS

Though the next pages will only be concerned with a study of the Lie pseudogroups of isome-
tries (A) and conformal isometries (B), the reader must never forget that they can be used similarly
for any arbitrary transitive Lie pseudogroup of transformations ([19],[21],[22],[29]).

A) RIEMANN TENSOR

Let ω = (ωij = ωji) ∈ S2T ∗be a non-degenerate metric with det(ω) 6= 0. We shall apply
the Main Theorem to the first order Killing system R1 ⊂ J1(T ) defined by the n(n + 1)/2 linear
equations Ωij ≡ ωrjξ

r
i + ωirξ

r
j + ξr∂rωij = 0 for any section ξ1 ∈ R1. Its symbol g1 ⊂ T ∗ ⊗ T is

defined by the n(n+ 1)/2 linear equations ωrjξ
r
i + ωirξ

r
j = 0 and we obtain at once isomorphisms

g1 ≃ ∧
2T ≃ ∧2T ∗ by lowering or raising the indices by means of the metric, obtaining for example

ξi,j + ξj,i = 0. As det(ω) 6= 0, we may introduce the well known Chrisoffel symbols γ = (γk
ij = γk

ji)
through the standard Ricci/Levi-Civita isomorphism j1(ω) ≃ (ω, γ) and obtain by one prolonga-
tion the linear second order equations for any section ξ2 ∈ R2:

Γk
ij ≡ ξkij + γk

rjξ
r
i + γk

ir − γr
ijξ

k
r + ξr∂rγ

k
ij = 0

and we have Ω ∈ S2T
∗ ⇒ Γ ∈ S2T

∗ ⊗ T for the respective linearization/variation of ω and γ.
As we shall see that g1 is not 2-acyclic and g2 = 0 is defined by the n2(n + 1)/2 linear equations
ξkij = 0, we may apply the Main Theorem with q = 1, s = 1, E = T , on the condition that R1

should be formally integrable as it is finite type and cannot therefore be involutive. First of all,
we have the following commutative and exact diagram allowing to define F0 = S2T

∗:
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0 0 0
↓ ↓ ↓

0→ g1 −→ T ∗ ⊗ T
σ(Φ)
−→ F0 → 0

↓ ↓ ‖

0→ R1 −→ J1(T )
Φ
−→ F0 → 0

↓ ↓ ↓
0→ T = T −→ 0

↓ ↓
0 0

Now, R2
π2
1−→ R1 is an isomorphism because g2 = 0 and dim(R2) = dim(R1) = n(n + 1)/2.

Hence, R2 ⊂ J2(T ) is involutive if and only if R3
π3
2−→ R2 is also an isomorphism too because

g2 = 0 ⇒ g2+r = 0, ∀r ≥ 0. Such a differential condition for ω has been shown by L.P. Eisen-
hart in ([8]) to be equivalent to the Vessiot structure equation with one constant called constant

riemannian curvature ρkl,ij = c(δki ωlj − δkj ωli) (See [19],[22] and [29] for effective calculations still
not acknowledged today). In this formula, c is an arbitrary constant and the Riemann tensor

(ρkl,ij) ∈ ∧
2T ∗ ⊗ T ∗ ⊗ T satisfies the two types of purely algebraic relations:

ωrlρ
r
k,ij + ωkrρ

r
l,ij = 0, ρkl,ij + ρki,jl + ρkj,li = 0

We shall suppose that ω is the Euclidean metric if n = 2, 3 and the Minkowskian metric if n = 4
but any other compatible choice should be convenient. As a next step, we know from the Main
Theorem that the generating CC for the operator Killing = Φ◦j1 : T → F0 are made by an opera-
tor Riemann = Ψ◦j2 : F0 → F1 of order s+1 = 2. We shall define F1 by setting q = 1, r = 0, s = 1
in the corresponding diagram in order to get the following commutative diagram:

0 0 0
↓ ↓ ↓

0→ g3 → S3T
∗ ⊗ T → S2T

∗ ⊗ F0 → F1 → 0
↓ δ ↓ δ ↓ δ

0→ T ∗ ⊗ g2 → T ∗ ⊗ S2T
∗ ⊗ T → T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓ δ
0→ ∧2T ∗ ⊗ g1 → ∧2T ∗ ⊗ T ∗ ⊗ T → ∧2T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓
0→ ∧3T ∗ ⊗ T = ∧3T ∗ ⊗ T → 0

↓ ↓
0 0

where all the rows are exact and all the columns are also exact but the first at ∧2T ∗ ⊗ g1
with g2 = 0 ⇒ g3 = 0. We shall denote by B2(g1) the coboundary as the image of the cen-
tral δ, by Z2(g1) the cocycle as the kernel of the lower δ and by H2(g1) = Z2(g1)/B

2(g1) the
Spencer δ-cohomology at ∧2T ∗ ⊗ g1 as the quotient. Chasing in the previous diagram, we dis-
cover that the Riemann tensor is a section of the bundle F1 = H2(g1) = Z2(g1) with dim(F1) =
(n2(n + 1)2/4) − (n2(n + 1)(n + 2)/6) = (n2(n − 1)2/4) − (n2(n − 1)(n − 2)/6) = n2(n2 − 1)/12
by using the top row or the left column. We discover at once the two properties of the (lin-
earized) Riemann tensor through the chase involved, namely (Rk

l,ij) ∈ ∧
2T ∗ ⊗ T ∗ ⊗ T is killed

by both δ and σ0(Φ). Similarly, going one step further, we get the (linearized) Bianchi identi-
ties by defining the first order operator Bianchi : F1 → F2 where F2 = H3(g1) = Z3(g1) with
dim(F2) = dim(∧3T ∗⊗g1)−dim(∧4T ∗⊗T ) = n2(n−1)2(n−2)/12−n2(n−1)(n−2)(n−3)/24 =
n2(n2 − 1)(n− 2)/24 may be defined by the following commutative diagram:
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0 0 0 0
↓ ↓ ↓ ↓

0→ g4 → S4T
∗ ⊗ T → S3T

∗ ⊗ F0 → T ∗ ⊗ F1 → F2 → 0
↓ ↓ ↓ ‖

0→ T ∗ ⊗ g3 → T ∗ ⊗ S3T
∗ ⊗ T → T ∗ ⊗ S2T

∗ ⊗ F0 → T ∗ ⊗ F1 → 0
↓ ↓ ↓ ↓

0→ ∧2T ∗ ⊗ g2 → ∧2T ∗ ⊗ S2T
∗ ⊗ T → ∧2T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ ↓ ↓
0→ ∧3T ∗ ⊗ g1 → ∧3T ∗ ⊗ T ∗ ⊗ T → ∧3T ∗ ⊗ F0 → 0

↓ ↓ ↓
0→ ∧4T ∗ ⊗ T = ∧4T ∗ ⊗ T → 0

↓ ↓
0 0

This approach is relating for the first time the concept of Riemann tensor candidate, introduced
by Lanczos and others, to the Spencer δ-cohomology of the Killing symbols. We obtain therefore
the formally exact sequence:

0→ Θ→ n
Killing
−→ n(n+ 1)/2

Riemann
−→ n2(n2 − 1)/12

Bianchi
−→ n2(n2 − 1)(n− 2)/24→ ...

with operators of successive orders 1, 2, 1, ... and so on.
In the present situation, we have the (split) short exact sequences:

0→ F1 → ∧
2T ∗ ⊗ g1

δ
−→ ∧3T ∗ ⊗ T → 0, 0→ F2 → ∧

3T ∗ ⊗ g1
δ
→ ∧4T ∗ ⊗ T → 0

and obtain the operator ad(Bianchi) : ∧nT ∗ ⊗ F ∗
2 → ∧

nT ∗ ⊗ F ∗
1 with the short exact sequence:

0← ∧nT ∗ ⊗ F ∗
2 ← ∧

n−3T ∗ ⊗ g∗1 ← ∧
n−2T ∗ ⊗ T ∗ ← 0

explaining at once why the Lagrange multipliers λ ∈ ∧nT ∗ ⊗ F ∗
2 can be represented by a sec-

tion of ∧n−3T ∗ ⊗ ∧2T ∗, that is by a Lanczos potential in T ⊗ ∧2T ∗ when n = 4. We shall
see in part C that ad(Bianchi) is parametrizing ad(Riemann) contrary to the claims of Lanc-
zos. Moreover, we have already pointed out in many books ( [21],[23]) or papers ([28],[32]) that
continuum mechanics may be presented through a variational problem with a differential con-
straints which is shifted by one step backwards in the previous differential sequence because the
infinitesimal deformation tensor ǫ = 1

2Ω ∈ S2T
∗ must be now killed by the operator Riemann

and the corresponding Lagrange multipliers λ ∈ ∧nT ∗ ⊗ F ∗
1 must be used because ad(Riemann)

is parametrizing ad(Killing) = Cauchy. Anybody using computations with finite elements also
knows that a similar situation is held by electromagnetism too because the EM field is killed by
d : ∧2T ∗ → ∧3T ∗ ⇒ ad(d) : ∧1T ∗ → ∧2T ∗, another fact contradicting Lanczos claims.
Finally, the passage to differential modules can be achieved easily by using K = Q as will be
done in the Appendix or K = Q < ω > with standard notations because the Lie pseudogroup of
isometries is an algebraic Lie pseudogroup as it can be defined by differential polynomials in the
jets of order ≥ 1 (See [12],[20],[22] for details).

