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Optimal choice of Hankel-block-Hankel matrix

shape in 2-D parameter estimation: the rank-one case
Souleymen Sahnoun, Konstantin Usevich, Pierre Comon

Abstract—In this paper we analyse the performance of 2-D
ESPRIT method for estimating parameters of 2-D superimposed
damped exponentials. 2-D ESPRIT algorithm is based on low-
rank decomposition of a Hankel-block-Hankel matrix that is
formed by the 2-D data. Through a first-order perturbation
analysis, we derive closed-form expressions for the variances of
the complex modes, frequencies and damping factors estimates in
the 2-D single-tone case. This analysis allows to define the optimal
parameters used in the construction of the Hankel-block-Hankel
matrix. A fast algorithm for calculating the SVD of Hankel-
block-Hankel matrices is also used to enhance the computational
complexity of the 2-D ESPRIT algorithm.

Index Terms—Frequency estimation, Hankel-block-Hankel
matrix, 2-D ESPRIT, perturbation analysis.

I. INTRODUCTION

High resolution parameter estimation of bidimensional (2-

D) and multidimensional signals finds many applications in

signal processing and communications such as radar imaging,

wireless communications [1], and nuclear magnetic resonance

(NMR) spectroscopy [2].

a) State of art: To deal with this problem, several meth-

ods have been proposed. They include (i) linear prediction-

based methods such as 2-D TLS-Prony [3], (ii) subspace

approaches such as matrix enhancement and matrix pencil

(MEMP) [4], 2-D ESPRIT [5], improved multidimensional

folding (IMDF) [6], [7], and the methods proposed in [8],

[9], (iii) sparse-based algorithms [10]. It is generally admitted

that these methods yield accurate estimates at high SNR

and/or when the frequencies are well separated. Statistical

performances of some of these methods have been studied in

the case of undamped sinusoids [6], [7]. Recently, analytical

performances of tensor-based ESPRIT-type algorithms have

been assessed for undamped signals [11].

In this paper, we focus our attention on the 2-D ESPRIT

algorithm of [5]. In sensor array processing, this approach

can be used to address the case of a single snapshot via

spatial smoothing [8]. The performance of 2-D ESPRIT de-

pends on the shape of the Hankel-block-Hankel (HbH) matrix

constructed from 2-D data. To our knowledge, no theoretical

study has yet been conducted (especially for damped signals)

to optimally choose parameters defining the HbH matrix.

b) Contributions: The main contribution consists in the

derivation of closed-form expressions of the variance of the

complex modes, frequencies and damping factors estimates
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in case of 2-D damped single-tone signals. These expressions

are used to define the optimal size of the sub-windows used

in the construction of the HbH matrix. We also propose to

use a fast algorithm to compute the SVD of the HbH matrix,

which reduces the computational complexity of 2-D ESPRIT

for large signals.

c) Organisation of the paper: In Section II, we introduce

notation, present the 2-D modal retrieval problem and recall

the 2-D ESPRIT algorithm. In Section III, a first-order pertur-

bation analysis for 2D-ESPRIT is performed. In Section IV,

the single tone case is analyzed and the optimal parameters for

the construction of the HbH matrix are discussed. In Section

V, computer results are presented to verify the theoretical

expressions. We also discuss the complexity of the SVD.

II. PARAMETER ESTIMATION USING 2-D ESPRIT

A. Signal model

The classical model for 2-D modal signals is the superpo-

sition of 2-D damped complex sinusoids in noise. In other

words, we observe

ỹ(m1,m2) =

R∑

r=1

cra
m1
r bm2

r + e(m1,m2) (1)

for m1 = 0, . . . ,M1 − 1 and m2 = 0, . . . ,M2 − 1, where

ar = e−αa,r+ωa,r are the modes of the first dimension

and br = e−αb,r+ωb,r are those of the second dimension.

{αa,r, αb,r}Rr=1 are damping factors, {ωa,r = 2πνa,r}Rr=1 and

{ωb,r = 2πνb,r}Rr=1 are angular frequencies and {cr}Rr=1 are

complex amplitudes; e(m1,m2) is a zero-mean complex Gaus-

sian white noise with variance σ2
e and mutually independent

components in all dimensions. The problem is to estimate

{ar, br, cr}Rr=1 from the observed signal ỹ(m1,m2). In this

paper, the tilde (˜) is used for noisy quantities. We also denote

by y(m1,m2) the noiseless signal.