B) WEYL TENSOR

If the study of the Riemann tensor/operator has been related to many classical results, the
study of the Weyl tensor/operator in this new framework is quite different because these new
mathematical tools have not been available before 1975 and are still not acknowledged today by
mathematical physicists. In particular, we may quote the link existing between acyclicity and for-
mal integrability both with the possibility to use the Vessiot structure equations in order to combine
in a unique framework the constant riemannian curvature condition needed for the Killing system,
which only depends on one arbitrary constant, with the zero Weyl tensor condition needed for the
conformal Killing system, which does not depend on any constant. For this reason, we shall follow
as closely as possible the previous part A, putting a ”hat” on the corresponding concepts.
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The conformal Killing system R̂1 ⊂ J1(T ) is defined by eliminating the function A(x) in the
system L(ξ)ω = A(x)ω. It is also a Lie operator D̂ with solutions Θ̂ ⊂ T satisfying [Θ̂, Θ̂] ⊂ Θ̂. Its
symbol ĝ1 is defined by the linear equations ωrjξ

r
i + ωirξ

r
j −

2
n
ωijξ

r
r = 0 which do not depend on

any conformal factor and is finite type because ĝ3 = 0 when n ≥ 3. We have ([19],[20],[32]):

LEMMA 5.1: ĝ2 ⊂ S2T
∗ ⊗ T is now 2-acyclic only when n ≥ 4 and 3-acyclic only when n ≥ 5.

It is known that R̂2 and thus R̂1 too (by a chase) are formally integrable if and only if ω has
zero Weyl tensor:

τkl,ij ≡ ρkl,ij −
1

(n− 2)
(δki ρlj − δkj ρli + ωljω

ksρsi − ωliω
ksρsj) +

1

(n− 1)(n− 2)
(δki ωlj − δkj ωli)ρ = 0

If we use the formula idM −f ◦u = v ◦g of Proposition 2.4 in the split short exact sequence induced
by the inclusions g1 ⊂ ĝ1, 0 = g2 ⊂ ĝ2, g3 = ĝ3 = 0 ([21],[22],[28]):

0 −→ Ricci −→ Riemann −→Weyl −→ 0

according to the Vessiot structure equations, in particular if ω has constant Riemannian curva-
ture and thus ρij = ρri,rj = c(n − 1)ωij ⇒ ρ = ωijρij = cn(n − 1) ([19],[21],[30],[31]). Using

the same diagrams as before, we get F̂0 = T ∗ ⊗ T/ĝ1 with dim(F̂0) = (n − 1)(n + 2)/2 and
F̂1 = H2(ĝ1) 6= Z2(ĝ1) for defining any Weyl tensor candidate. As a byproduct, we could believe

that the linearized operator Weyl : F̂0 → F̂1 is of order 2 with a symbol ĥ2 ⊂ S2T
∗ ⊗ F̂0 which is

not 2-acyclic by applying the δ-map to the short exact sequence:

0→ ĝ3+r −→ S3+rT
∗ ⊗ T

σ2+r(Φ)
−→ ĥ2+r → 0

and chasing through the commutative diagram thus obtained with r = 0, 1, 2. As ĥ3 becomes
2-acyclic after one prolongation of ĥ2 only, it follows that the generating CC for the Weyl operator

are of order 2, a result showing that the so-called Bianchi identities for the Weyl tensor are not

CC in the strict sense of the definition as they do not involve only the Weyl tensor.

In fact, things are quite different and we have to distinguish three different cases:

• n = 3: According to the last Lemma, ĝ2 is not 2-acyclic but ĝ3 = 0 becomes trivially 2-ayclic
and even involutive, that is s = 2. According to the Main Theorem, the operator Weyl : F̂0 → F̂1

is third order because s+ 1 = 3 (See Appendix) and F̂1 is defined by the short exact sequences:

0→ S4T
∗ ⊗ T → S3T

∗ ⊗ F̂0 → F̂1 → 0, 0→ F̂1 → ∧
2T ∗ ⊗ ĝ2

δ
−→ ∧3T ∗ ⊗ ĝ1 → 0

with dim(F̂1) = 50 − 45 = 9 − 4 = 5. As now ĥ3 ⊂ S3T
∗ ⊗ F̂0, applying the δ-map to the short

exact sequence:

0→ ĝ6 → S6T
∗ ⊗ T → ĥ5 → 0

and chasing, we discover that ĥ3 is 2-acyclic because ĝ3 = 0. Accordingly, the operator Bianchi :
F̂1 → F̂2 is first order and F̂2 is defined by the long exact sequence:

0→ S5T
∗ ⊗ T → S4T

∗ ⊗ F̂0 → T ∗ ⊗ F̂1 → F̂2 → 0

or by the isomorphism 0→ F̂2 → ∧
3T ∗ ⊗ ĝ2 → 0 giving dim(F̂2) = 63− 75 + 15 = 1× 3 = 3.

Recapitulating, when n = 3 we have the formally exact differential sequence with 3−5+5−3 = 0:

0→ Θ̂→ 3
CKilling
−→ 5

Weyl
−→ 5

Bianchi
−→ 3→ 0

In actual practice, introducing the new geometric objects γ̂k
ij = γk

ij −
1
n
(δki γ

r
rj + δkj γ

r
ri−ωijω

ksγr
rs),

linearizing and using the cyclic summation C(1, 2, 3), we get for example:

C(1, 2, 3)[d23(Γ̂
2
12 + Γ̂1

33 − Γ̂1
11 − Γ̂1

22)] = 0
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• n = 4: This situation is even more striking because ĝ2 is 2 acyclic but not 3-acyclic and thus
s = 1. As before, we have dim(F̂0) = (n − 1)(n + 2)/2 = 9 but, according to the Main Theo-
rem, the operatorWeyl : F̂0 → F̂1 is of order s+1 = 2 and F̂1 is defined by the short exact sequence:

0→ S3T
∗ ⊗ T → S2T

∗ ⊗ F̂0 → F̂1 → 0 ⇒ dim(F̂1) = 90− 80 = 10

or by F̂1 = H2(ĝ1) = Z2(ĝ1)/B
2(ĝ1) with exact sequences:

0→ T ∗ ⊗ ĝ2
δ
−→ B2(ĝ1)→ 0, 0→ Z2(ĝ1)→ ∧

2T ∗ ⊗ ĝ1
δ
−→ ∧3T ∗ ⊗ T → 0

providing again dim(F̂1) = 26 − 16 = 10. The main problem is that,now, ĝ2 is not 3-acyclic and

thus ĥ2 is not 2-acyclic according to a chase in the commutative diagram:

0 0 0
↓ ↓ ↓

0→ ĝ5 → S5T
∗ ⊗ T → ĥ4 → 0

↓ ↓ ↓

0→ T ∗ ⊗ ĝ4 → T ∗ ⊗ S4T
∗ ⊗ T → T ∗ ⊗ ĥ3 → 0

↓ ↓ ↓

0→ ∧2T ∗ ⊗ ĝ3 → ∧2T ∗ ⊗ S3T
∗ ⊗ T → ∧2T ∗ ⊗ ĥ2 → 0

↓ ↓ ↓

0→ ∧3T ∗ ⊗ ĝ2 → ∧3T ∗ ⊗ S2T
∗ ⊗ T → ∧3T ∗ ⊗ T ∗ ⊗ F̂0 → 0

↓ ↓ ↓

0→ ∧4T ∗ ⊗ ĝ1 → ∧4T ∗ ⊗ T ∗ ⊗ T → ∧4T ∗ ⊗ F̂0 → 0
↓ ↓ ↓
0 0 0

but ĥ3 becomes 2-acyclic by chasing in the next diagram:

0 0 0
↓ ↓ ↓

0→ ĝ6 → S6T
∗ ⊗ T → ĥ5 → 0

↓ ↓ ↓

0→ T ∗ ⊗ ĝ5 → T ∗ ⊗ S5T
∗ ⊗ T → T ∗ ⊗ ĥ4 → 0

↓ ↓ ↓

0→ ∧2T ∗ ⊗ ĝ4 → ∧2T ∗ ⊗ S4T
∗ ⊗ T → ∧2T ∗ ⊗ ĥ3 → 0

↓ ↓ ↓

0→ ∧3T ∗ ⊗ ĝ3 → ∧3T ∗ ⊗ S3T
∗ ⊗ T → ∧3T ∗ ⊗ ĥ2 → 0

↓ ↓ ↓

0→ ∧4T ∗ ⊗ ĝ2 → ∧4T ∗ ⊗ S2T
∗ ⊗ T → ∧4T ∗ ⊗ T ∗ ⊗ F̂0 → 0

↓ ↓ ↓
0 0 0

and we have s′ = 1. Accordingly, the operator Bianchi : F̂1 → F̂2 is of order s′ + 1 = 2 and F̂2

is defined by following commutative diagram where all the rows are exact and all the columns are
exact but the first:
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0 0 0 0
↓ ↓ ↓ ↓

0→ ĝ5 → S5T
∗ ⊗ T → S4T

∗ ⊗ F̂0 → S2T
∗ ⊗ F̂1 → F̂2 → 0

↓ ↓ ↓ ↓

0→ T ∗ ⊗ ĝ4 → T ∗ ⊗ S4T
∗ ⊗ T → T ∗ ⊗ S3T

∗ ⊗ F̂0 → T ∗ ⊗ T ∗ ⊗ F̂1 → 0
↓ ↓ ↓ ↓

0→ ∧2T ∗ ⊗ ĝ3 → ∧2T ∗ ⊗ S3T
∗ ⊗ T → ∧2T ∗ ⊗ S2T

∗ ⊗ F̂0 → ∧2T ∗ ⊗ F̂1 → 0
↓ ↓ ↓ ↓

0→ ∧3T ∗ ⊗ ĝ2 → ∧3T ∗ ⊗ S2T
∗ ⊗ T → ∧3T ∗ ⊗ T ∗ ⊗ F̂0 → 0

↓ ↓ ↓

0→ ∧4T ∗ ⊗ ĝ1 → ∧4T ∗ ⊗ T ∗ ⊗ T → ∧4T ∗ ⊗ F̂0 → 0
↓ ↓ ↓
0 0 0

0→ ĝ5 → S5T
∗ ⊗ T → S4T

∗ ⊗ F̂0 → S2T
∗ ⊗ F̂1 → F̂2 → 0

0 → 224 → 315 → 100 → 9 → 0

0→ ĝ4 → S4T
∗ ⊗ T → S3T

∗ ⊗ F̂0 → T ∗ ⊗ F̂1 → 0
0 → 140 → 180 → 40 → 0

We could define similarly the first order generating CC F̂2 → F̂3 where F̂3 is defined by the fol-
lowing long exact sequence:

0→ ĝ6 → S6T
∗ ⊗ T → S5T

∗ ⊗ F̂0 → S3T
∗ ⊗ F̂1 → T ∗ ⊗ F̂2 → F̂3 → 0

0 → 336 → 504 → 200 → 36 → 4 → 0

and obtain finally the formally exact differential sequence:

0→ Θ̂→ 4
CKilling
−→ 9

Weyl
−→ 10

Bianchi
−→ 9 −→ 4→ 0

with vanishing Euler-Poincaré characteristic 4−9+10−9+4 = 0. We conclude the study of n = 4
by exhibiting the short exact sequence:

0→ ∧2T ∗ ⊗ ĝ2 → ∧3T ∗ ⊗ ĝ1 → ∧4T ∗ ⊗ T → 0
0→ 24 → 28 → 4 → 0

a result showing that H3(ĝ1) = 0 for n = 4, contrary to what will happen when n ≥ 5.

• n ≥ 5: We still have dim(F̂0) = (n− 1)(n+2)/2 but now ĝ2 is 2-acyclic and 3-acyclic with s = 1
again but now with s′ = 0. Hence, according to the Main Theorem and its Corollary, the operator
Weyl is second order while the operator Bianchi is first order. We may therefore use the same
diagrams already introduced in part A but with a ”hat ” symbol and n ≥ 4. In particular we get:

dim(Z3(ĝ1)) = dim(∧3T ∗ ⊗ ĝ1)− dim(∧4T ∗ ⊗ T ) = n(n− 1)(n− 2)(n2 + n+ 4)/24

dim(B3(ĝ1)) = n2(n− 1)/2 ⇒ dim(H3(ĝ1)) = n(n2 − 1)(n+ 2)(n− 4)/24

We find again H3(ĝ1) = 0 when n = 4 but H3(ĝ1) 6= 0 when n ≥ 5, a key step that no classical
technique can even imagine. We have therefore a first order operator Bianchi : F̂1 → F̂2 with
F̂1 = H2(ĝ1) and F̂2 = H3(ĝ1) when n ≥ 5. We obtain therefore a formally exact differential
sequence:

0→ Θ̂→ n
CKilling
−→ (n−1)(n+2)/2

Weyl
−→ n(n+1)(n+2)(n−3)/12

Bianchi
−→ n(n2−1)(n+2)(n−4)/24

In order to convince the reader about the powerfulness of the previous methods, let us prove
that the generating CC of Bianchi is a second order operator with 14 equations when n = 5.
First, we ask the reader to prove, as an exercise, that H4(ĝ1) = 0 through the exact δ-sequence
0 → ∧3T ∗ ⊗ ĝ2 → ∧

4T ∗ ⊗ ĝ1 → ∧
5T ∗ ⊗ T → 0 (Hint: 50 = 55 − 5). Conclude that the gener-

ating CC cannot be of first order. Then, prove that dim(H4(ĝ2)) = 25 − 11 = 14. Finally, prove
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that the generating CC of these CC is first order with 5 equations (Hint: Use the vanishing of
the Euler-Poincaré characteristic with 5−14+35−35+14−5 = 0) (See Appendix for confirmation).

C) PARAMETRIZATIONS

Let E and F be two vector bundles with respective fiber dimensions dim(E) = m and dim(F ) =
p. Starting with a differential operator D : E → F of order q with solutions Θ ⊂ E and such that
the corresponding system Rq ⊂ Jq(E) is formally integrable, we have explained in Section 3 how
to construct a formally exact differential sequence:

0→ Θ→ E
D
−→ F0

D1−→ F1
D2−→ F2

D3−→ ...

where F0 = F and each operator Di of order qi generates the CC of the previous one. In particular,
if the starting operator D is involutive, then q1 = ... = qn = 1 and each Di is involutive in the
resulting Janet sequence finishing at Fn in the sense that Dn is formally surjective. Equivalently,
it is possible to pass to the framework of differential module and look for a free resolution of a dif-

ferential module M starting with a free finite presentation Dp D
−→ Dm →M → 0 with an operator

acting on the right. In general, we have proved in the last two parts A and B that the succession
of the orders q, q1, q2, q3, ... can be nevertheless quite strange. Meanwhile, we have proved through
examples that many possible finite length such sequences can be exhibited and the purpose of
Homological Algebra is to study formal properties that should not depend on the sequence used.
At the end od Section 4, we have pointed out the fact that, whenever an operator D1 generates
all the CC of an operator D, this does not imply in general that the operator ad(D) generates all
the CC of ad(D1). The following (quite difficult) theorem is a main result of homological algebra,
adapted to differential systems and differential modules ([2],[3],[9],[17],[23],[37]):

THEOREM 5.2: The fact that a formally exact differential sequence considered as a resolution
of Θ has the property that the adjoint sequence is also formally exact does not depend on the
sequence but only on Θ.