B. 2-D ESPRIT algorithm

Define the HbH matrix

H =




H0 H1 ··· HK1−1

H1 H2 ··· HK1

...
...

...
HL1−1 HL1 ··· HM1−1


, (2)

where each block Hm1 is an L2 ×K2 Hankel matrix

Hm1 =




y(m1,0) y(m1,0) ··· y(m1,K2−1)
y(m1,1) y(m1,2) ··· y(m1,K2)

...
...

...
y(m1,L2−1) y(m1,L2) ··· y(m1,M2−1)


 (3)
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for m1 = 0, . . . ,M1−1. We shall also denote H̃ and H̃m1 the

noisy versions built upon noisy observations ỹ(m1,m2). Then

2-D ESPRIT algorithm [5] can be summarized as follows:

• Choose L1, L2 and set K1=M1−L1+1,K2=M2−L2+1.

• Construct the HbH matrix H̃ with L1×K1 blocks, in the

same format as in (2). It can be verified that its noiseless

part can be written as

H =
(
A

(L1) ⊙B
(L2)

)
Diag(c)

(
A

(K1) ⊙B
(K2)

)T

(4)

where ⊙ denotes the Khatri-Rao product, ·T denotes

the transposition, A(P ) (resp. B(P )) denotes the Vander-

monde matrix with P rows and R columns, containing

coefficients apr (resp. bpr), p ∈ {0, . . . , P − 1}, and

P ∈ {L1, L2,K1,K2}. Diag(c) is a diagonal R × R
matrix containing coefficients cr.

• Perform the SVD of H̃, and form the matrix Ũs ∈
CL1L2×R of the R dominant left singular vectors.

• Compute the matrices F̃1 and F̃2 such that:

F1 = (Ũs
1—

)† Ũ

1—

s, F2 = (Ũs
2—

)† Ũ

2—

s, (5)

where ·† denotes the pseudoinverse, and for a matrix

X =

[
X1

...
XL1

]
∈ C

L1L2×N , with Xk ∈ C
L2×N ,

matrices X
1—

,X
1—

∈ C(L1−1)L2×N , X
2—

,X
2—

∈ CL1(L2−1)×N

are defined as

X
1—

=

[
X1

...
XL1−1

]
,X

1—

=

[
X2

...
XL1

]
,X

2—
=




X1

...
XL1


,X

2—

=




X1

...
XL1


,

where · (resp. ·) removes the last (resp. first) row.

• Compute a diagonalizing matrix T̃ for a linear combina-

tion K̃ = βF̃1 + (1− β)F̃2:

K̃ = T̃D̃ηT̃
−1, (6)

where β is a complex parameter and D̃η = Diag(η̃). In

the noiseless case, ηr = βar+(1−β)br. Hence, β should

be selected so that elements of η are distinct. In [5] β
was fixed to 8 in simulations. Later, a selection technique

for β was proposed in [7].

• Apply the transformation T̃ to F̃1 and F̃2:

D̃a = T̃
−1

F̃1T and D̃b = T̃
−1

F̃2T̃. (7)

• Extract ar, br from diag(D̃a) and diag(D̃b).

The 2-D ESPRIT method does not require a pairing step.

Indeed, the (r, r) element of D̃a corresponds to the same

2-D signal component as the (r, r) element of D̃b. Hence,

2-D ESPRIT can estimate the parameters in the presence of

identical modes in the dimensions.

III. ANALYSIS OF THE 2-D ESPRIT METHOD

A. Perturbation of signal subspace Us

The SVD of the noiseless HbH matrix H is given by:

H = UsΣsV
H

s +UnΣnV
H

n ,

where Σn = 0 and ·H denotes the Hermitian transposition.

The perturbed H̃ is expressed as

H̃ = H+∆H,

whose subspace decomposition is given by

H̃ = ŨsΣ̃sṼ
H

s + ŨnΣ̃nṼ
H

n . (8)

We use the following lemma on the first-order approximation.