COROLLARY 5.3: The fact that a free resolution of a differential module M has the property
that the adjoint sequence is also a free resolution does not depend on the sequence but only on M .

Our problem in this part C is to describe a sufficiently general situation in such a way that
all the results of the parts A and B can fit together, in the sense that we shall no longer need
to use a hat in order to distinguish them. For this, with E = T , let us say that an operator
D = Φ ◦ jq : T → F is a Lie operator if Dξ = 0,Dη = 0 ⇒ D[ξ, η] = 0 that is to say [Θ,Θ] ⊆ Θ.
The corresponding system Rq = ker(Φ) is called a system of infinitesimal Lie equations and one
can define a ”bracket on sections” satisfying [Rq, Rq] ⊆ Rq in order to check formally the previous
definition ([19],[29],[30]). It has been found by E. Vessiot, as early as in ... 1903 ([19],[40]), that
the condition of formal integrability of Rq can be described by the Vessiot structure equations, a
set of (non-linear in general) differential conditions depending on a certain number of constants,
for one or a family of geometric objects that can be vectors, forms, tensors or even higher order
objects. The idea has been to look for ”general” systems or symbols having the same dimensions
as for a model object called ”special”, for example the euclidean metric when n = 2, 3 or the
minkowskian metric when n = 4. The case of part A has been a metric ω with det(ω) 6= 0 and
constant riemannian curvature with one constant while the case of part B has been a metric density
ω̂ = ω/(| det(ω) |

1
n ) with zero Weyl tensor and no constant involved. The following results will be

local.

Let us suppose that we have a Lie group of transformations of X , namely a Lie group G and
an action X ×G→ X : (x, a)→ y = ax = f(x, a) or, better, its graph X ×G→ X ×X : (x, a)→
(x, y = ax = f(x, a). Differentiating enough times, we may eliminate the parameters a among the
equations yq = jq(f)(x, a) for q large enough and get a (non-linear in general) system of finite Lie

equations. Linearising this system for a close to the identity e ∈ G, that is for y close to x, provides
the system Rq ⊂ Jq(T ) and the corresponding Lie operator of finite type. Equivalently, the three
theorems of Sophus Lie assert that there exists a finite number of infinitesimal generators {θτ} of

20



the action that should be linearly independent over the constants and satisfy [θρ, θσ] = cτρσθτ where
the structure constants c define a Lie algebra G = Te(G). We have therefore ξ ∈ Θ ⇔ ξ = λτθτ
with λτ = cst. Hence, we may replace locally the system of infinitesimal Lie equations by the
system ∂iλ

τ = 0, getting therefore the differential sequence:

0→ Θ→ ∧0T ∗ ⊗ G
d
−→ ∧1T ∗ ⊗ G

d
−→ ...

d
−→ ∧nT ∗ ⊗ G → 0

which is the tensor product of the Poincaré sequence by G. Finally, we are in a position to apply
the previous Theorem and Corollary because the Poincaré sequence is self adjoint (up to sign),
that is ad(d) generates the CC of ad(d) at any position, exactly like d generates the CC of d at any
position. We invite the reader to compare with the situation of the Maxwell equations in electro-
magnetisme. However, we have proved in ([21],[22],[30],[31],[32]) why neither the Janet sequence
nor the Poincaré sequence can be used in physics and must be replaced by the Spencer sequence

which is another resolution of Θ. We provide a few additional details on the motivations for such
a procedure.

For this, if q is large enough in such a way that gq = 0 and thus Rq+1 ≃ Rq, let us define locally
a section ξq+1 ∈ Rq+1 by the formula ξkµ+1i = λτ (x)∂µ+1iθ

k
τ (x) and apply the Spencer operator

D. We obtain at once (Dξq+1)
k

µ,i
= ∂iξ

k
µ − ξkµ+1i = ∂iλ

τ∂µθ
k
τ , a result proving that the previous

sequence is (locally) isomorphic to the Spencer sequence:

0→ Θ→ ∧0T ∗ ⊗Rq
D
−→ ∧1T ∗ ⊗Rq

D
−→ ...

D
−→ ∧nT ∗ ⊗Rq → 0

In the present paper, we had dim(G) = n(n + 1)/2 in part A and dim(Ĝ) = (n + 1)(n + 2)/2 in
part B. Moreover, whatever is the part concerned, ad(D) generates the CC of ad(D1) because D1

generates the CC of D while, similarly, ad(D1) generates the CC of ad(D2) because D2 generates
the CC of D1 and so on. We conclude with the following comments.

1) Coming back to the first differential sequence constructed in part A, the Riemann tensor is
a section of F1 which is in the image of the operator Riemann or in the kernel of the operator
Bianchi. Indeed, Lanczos has been considering the Riemann tensor as a section of F1 killed by
the operator Bianchi considered as a differential constraint. Accordingly, he has used the action
of ad(Bianchi) on the corresponding Lagrange multipliers. However, this operator parametrizes
ad(Riemann) as we saw and cannot be used in order to parametrize the Riemann tensor by means

of the Lanczos potential.

2) Coming back to the second differential sequence constructed (independently) in part B, the
Weyl tensor is a section of F̂1 which is in the image of the operator Weyl or in the kernel of the
operator Bianchi. As most of the results presented are unknown, in particular the fact that both
operators Weyl and Bianchi are second order in dimension n = 4, we believe that even the proper
concept of a Weyl tensor candidate must be revisited within this new framework.

3) In parts A and B, only linear differential operators have been used. However, it is known
from the formal theory of Lie pseudogroups that non-linear differential sequences can be similarly
constructed ([13],[19],[22]). As a matter of fact, if non-linear analogues of D and D1 may be exhib-
ited, this is not possible for D2. Moreover, the only important problem is to compare the image of
D with the kernel of D1 in the finite/infinitesimal equivalence problem (See [19], p 333 for a nice
counterexample). We believe that this shift by one step backwards in the interpretation of a differ-

ential sequence will become important for future physics. It is commonly done in the variational
calculus using finite elements where the free energy brings together the deformation tensor and the
EM field on equal footing, quite contrary to the ideas of Lanczos.

6) CONCLUSION

In most textbooks, the Weyl tensor is always presented today by comparison with the Riemann
tensor after eliminating a conformal factor and its derivatives. We have exhibited new methods
in order to introduce both the Riemann and the Weyl tensor independently by using the formal

21



theory of systems of partial differential equations (Spencer cohomology) in the study of arbitrary
Lie pseudogroups while using the Vessiot structure equations for the Killing and conformal Killing
systems separately. In particular, we have revisited, in both cases, the proper concept of Bianchi
identities by means of homological algebra and diagram chasing, obtaining explicit numbers and
orders for each dimension. These striking results are confirmed by means of computer algebra in
the Appendix. They prove that the work of Lanczos and followers must be revisited within this
new framework.
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mann, Paris, 1945.
[5] S.B. EDGAR: On Effective Constraints for the Riemann-Lanczos Systems of Equations. J.
Math. Phys., 44, 2003, 5375-5385.
http://arxiv.org/abs/gr-qc/0302014
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[40] E. VESSIOT: Sur la Théorie des Groupes Continus, Annales Scientifiques de l’Ecole Normale
Supérieure, Vol. 20, 1903, 411-451.
(Can be obtained from http://www.numdam.org)

23



7) APPENDIX by Alban QUADRAT (INRIA, Lille; alban.quadrat@inria.fr):

7.1) Conformal Killing system

Using an Euclidean or Minkowskian metric, the system of conformal Killing equations is:

ωrj ξ
r
i + ωir ξ

r
j −

2

n
ωij ξ

r
r = 0. (1)

but any other choice could be convenient too as we have explained in the paper.

7.2) Weyl tensor in dimension 2

Let us consider n = 2 and the euclidean metric ωij = δij for 1 ≤ i < j ≤ 2. If D = Q[d1, d2]

denotes the commutative ring of PD operators in d1 = ∂
∂x1

and d2 = ∂
∂x2

, then the system can be

rewritten as W2 η = 0, where η = (ξ1 ξ2)T and:

W2 =









d1 −d2

d2 d1

−d1 d2









If we note λ2 =
(

1 0 1
)

, then we have λ2 W2 = 0, which shows that the last row of W2 is
minus the first one. Hence, the D-module imD(W2) = {λW2 | λ ∈ D1×2} generated by the rows
of W2 can be generated by the first two rows of W2, i.e., we have imD(W2) = imD(R2), where R2

is the following matrix:

R2 =

(

d1 −d2

d2 d1

)

We can check that the D-module kerD(R2) = {µ ∈ D1×2 | µR2 = 0}, called the second syzygy

module ([4]) of the D-module M = D2/(D2 R2), is reduced to 0, i.e., R2 has full row rank. Hence,
we obtain the following finite free resolution of M :

0→ D2 R2−→ D2 →M → 0

7.3) Weyl tensor in dimension 3

Let us consider n = 3 and the euclidean metric ωij = δij for 1 ≤ i < j ≤ 3. If D = Q[d1, d2, d3]

denotes the commutative ring of PD operators in di =
∂

∂xi
for i = 1, 2, 3, then the system can be

rewritten as W3 η = 0, where η = (ξ1 ξ2 ξ3)T and:

W3 =



























4
3 d1 − 2

3 d2 − 2
3 d3

d2 d1 0

d3 0 d1

− 2
3 d1

4
3 d2 − 2

3 d3

0 d3 d2

− 2
3 d1 − 2

3 d2
4
3 d3



























If we note λ3 =
(

1 0 0 1 0 1
)

∈ D1×6, then we have λ3 W3 = 0 and shows that the
last row of W3 is a linear combination of the first and fourth rows of W3. Hence, the D-module
imD(W3), generated by the rows of W3, can be generated by the first five rows of W3, i.e., we have
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imD(W3) = imD(R3), where R3 is the following matrix:

R3 =





















4
3 d1 − 2

3 d2 − 2
3 d3

d2 d1 0

d3 0 d1

− 2
3 d1

4
3 d2 − 2

3 d3

0 d3 d2





















Using the OreModules package, we can show that the left kernel of R3, i.e., the D-module
kerD(R3) = {λ ∈ D1×3 | λR3 = 0}, is generated by the rows of the following matrix S3:





















−d2 d3 d1 d22 d3 + d33 −d32 − d2 d
2
3 −2 d2 d3 d1 d1 d

2
2 − d1 d

2
3

−d21 d3 + 2 d22 d3 + d33 0 −2 d1 d
2
2 − 2 d1 d

2
3 −2 d21 d3 + d22 d3 − d33 2 d21 d2 + 2 d2 d

2
3

d21 d2 + 2 d32 + d2 d
2
3 −2 d1 d

2
2 − 2 d1 d

2
3 0 2 d21 d2 + d32 − d2 d

2
3 2 d21 d3 + 2 d22 d3

2 d2 d3 d1 −d21 d3 − d33 −d21 d2 + d2 d
2
3 d2 d3 d1 d31 + d1 d

2
3

d31 + 2 d1 d
2
2 − d1 d

2
3 −2 d21 d2 − 2 d2 d

2
3 2 d21 d3 + 2 d22d3 2 d31 + d1 d

2
2 + d1 d

2
3 0





















i.e., we have kerD(R3) = imD(S3) = {µ ∈ D1×5 | µS3}. The computation of S3 takes 0.026 CPU
seconds with Maple 18 on Mac OS 10.10.5 equipped with 2.8 GHz Intel Core i7 and 16 Go. For
more details on the left kernel/syzygy computation, see Algorithm 1 on page 330 of ([1]) (see also
[3]). Similarly, the left kernel of T3 is generated by the rows of the following matrix

T3 =









−2 d3 0 d1 −2 d3 −d2

2 d1 −d2 d3 0 0

0 d1 0 −2 d2 d3









i.e., we have kerD(S3) = imD(T3). We can check that that the matrix T3 has full row rank, i.e.,
kerD(T3) = 0, or equivalently that the rows of T3 are D-linearly independent. Finally, if we denote
by M = D3/(D5 R3) = D3/(D6 W3) the D-module finitely presented by R3, associated with the
system, then we obtain the following finite free resolution:

0→ D3 T3−→ D5 S3−→ D5 R3−→ D3 →M → 0

7.4) Weyl tensor in dimension 4

Let us consider n = 4 and the Minkowski metric ω = (1, 1, 1, −1). If D = Q[d1, d2, d3, d4]
denotes the commutative ring of PD operators in di =

∂
∂xi

for i = 1, . . . , 4, then the system can be

rewritten as W4 η = 0, where η = (ξ1 ξ2 ξ3 ξ4)T and:

W4 =



















































3
2 d1 − 1

2 d2 − 1
2 d3 − 1

2 d4

d2 d1 0 0

d3 0 d1 0

d4 0 0 −d1

− 1
2 d1

3
2 d2 − 1

2 d3 − 1
2 d4

0 d3 d2 0

0 d4 0 −d2

− 1
2 d1 − 1

2 d2
3
2 d3 − 1

2 d4

0 0 d4 −d3

1
2 d1

1
2 d2

1
2 d3 − 3

2 d4


















































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If we note λ4 =
(

1 0 0 0 1 0 0 1 0 −1
)

, then we have λ4 W4 = 0, which shows
that the last row of W4 is a linear combination of the first, fourth, and eighth rows. Hence, the
D-module imD(W4), generated by the rows of W4, can be generated by the first nine rows of W4,
i.e., we have imD(W4) = imD(R4), where R4 is the following matrix:

R4 =













































3
2 d1 − 1

2 d2 − 1
2 d3 − 1

2 d4

d2 d1 0 0

d3 0 d1 0

d4 0 0 −d1

− 1
2 d1

3
2 d2 − 1

2 d3 − 1
2 d4

0 d3 d2 0

0 d4 0 −d2

− 1
2 d1 − 1

2 d2
3
2 d3 − 1

2 d4

0 0 d4 −d3













































∈ D9×4.

We can show that the left kernel of R4, i.e., the D-module kerD(R4), is generated by the rows
of the following matrix S4 ∈ D10×9:























































−d1 d3 d2 d3 −d2
2
− d2

4
d3 d4 −2 d1 d3 d1 d2 0 −d1 d3 d4 d1

d1 d2 d2
3
+ d2

4
−d2 d3 −d4 d2 d1 d2 −d1 d3 −d4 d1 2 d1 d2 0

d3 d4 0 −d4 d1 −d1 d3 −d3 d4 d4 d2 d2 d3 0 d2
1
− d2

2

d4 d2 −d4 d1 0 −d1 d2 0 d3 d4 d2
1
− d2

3
−d4 d2 d2 d3

2 d2 d3 −d1 d3 −d1 d2 0 d2 d3 d2
1
+ d2

4
−d3 d4 d2 d3 −d4 d2

2 d2
2
− 2 d2

3
−2 d1 d2 2 d1 d3 0 d2

1
+ d2

2
− d2

3
+ d2

4
0 −2 d4 d2 −d2

1
+ d2

2
− d2

3
− d2

4
2 d3 d4

d2
1
− 3 d2

1
+ 3 d2

3
+ d2

4
2 d1 d2 −4 d1 d3 −2 d4 d1 −2 d2

2
− 2 d2

4
2 d2 d3 4 d4 d2 3 d2

1
− 3 d2

2
+ d2

3
+ d2

4
−2 d3 d4

0 d3 d4 0 −d2 d3 0 −d4 d1 0 0 d1 d2

0 d4 d2 −d3 d4 −d2
2
+ d2

3
−d4 d1 0 d1 d2 d4 d1 −d1 d3

0 0 d4 d2 −d2 d3 0 −d4 d1 d1 d3 0 0























































i.e., we have kerD(R4) = imD(S4). In fact, using the OreModules package, we can prove

that kerD(R4) = imD(S4), where S4 = (ST
4 S′

4
T )T , where the matrix S′

4 ∈ D6×9 is defined by
S′
4 ∈ D6×9:









