Lemma 1 ( [12], [13]): First order approximations of the

perturbations Ũs −Us, Ṽs −Vs and Σ̃s −Σs are given by

∆Us = UnU
H

n∆HVsΣ
−1
s , (9)

∆V
H

s = Σ
−1
s U

H

s∆HVnV
H

n , (10)

∆Σs = U
H

s∆HVs. (11)

B. Perturbations of the matrices F1,F2 and K

From (5), we have Ũs
1—

F̃1 = Ũ

1—

s, which is written also as

(Us
1—

+∆Us
1—

)(F1+∆F1) = (U
1—

s+∆U
1—

s). By canceling Us
1—

F1

and U
1—

s, and neglecting ∆Us
1—

∆F1, we get that up to first order

∆F1 = (Us
1—

)†(∆U
1—

s −∆Us
1—

F1). (12)

Similarly, the first-order perturbation ∆F2 is given by:

∆F2 = (Us
2—

)†(∆U
2—

s −∆Us
2—

F2), (13)

and the perturbation of the matrix K defined in the previous

section eventually takes the form: ∆K = β∆F1+(1−β)∆F2.

IV. SINGLE-TONE CASE

In this section, we calculate the perturbations of the param-

eter estimates for the signal y(m1,m2) = cam1bm2 .

A. Basic expressions

Let u be the first left singular vector of H. Then (5) becomes

F1 = u
1—

†
u

1—
, F2 = u

2—

†
u

2—
. (14)

Since, for a single tone, F1 and F2 are just scalars, we have

that a = F1 and b = F2, from which it follows that




∆a = 1

‖u
1—

‖2 u1—

H(∆u
1— − a∆u

1—
),

∆b = 1
‖u

2—
‖2 u2—

H(∆u
2— − b∆u

2—
).

(15)

Let c = |c|e2πφ. From (4), H can be written as

H = c
(
a
(L1) ⊠ b

(L2)
)(

a
(K1) ⊠ b

(K2)
)⊤

,

which implies that an SVD H = σuvH is given by

σ = |c|
√
huhv,

u =
e2πφ√
hu

(
a
(L1) ⊠ b

(L2)
)
,v =

1√
hv

(
a
∗(K1) ⊠ b

∗(K2)
)
,

hu = ‖a(L1)‖2‖b(L2)‖2, hv = ‖a(K1)‖2‖b(K2)‖2,
where for x ∈ C we define x

(L) = [1, x, . . . , x(L−1)]T, (∗)
denotes the elementwise conjugation, and ⊠ is the Kronecker

product of matrices (vectors are one-column matrices).
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B. Expressions for the first-order perturbations

Now, by replacing expressions in (15) by the first-order

perturbation (9), we obtain

∆a =
1

σ‖u
1—

‖2 u
1—

H(( I
1—

− a I
1—

)UnU
H

n∆Hv)

=
1

σ‖u
1—

‖2
(
u

1—

H( I
1—

(I− uu
H)− a I

1—
(I− uu

H))∆Hv

)

=
1

σ‖u
1—

‖2
(
u

1—

H( I
1—

− u
1—

u
H − a I

1—
+ u

1—
u
H)∆Hv

)

=
1

σ‖u
1—

‖2
(
u

1—

H( I
1—

− a I
1—

)∆Hv

)
,

where I is the L1L2 × L1L2 identity matrix.

Next, the matrices I
1—

and I
1—

can be first expressed as

I
1—

= IL1 ⊠ IL2 and I
1—

= IL1
⊠ IL2 ,

where under- and over-bars are defined in Section II. Hence,

in particular

u
1—

=
e2πφ√
hu

(a(L1−1)
⊠ b

(L1)).

Second, since ∆H is a Hankel-block-Hankel matrix for the

noise term e(m1,m2), the product ∆Hv can be written as

the two-dimensional convolution, which yields

∆Hv =
1√
hv

(G
(L1,K1)
a∗ ⊠G

(L2,K2)
b∗ )e,

where e is the vectorized noise term

e = [e(0, 0), . . . , e(0,M2 − 1), . . . ,

e(M1 − 1, 0), . . . , e(M1 − 1,M2 − 1)]T,

and for x, the matrix G
(L,K)
x is the convolution matrix

G
(L,K)
x =

[
1 x ··· xK−1

. . .
. . .

. . .
. . .

1 x ··· xK−1

]
∈ C

L×(K+L−1),

where the blank elements denote zeros. Hence,

∆a =
1

σ
√
hv

· ‖a(L1)‖2
‖a(L1−1)‖2 · e

−2πφ(a(L1−1)
⊠ b

L1)H√
hu

·

· (IL1 ⊠ IL2 − aIL1
⊠ IL2)(G

(L1,K1)
a∗ ⊠G

(L2,K2)
b∗ )e

=
e−2πφ

σ
√
huhv

· ‖a(L1)‖2
‖a(L1−1)‖2((

(a(L1−1))H(IL1−aIL1
)G

(L1,K1)
a∗

)
⊠
(
(b(L1))HG

(L2,K2)
b∗

))
e.