−d2 d3 d4 0 0 0 −d2 d3 d4 d2
3

d4 − d3
4

−d3
3

+ d3 d2
4

−2 d2 d3 d4 d2 d2
3

+ d2 d2
4

−d1 d3 d4 0 d2
3

d4 − d3
4

−d3
3

+ d3 d2
4

−d1 d3 d4 0 0 −2 d1 d3 d4 d1 d2
3

+ d1 d2
4

−d2
2

d4 + d2
3

d4 0 0 0 −d2
2

d4 + 2 d2
3

d4 − d3
4

0 −2 d2 d2
3

+ 2 d2 d2
4

−2 d2
2

d4 + d2
3

d4 + d3
4

2 d2
2

d3 − 2 d3 d2
4

d2
2

d3 + d3
3

0 0 0 d2
2

d3 + 2 d3
3

− d3 d2
4

−2 d2 d2
3

+ 2 d2 d2
4

0 2 d2
2

d3 + d3
3

+ d3 d2
4

−2 d2
2

d4 − 2 d2
3

d4

d2 d3 d4 0 0 0 2 d2 d3 d4 −d2
2

d4 + d3
4

−d2
2

d3 − d3 d2
4

d2 d3 d4 d3
2

− d2 d2
4

d3
2

+ d2 d2
3

0 0 0 d3
2

+ 2 d2 d2
3

+ d2 d2
4

−2 d2
2

d3 + 2 d3 d2
4

−2 d2
2

d4 − 2 d2
3

d4 2 d3
2

+ d2 d2
3

− d2 d2
4

0









































.

But, we have S′
4 = F4 S4, where

F4 =



























0 0 0 d3 −d4 0 0 0 0 −d1

d4 0 0 0 0 0 0 0 −d3 d2

0 0 −d3 d2 0 −d4 0 0 −d1 0

−d1 0 d4 0 d2 −2 d3 −d3 0 0 0

0 0 −d2 0 d4 0 0 d1 0 0

0 d1 0 d4 d3 −d2 −d2 0 0 0



























∈ D6×10,

which shows that imD(S4) = imD(S4). Similarly, we get that kerD(S4) = imD(T4), where the
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matrix T4 ∈ D9×10 is defined by














































d4 d2 d3 d4 0 0 0 0 0 −d2
3
− d2

4
−d2 d3 d2

2
+ d2

4

d4 d1 0 −d2
3
− d2

4
−d2 d3 d4 d2 d3 d4 d3 d4 0 −d1 d3 2 d1 d2

d1 d2 d1 d3 d4 d2 −d3 d4 −d2
2
+ d2

3
d2 d3 0 −2 d4 d1 0 2 d4 d1

−d3 d4 −d4 d2 d1 d3 −d1 d2 0 d4 d1 0 2 d2 d3 d2
1
+ d2

4
−2 d2 d3

d2 d3 d2
1
− d2

2
0 d4 d1 d1 d3 −d1 d2 −d1 d2 0 d4 d2 2 d3 d4

d2
1
− d2

3
d2 d3 −d4 d1 0 −d1 d2 2 d1 d3 d1 d3 −2 d4 d2 d3 d4 0

0 −d4 d1 −d2 d3 −d2
2
− d2

4
d3 d4 2 d4 d2 d4 d2 2 d1 d3 d1 d2 0

0 −d3 d4 0 −d1 d3 d4 d1 0 0 d2
3
+ d2

4
0 d2

1
− d2

3

0 −d3 d4 −d1 d2 0 d4 d1 0 0 d2
1
− d2

2
+ d2

3
+ d2

4
d2 d3 0















































,

and kerD(T4) = imD(U4), where the matrix U4 ∈ D4×9 is defined by:

U4 =















−2 d3 0 0 −d2 d4 0 d1 0 −2 d3

2 d1 −d2 −d4 0 0 0 d3 0 0

0 d1 0 d3 0 −d4 0 −2 d2 0

0 0 d1 0 −d3 −d2 0 −2 d4 2 d4















.

Finally, we can check that U4 has full row rank, i.e., kerD(U4) = 0, which shows that the D-module
M = D4/(D9 R4) = D4/(D10 W4), associated with the system, admits the following finite free res-
olution:

0→ D4 U4−→ D9 T4−→ D10 S4−→ D9 R4−→ D4 →M → 0

Finally, we note that a free resolution of M can be computed in 0.616 CPU seconds when n = 4.

7.5) Weyl tensor in dimension 5

Let us consider n = 5 and the euclidean metric ωij = δij for 1 ≤ i < j ≤ 5. If D =

Q[d1, d2, d3, d4, d5] denotes the commutative ring of PD operators in di = ∂
∂xi

for i = 1, . . . , 5,

then the system can be rewritten as W5 η = 0, where η = (ξ1 . . . ξ5)T and:

W5 =

















































































8
5 d1 − 2

5 d2 − 2
5 d3 − 2

5 d4 − 2
5 d5

d2 d1 0 0 0

d3 0 d1 0 0

d4 0 0 d1 0

d5 0 0 0 d1

− 2
5 d1

8
5 d2 − 2

5 d3 − 2
5 d4 − 2

5 d5

0 d3 d2 0 0

0 d4 0 d2 0

0 d5 0 0 d2

− 2
5 d1 − 2

5 d2
8
5 d3 − 2

5 d4 − 2
5 d5

0 0 d4 d3 0

0 0 d5 0 d3

−2/5 d1 − 2
5 d2 − 2

5 d3
8
5 d4 − 2

5 d5

0 0 0 d5 d4

− 2
5 d1 − 2

5 d2 − 2
5 d3 − 2

5 d4
8
5 d5

















































































∈ D15×5.
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If we note λ5 =
(

1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
)

, then we have λ5 W5 = 0,
which shows that the D-module imD(W5), generated by the rows of W5, can be generated by the
first fourteen rows of W5, i.e., we have imD(W5) = imD(R5), where R5 is the following matrix:

R5 =











































































8
5 d1 − 2

5 d2 − 2
5 d3 − 2

5 d4 − 2
5 d5

d2 d1 0 0 0

d3 0 d1 0 0

d4 0 0 d1 0

d5 0 0 0 d1

− 2
5 d1

8
5 d2 − 2

5 d3 − 2
5 d4 − 2

5 d5

0 d3 d2 0 0

0 d4 0 d2 0

0 d5 0 0 d2

− 2
5 d1 − 2

5 d2
8
5 d3 − 2

5 d4 − 2
5 d5

0 0 d4 d3 0

0 0 d5 0 d3

−2/5 d1 − 2
5 d2 − 2

5 d3
8
5 d4 − 2

5 d5

0 0 0 d5 d4











































































∈ D14×5.

Using the OreModules package, we can show that the left kernel of R5, i.e., the D-module
kerD(R5), is generated by the rows of a matrix S5 = (SA SB) ∈ D35×14, where the matrices
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SA ∈ D35×7 and SB ∈ D35×7 are respectively defined by:

SA =

























































































































































































































































































d2
4

− d4 d2 0 0 0 0 −d4 d2 d3 d4

d2 d3 0 0 0 0 d2 d3 d2
4

− d2
5

−d4 d1 0 d3 d4 −d2
3

+ d2
5

−d5 d4 −d4d1 0

d1 d3 0 d2
4

− d5
2

−d3 d4 d3 d5 d1 d3 0

d3 d4 0 0 0 0 2 d3 d4 −d4d2

d2
3

− d2
4

0 0 0 0 2 d3
2

− 2 d2
4

−2 d2 d3

d2
2

− 2 d2
3

+ d2
4

0 0 0 0 d2
2

− 3 d3
2 + 3 d2

4
− d2

5
2 d2 d3

−d4 d1 d4 d2 0 −d2
2

+ d5
2

−d5 d4 −2 d4 d1 0

d1 d2 −d2
3

+ 2 d2
4

− d2
5

d2 d3 −2 d4 d2 d2 d5 d1 d2 d1 d3

d5 d4 0 0 −d1 d5 −d4 d1 0 0

d3 d5 0 −d1 d5 0 −d1d3 0 0

2 d3 d4 0 −d4 d1 −d1 d3 0 d3 d4 0

2 d2
3

− 2 d2
4

0 −2 d1 d3 2 d4 d1 0 d2
3

− d2
4

0

d2 d5 −d1 d5 0 0 −d1 d2 0 0

2 d4 d2 −d4 d1 0 −d1 d2 0 d4 d2 0

3 d3
2

− 3 d2
4

−2 d1 d2 0 2 d4 d1 0 d1
2

− d2
2

+ 4 d2
3

− 5 d2
4

+ d5
2

−2 d2 d3

d2
1

− 6 d3
2 + 6 d2

4
− d2

5
2 d1 d2 2 d1 d3 −6 d4 d1 2 d1 d5 d2

2
− 6 d2

3
+ 6 d2

4
− d2

5
2 d2 d3

0 d5 d4 0 0 −d4 d2 0 0

0 d3 d5 0 0 −d2 d3 0 −d1 d5

0 d3 d4 0 −d2 d3 0 0 −d4 d1

0 d2
3

− d2
4

−d2 d3 d4 d2 0 0 −d1 d3

0 d2 d5 0 −d5 d4 −d2
2 + d2

4
−d1 d5 0

0 d2 d3 −d2
2

+ d2
4

−d3 d4 0 −d1 d3 d1 d2

0 −d1 d3 −d1 d2 0 0 −d2 d3 d2
1

− 2 d2
4

+ d2
5

0 0 d5 d4 0 −d3 d4 0 0

0 0 d3 d5 −d5 d4 −d2
3

+ d2
4

0 0

0 0 d2 d5 0 −d2 d3 0 −d1 d5

0 0 d4 d2 −d2 d3 0 0 −d4 d1

0 0 0 d3 d5 −d3 d4 0 0

0 0 0 d2 d5 −d4d2 0 0

0 0 0 0 0 d5 d4 0

0 0 0 0 0 d3 d5 −d2 d5

0 0 0 0 0 0 d5 d4

0 0 0 0 0 0 d3 d5

0 0 0 0 0 0 0

























































































































































































































































































,
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SB =

























































































































































































































−d2
3
+ d2

5
−d5d4 −2 d4 d2 d2 d3 0 −d4 d2 −d2 d5

−d3 d4 d3 d5 d2 d3 −d4 d2 d2 d5 2 d2 d3 0

0 0 −2 d4 d1 d1 d3 0 −d4d1 −d1 d5

0 0 d1 d3 −d4d1 d1 d5 2 d1 d3 0

−d2 d3 0 d3 d4 d2
2
− d2

5
d5 d4 d3 d4 d3 d5

2 d4 d2 0 d2
2
+ d2

3
− d2

4
− d2

5
0 2 d3 d5 −d2

2
+ d2

3
− d2

4
+ d2

5
−2 d5 d4

−4 d4 d2 2 d2 d5 −2 d2
3
+ 2 d2

5
2 d3 d4 −4 d3 d5 3 d2

2
− 3 d2

3
+ d2

4
− d2

5
2 d5 d4

d1 d2 0 −d4 d1 0 0 −d4 d1 −d1 d5

−2 d4 d1 d1 d5 0 0 0 3 d1 d2 0

0 0 −d5 d4 d3 d5 d3 d4 0 d2
1
− d2

3

0 0 0 d5 d4 d2
1
− d2

4
−d3 d5 d3 d4

0 0 d3 d4 d2
1
− d2

5
d5 d4 d3 d4 d3 d5

0 0 d2
1
+ d2

3
− d2

4
− d5

2 0 2 d3 d5 −d2
1
+ d2

3
− d4

2 + d2
5

−2 d5 d4

d5 d4 d2
1
− d2

4
0 0 0 −d2 d5 d4 d2

d2
1
− d2

5
d5 d4 d4 d2 0 0 d4 d2 d2 d5

6 d4 d2 −2 d2 d5 3 d2
3
− 3 d2

5
−4 d3 d4 6 d3 d5 −d2

1
− 4 d2

2
+ 5 d3

2
− 2 d2

4
+ 2 d2

5
−4 d5 d4

−6 d4 d2 2 d2 d5 −5 d3
2
+ 5 d2

5
6 d3 d4 −10 d3 d5 4 d1

2
+ 4 d2

2
− 8 d2

3
+ 3 d2

4
− 3 d5

2
6 d5 d4

−d1 d5 0 0 0 0 0 d1 d2

0 0 0 0 d1 d2 0 0

0 0 0 d1 d2 0 0 0

d4 d1 0 d1 d2 0 0 −d1 d2 0

0 d1 d2 0 0 0 d1 d5 −d4 d1

0 0 0 −d4 d1 0 d1 d3 0

2 d3 d4 −d3 d5 −d2 d3 2 d4 d2 −d2 d5 −3 d2 d3 0

0 0 0 −d1 d5 0 0 d1 d3

0 0 −d1 d5 0 d1 d3 d1 d5 −d4 d1

0 d1 d3 0 0 0 0 0

d1 d3 0 0 0 0 0 0

0 0 0 −d1 d5 d4 d1 0 0

−d1 d5 d4 d1 0 0 0 0 0

−d2 d5 −d4 d2 −d5 d4 d3 d5 d3 d4 0 d2
2
− d2

3

0 −d2 d3 0 d5 d4 d2
2
− d2

4
−d3 d5 d3 d4

0 −d3 d4 0 −d2 d5 0 0 d2 d3

−d5 d4 −d2
3
+ d2

5
−d2 d5 0 d2 d3 d2 d5 −d4 d2

d3 d5 −d3 d4 0 −d2 d5 d4 d2 0 0

























































































































































































































.

Similarly, we can prove that we have kerD(S5) = imD(T5), where the matrix T5 = (TA TB) ∈
D35×35 is defined by:
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TA =











































































































































































































































































d5 0 0 0 0 0 0 0 0 0 0 0 0 −d4 d5 0 0 0 0 0

d5 0 0 0 0 0 0 0 0 −d2 0 0 0 0 d5 0 0 d1 0 0

d4 −3 d3 0 0 0 0 0 0 d1 0 0 0 0 −d5 2 d4 −d2 −d2 0 0 0

−d2 0 0 0 d3 −d4 d4 d1 0 d5 0 0 d4 0 −d2 2 d4 d4 0 0 0

−d2 0 d1 0 d3 −2 d4 −d4 0 0 d5 0 −d3 2 d4 0 0 d4 d4 0 0 0

d1 0 0 0 0 0 0 0 d4 0 0 0 0 0 0 0 0 d5 0 −d3

0 2 d4 0 0 0 0 0 0 0 0 0 0 0 0 −d3 0 0 0 0 0

0 d5 0 0 0 0 0 0 0 0 0 0 0 −d3 0 0 0 0 0 0

0 −2 d2 0 0 0 d3 2 d3 0 0 0 0 d4 0 0 0 d3 0 0 0 0

0 2 d3 0 0 0 0 0 0 0 0 0 0 −d2 0 −d4 0 0 0 0 0

0 2 d4 0 0 0 0 0 0 0 0 0 −d2 0 0 0 0 0 0 0 d1

0 d5 0 0 0 0 0 0 0 0 −d2 0 0 0 0 0 0 0 d1 0

0 −d2 0 d1 −d4 d3 d3 0 0 0 −d5 d4 −d3 0 0 −d3 −d3 0 0 0

0 d1 0 0 0 0 0 0 −d3 0 0 0 0 0 0 0 0 0 −d5 d4

0 0 −d5 0 0 0 0 d5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 d2 0 0 0 0 0 d4 0 0 0 0 0 0 0 0 d5 0 −d3

0 0 −d4 2 d3 0 0 d1 2 d4 −d2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −d4 0 0 0 −d3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 d2 0 0 0 0 −d3 0 0 0 0 0 0 0 0 0 −d5 d4

0 0 0 −d3 0 d1 0 −d4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −d5 0 0 0 0 0 −d4 d5 0 0 0 0 0 0 0 0

0 0 0 0 −d5 0 0 0 0 −d3 0 d5 0 0 0 0 0 0 0 0

0 0 0 0 d1 0 0 d3 0 0 0 0 0 0 0 0 0 0 0 −d2

0 0 0 0 0 −d5 0 0 0 d4 −d3 0 d5 0 0 0 0 0 0 0

0 0 0 0 0 −d5 d5 0 0 d4 0 0 0 −d2 0 d5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d4 −d3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d3 0 d5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d4 −d3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d3 0 d5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d4 d5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d4 d5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0










































































































































































































































