C. Expressions for the moments of the perturbations

Since e is zero-mean, we have that E {∆a} = 0. Next, as

E
{
ee

H
}
= σ2

eIM1M2 , the variance of ∆a can be found as

E
{
|∆a|2

}
=

σ2
e

|c|2 f(L1,M1, a)g(L2,M2, b), (16)

where the functions f(L,M, x) and g(L,M, x) are defined as

f(L,M, x) =
‖(x(L−1))H(IL − xIL)G

(L,K)
x∗ ‖2

‖x(K)‖4‖x(L−1)‖4 ,

g(L,M, x) =
‖(x(L))HG

(L,K)
x∗ ‖2

‖x(L)‖4‖x(K)‖4 ,

and K = M − L+ 1. Similarly, we get

E
{
|∆b|2

}
=

σ2
e

|c|2 f(L2,M2, b)g(L1,M1, a). (17)

It can be verified that the variances of the frequencies and

the damping factors are expressed as:

var(∆ωa) = var(∆αa) =
E
{
|∆a|2

}

2|a|2 , (18)

var(∆ωb) = var(∆αb) =
E
{
|∆b|2

}

2|b|2 . (19)

D. Closed form expressions

Our next goal is to give closed-form expressions of

f(L,M, x) and g(L,M, x). It is easy to see that

(x(L))HG
(L,K)
x∗ = [1, 2x∗, 3x∗2, . . . , L∗x

∗(L∗−1), . . . ,

L∗x
∗(M−L∗), (L∗ − 1)x∗(M−L∗+1), . . . , 2x∗(M−2), x∗(M−1)].

where L∗ = min(L,K). Next, we have that

[(x(L−1))H(IL − xIL)G
(L,K)
x∗ ]i =





(i(1− |x|2)− |x|2)x∗(i−1), i = 0, . . . , L∗∗ − 1,

L∗∗(1 − |x|2)x∗(i−1), i = L∗∗, . . . ,M − L∗∗ − 1,

((M−i)(1−|x|2)+|x|2)x∗(i−1), i=M−L∗∗, . . . ,M − 1,

where L∗∗ = min(L − 1,K). In the damped case (|x| 6= 1),

after tedious calculations, Eq. (22) and (23) can be obtained

for f(L,M, x) and g(L,M, x). Detailed derivations will be

given in a full-length version of the paper. In the undamped

case the expressions are much simpler and are given in (20)

and (21). We notice that the functions f and g are symmetric

with respect to L = M
2 + 1 and L = M+1

2 , respectively.

f(L,M, x)=

{
2

K2(L−1) , if L− 1 ≤ M
2 and |x| = 1

2
K(L−1)2 , if L− 1 ≥ M

2 and |x| = 1
(20)

g(L,M, x)=

{
1
K
− L2−1

3LK2 , if L ≤ M+1
2 and |x| = 1

1
L
−K2−1

3L2K
, if L ≥ M+1

2 and |x| = 1
(21)

f(L,M, x) = (1− |x|2)3×




1+|x|2K

(1−|x|2K)2(1−|x|2(L−1))
, if L−1 ≤ M

2 and |x| 6= 1

1+|x|2(L−1)

(1−|x|2K)(1−|x|2(L−1))2
, if L−1 ≥ M

2 and |x| 6= 1
(22)
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g(L,M, x) = (1− |x|2)×





−2L(1−|x|2)(|x|2K+|x|2L)
(1−|x|2L)2(1−|x|2K)2

+ (1+|x|2K)(1+|x|2)

(1−|x|2L)(1−|x|2K)2
, if L ≤ M+1

2 and |x| 6= 1

−2K(1−|x|2)(|x|2L+|x|2K)
(1−|x|2L)2(1−|x|2K)2

+ (1+|x|2L)(1+|x|2)

(1−|x|2L)2(1−|x|2K)
, if L ≥ M+1

2 and |x| 6= 1
(23)

E. Optimal values for L1 and L2

In [14], the optimal value of L has been obtained so as to

minimize f(L,M, x) (which corresponds to the case of 1-D

signals). In the case of 2-D ESPRIT, there are two variables,

L1 and L2, but they separate in the expressions of variances.

Therefore, the optimal values of L1 and L2 are simply given

by minimal values of each function, namely f and g.

As discussed in [14], the L that minimizes f(L,M, x) lies

between M/3 and M/2 and approaches M/2 as the damping

factor of x increases (or if M tends to ∞). These results are

shown in Figure 1. Regarding function g(L,M, x), it can be

seen from Figure 2 that the minimum is reached for small

L. Therefore, the optimal values of L1 and L2 minimizing

var(∆ωa) (resp. var(∆ωb)) lie between M/3 and M/2 for

L1 (resp. L2) and L2 (resp. L1) should be chosen as small

as possible. This is illustrated by typical examples in Figure 3

(resp. Figure 4). As in [8], the total Mean Square Error (tMSE)

is taken to be tMSE = var(∆ωa) + var(∆ωb); the tMSE

corresponding to Figures 3-4 is plotted in Figure 5.

As indicated by the results shown in Figure 5, for case

where damping factors are known to be less than 0.1, the

values of Li that minimize tMSE should be chosen in the

intervals [Mi/4,Mi/2].

V. SIMULATIONS

We consider a 2-D damped single-tone signal with param-

eters (αa, ωa) = (−0.1, 0.2π) and (αb, ωb) = (−0.1, 0.4π).
The SNR is fixed to 40 dB. Figure 6 shows the sample MSE

and its theoretical value for ω1 obtained from 200 Monte Carlo

trials with (M1,M2) = (30, 30). Since it is difficult to see the

difference between the two curves in a 3-D plot, we show only

one slice of the 3-D plot corresponding to L2 = 4. We can

observe that the theoretical MSEs are close to the estimated

ones. In the second example, we repeat the same experiment

with (M1,M2) = (100, 100) using the fast SVD method. The

obtained results are reported in Figure 7, where it can bee seen

that theoretical MSEs are again close to the estimated ones.

In the third example, the same parameters of the modes

are used but the SNR is varying. The parameters (L1, L2) are

set to (4, 4). The obtained results are depicted in Figure 8.

We observe that the theoretical results are almost equal to

empirical ones beyond a threshold, which is here -5 dB.

To compute 2D-ESPRIT estimates, we use the fast meth-

ods for partial SVD of HbH matrices [15, Sec. 6], where

only the first R singular values/vectors are computed. The

overall complexity of 2D-ESPRIT becomes O(RM logM)
flops, compared with the complexity O(L2K) of the naive

implementation (where K = K1K2, L = L1L2 and M =
M1M2). Hence, optimal or near-optimal values of parameters

(for example, (L1, L2) = (M1/2,M2/2)) can be used for

large signals.

VI. CONCLUSION

The 2-D ESPRIT algorithm is implemented by storing the

M1 × M2 data matrix into a HbH matrix with L1L2 lines.

A perturbation analysis has been carried out, which led to a

closed form expression of the variances of first-order perturba-

tions of parameters (damping factors and frequencies). It has

then been shown that variables L1 and L2 separate in each of

these variances. This property enables us to find the intervals

for the optimal values of Li that minimize the variance of the

estimates. The optimal values of Li are different depending

on whether we minimize the MSE in each dimension or the

total MSE.
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Fig. 1. Behavior of function f(L,M, x) as a function of L for different
values of M and damping factors.
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Fig. 2. Behavior of function g(L,M, x) as a function of L for different
values of M and damping factors.
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Fig. 3. Variance of ∆ωa as a function of L1 and L2
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Fig. 4. Variance of ∆ωb as a function of L1 and L2
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Fig. 5. tMSE as a function of L1 and L2
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Fig. 6. Theoretical and empirical MSEs for 2-D ESPRIT versus L1, (L2 =
4). (αa, ωa) = (−0.1, 0.2π), (αb, ωb) = (−0.1, 0.4π), (M1,M2) =
(30, 30), SNR = 40 dB.
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Fig. 7. Theoretical and empirical MSEs for 2-D ESPRIT (fast SVD) versus
L1, (L2 = 4). (αa, ωa) = (−0.1, 0.2π), (αb, ωb) = (−0.1, 0.4π),
(M1,M2) = (100, 100), SNR = 40 dB.
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Fig. 8. Theoretical and empirical tMSEs for 2-D ESPRIT versus SNR.
(L1, L2) = (4, 4). (αa, ωa) = (−0.1, 0.2π), (αb, ωb) = (−0.1, 0.4π),
(M1,M2) = (10, 10).