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TB =























































































































































































































0 0 0 0 0 0 0 0 0 d1 0 0 0 −d4 d3

0 0 0 0 0 0 0 0 0 0 0 0 −d3 0 d3

0 0 0 −d3 0 0 0 0 0 0 0 0 0 −2 d5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −d5 0 0 0 0

2 d4 0 0 0 0 0 0 d3 0 0 0 0 0 0 0

0 0 0 d4 0 0 0 d1 0 0 0 0 d5 0 −d5

0 0 0 d5 0 0 d1 0 0 0 0 0 d4 0 0

0 0 d1 −d2 0 0 0 0 0 0 0 d5 0 0 0

d1 0 0 d3 0 0 0 0 0 0 0 0 0 d5 0

0 0 0 d4 0 0 0 0 0 0 0 0 d5 0 0

0 0 0 d5 0 0 0 0 0 0 0 0 d4 0 −d4

0 0 0 0 0 0 0 0 0 0 0 d5 0 0 0

−d3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −d4 0 0 0 d4 0 0 −d3 d2 0 0 0 0 0

2 d4 0 0 0 0 0 0 0 0 −d5 0 0 0 0 0

0 −d5 −d3 0 0 2 d5 0 0 0 0 0 0 0 0 0

0 0 d4 0 −d5 0 0 d2 d5 0 0 0 0 0 0

−d3 0 0 0 0 0 d5 −d4 0 0 0 0 0 0 0

−d2 0 d3 0 0 −d5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 d1 0 0 d4 0 0 −d2

0 0 0 0 d1 0 0 0 0 0 d3 0 −d2 0 0

0 0 0 0 0 0 0 0 −d5 0 0 0 0 0 0

0 0 0 0 0 d1 0 0 0 0 −d4 d3 0 −d2 0

0 d1 0 0 0 0 0 0 0 0 0 d3 0 −d2 0

d5 0 0 0 0 d2 0 0 0 0 0 0 0 0 0

0 0 0 0 d2 0 0 −d5 0 0 0 0 0 0 0

d5 0 0 0 0 0 d3 0 0 −d4 0 0 0 d1 0

0 0 0 0 0 0 d4 −d5 0 0 0 0 d1 0 0

0 d4 0 0 d3 −d4 0 0 0 0 d1 0 0 0 0

0 0 0 0 0 0 0 0 d2 0 0 0 0 0 0

0 0 0 0 0 0 d4 −d5 0 0 0 0 0 0 d1

0 d3 0 0 0 0 0 0 d4 0 0 d1 0 0 0

0 −d3 d5 0 −d4 0 d2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −d4 d5 0 d3 0 0 0 0 0























































































































































































































.

We have kerD(T5) = imD(U5), where U5 = (UA UB UC) ∈ D14×35 and the matrices UA, UB

and UC are respectively defined by:

32



UA =







































































































−d2 d3 0 0 0 −d3d5 0 −d2 d5 d4 d2 0 0 0 0 −d5 d4 0 −d1 d3

−d3 d5 d3 d5 0 d2 d3 −d2 d3 0 −d2
2 + d4

2 d5 d4 −d4 d2 −d3 d4 d3
2

− d4
2

−d5 d4 0 0 0

−d2
2 + d5

2 d4
2

− d5
2

−d5 d4 −d2 d5 0 0 0 0 0 −d5 d4 −d3 d5 d3 d4 0 0 d1 d2

−d1 d3 0 0 0 0 d3 d5 −d1 d5 d4 d1 0 0 0 0 0 d5 d4 0

d1 d5 −d1 d5 −d4 d1 0 −d1 d2 −d2
2 + d4

2 0 0 0 −2 d4 d1 d1 d3 0 0 −d3 d4 0

−d1 d2 0 0 −d1 d5 d1 d5 d2 d5 0 0 0 0 0 0 0 0 d1
2

− d4
2

0 d3 d4 −d3 d5 0 0 0 d5d4 −d2
2 + d5

2
−d2 d5 −2 d3 d5 −d5 d4 d3

2
− d5

2 d2 d5 0 0

0 d1 d3 0 0 0 −d3 d5 d1 d5 0 0 0 −d1 d5 0 0 0 0

0 −d4 d1 0 0 0 d5 d4 0 0 0 −d1 d5 0 d1 d3 0 d3 d5 −d4 d2

0 0 d1 d3 0 0 −d3 d4 d4 d1 −d1 d5 0 d1 d3 −d4 d1 d1 d5 −d1 d2 −d2
2 + d3

2 0

0 0 0 d1 d3 0 d2 d3 −d1 d2 0 −d4 d1 0 0 0 d4 d1 d4 d2 0

0 0 0 0 0 0 0 −d1 d2 −d1 d5 0 0 0 0 −d2 d5 −d3 d4

0 0 0 0 0 0 0 0 0 0 −d1 d5 d4 d1 0 d5 d4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −d2 d3







































































































,

UB =









































































































0 0 −d1 d5 0 0 −d3
2 + d5

2 d4
2

− d5
2 0 d3 d4 0 0 0 0 0

d1 d3 0 d1 d2 d4 d1 0 d2 d5 −d2 d5 0 0 0 0 2 d1 d5 0 0

d1 d5 0 0 0 0 −d2 d3 0 0 0 d4 d2 −d4 d1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −d3 d4 −d4
2 + d5

2

d1
2

− d4
2

−d4 d2 d2 d3 d3 d4 −2 d4 d2 0 0 d2 d3 0 0 −d5 d4 2 d3 d5 d5 d4 −2 d3 d5

0 d5 d4 d3 d5 0 d5 d4 d1 d3 0 d3 d5 −d4 d1 d4 d1 0 0 −d4 d2 0

0 0 0 −d1 d5 0 0 −d4d2 0 −d2 d3 d2 d3 d1 d3 2 d4 d1 0 0

0 0 −d2 d5 −d5 d4 0 0 −d1 d2 −d2 d5 0 0 d3 d4 d1
2

− d3
2 + d4

2
− d5

2 0 −d2
2 + d3

2

−d5 d4 0 0 −d3 d5 −d2 d5 0 0 0 −d1 d2 0 d1
2

− d5
2 2 d3 d4 −d2

2 + d5
2

−2 d3 d4

d3 d4 d2 d3 0 d1
2

− d3
2 d2 d3 0 0 −d4 d2 0 0 −d3 d5 0 d3 d5 0

0 0 d1
2

− d3
2 0 d3 d4 −d1 d5 d1 d5 −d3

2 + d4
2 0 0 0 0 0 2 d2 d5

0 d3 d5 0 0 2 d3 d5 0 d4 d1 d5 d4 0 d1 d3 0 0 d2 d3 2 d4 d2

0 0 −d2 d5 −d5 d4 0 −d1 d2 0 −d2 d5 0 0 0 d4
2

− d5
2 0 −d4

2 + d5
2

−d3 d5 0 −d2 d5 −d5 d4 0 0 0 0 0 0 d3 d4 d4
2

− d5
2 0 0









































































































,

a
n
d
:



0
0

0
0

d
4
d
1

2
d
1
d
2

0
−
2
d
1
d
5

0
0

0
2
d
1
d
5

0
2
d
1
d
3

0
0

0
0

0
0

d
3
2
−
d
5
2

0
0

d
1
2
−
d
4
2



3
3



Moreover, we have kerD(U5) = imD(V5), where V5 ∈ D5×14 is the full row rank matrix defined
by:

V5 =





















−d2 d5 d3 0 0 0 −d4 0 0 0 0 0 0 2 d1

d1 0 0 −2 d2 0 d3 0 0 0 0 d5 −d4 0 0

0 d1 0 −2 d5 −d3 0 0 −2 d5 0 −d4 −d2 0 2 d5 0

0 0 d1 0 −d5 −d2 0 0 d4 0 0 0 −2 d3 0

0 0 0 0 0 0 d1 −2 d4 −d3 d5 0 −d2 0 2 d4





















.

Hence, the D-module M = D5/(D14 R5) = D5/(D15 W5) admits the following finite free reso-
lution:

0→ D5 V5−→ D14 U5−→ D35 T5−→ D35 S5−→ D14 R5−→ D5 →M5 → 0
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