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Optimal choice of Hankel-block-Hankel matrix
shape in 2-D parameter estimation

Souleymen Sahnoun, Konstantin Usevich, Pierre Comon

Abstract—In this paper we analyse the performance of 2-D
ESPRIT method for estimating parameters of 2-D superimposed
damped exponentials. 2-D ESPRIT algorithm is based on low-
rank decomposition of a Hankel-block-Hankel matrix that is
formed by the 2-D data. Through a first-order perturbation
analysis, we derive expressions of the variance of the estimates in
2-D multiple-tones case. We also derive closed-form expressions
of the variances of the complex modes, frequencies and damping
factors estimates in the 2-D single-tone case. This analysis allows
to define the optimal parameters used in the construction of the
Hankel-block-Hankel matrix. A fast algorithm for calculating the
SVD of Hankel-block-Hankel matrices is also used to enhance
the computational complexity of the 2-D ESPRIT algorithm.

Index Terms—Frequency estimation, Hankel-block-Hankel
matrix, 2-D ESPRIT, perturbation analysis.

I. INTRODUCTION

High resolution parameter estimation of bidimensional (2-
D) and multidimensional signals finds many applications in
sensor array processing, such as radar, wireless communica-
tions, sonar, seismology, or medical imaging.

a) State of art: To deal with this problem, several
parametric methods have been proposed. They include linear
prediction-based methods such as 2-D TLS-Prony [1], and sub-
space approaches such as matrix enhancement and matrix pen-
cil (MEMP) [2], 2-D ESPRIT [3], multidimensional folding
(MDF) [4], improved multidimensional folding (IMDF) [5],
[6], and the methods proposed in [7]–[9]. It is generally ad-
mitted that these methods yield accurate estimates at high SNR
and/or when the frequencies are well separated. Statistical
performances of some of these methods have been studied in
the case of undamped sinusoids [5], [6]. Recently, analytical
performances of tensor-based ESPRIT-type algorithms have
been assessed for undamped signals [10].

In this paper, we focus our attention on the 2-D ESPRIT
algorithm of [3]. In sensor array processing, this approach
can be used to address the case of a single snapshot via
spatial smoothing [7]. The performance of 2-D ESPRIT de-
pends on the shape of the Hankel-block-Hankel (HbH) matrix
constructed from 2-D data. To our knowledge, no theoretical
study has yet been conducted (especially for damped signals)
to optimally choose parameters defining the HbH matrix.

b) Contributions: The main contribution consists in the
derivation of closed-form expressions of the variance of the
complex modes, frequencies and damping factors estimates in
case of 2-D damped single-tone signals. These expressions are
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used to define the optimal size of the sub-windows used in the
construction of the HbH matrix. We also derive expressions of
first-order perturbations of the parameters in the multiple tone
case. Finally, we propose to use a fast algorithm to compute
the SVD of the HbH matrix, which reduces the computational
complexity of 2-D ESPRIT for large signals.

c) Organisation of the paper: In Section II, we introduce
notation, present the 2-D modal retrieval problem and recall
the 2-D ESPRIT algorithm. In Section III, a first-order pertur-
bation analysis for 2D-ESPRIT is performed. In Section IV,
the single tone case is analyzed and the optimal parameters for
the construction of the HbH matrix are discussed. In Section
V, computer results are presented to verify the theoretical
expressions. We also discuss the complexity of the SVD.

II. PARAMETER ESTIMATION USING 2-D ESPRIT
The classical model for 2-D modal signals is the superpo-

sition of 2-D damped complex sinusoids in noise. In other
words, we observe:

ỹ(m1,m2) =

R∑
r=1

cra
m1
r bm2

r + e(m1,m2) (1)

for m1 = 0, . . . ,M1 − 1 and m2 = 0, . . . ,M2 − 1, where
ar = e−αa,r+ωa,r are the modes of the first dimension
and br = e−αb,r+ωb,r are those of the second dimension.
{αa,r, αb,r}Rr=1 are damping factors, {ωa,r = 2πνa,r}Rr=1 and
{ωb,r = 2πνb,r}Rr=1 are angular frequencies and {cr}Rr=1 are
complex amplitudes; e(m1,m2) is a zero-mean complex Gaus-
sian white noise with variance σ2

e and mutually independent
components in all dimensions. The problem is to estimate
{ar, br, cr}Rr=1 from the observed signal ỹ(m1,m2). In this
paper, the tilde (˜ ) denotes a noisy signal.

A. 2-D ESPRIT algorithm

Define the HbH matrix

H =


H0 H1 ··· HK1−1

H1 H2 ··· HK1

...
...

...
HL1−1 HL1

··· HM1−1

, (2)

where each block Hm1
is an L2 ×K2 Hankel matrix

Hm1
=

 y(m1,0) y(m1,0) ··· y(m1,K2−1)
y(m1,1) y(m1,2) ··· y(m1,K2)

...
...

...
y(m1,L2−1) y(m1,L2) ··· y(m1,M2−1)

 (3)

for m1 = 0, . . . ,M1−1. We shall also denote H̃ and H̃m1 the
noisy versions built upon noisy observations ỹ(m1,m2). Then
2-D ESPRIT algorithm [3] can be summarized as follows:
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• Choose L1, L2 and set K1 =M1−L1+1,K2 =M2−L2+1.
• Construct the HbH matrix H̃ with L1×K1 blocks, in the

same format as in (2). It can be verified that its noiseless
part can be written as

H =
(
A(L1) �B(L2)

)
Diag(c)

(
A(K1) �B(K2)

)T
(4)

where � denotes the Khatri-Rao product, A(P ) (resp.
B(P )) denotes the Vandermonde matrix with P rows
and R columns, containing coefficients apr (resp. bpr),
p ∈ {0, . . . , P − 1}, and Diag(c) is a diagonal R × R
matrix containing coefficients cr.

• Perform the SVD of H̃, and form the matrix Us ∈
CL1L2×R of the R dominant singular vectors.

• Compute the matrices F1 et F2 such that:

F1 = (Us
1—

)† U
1—
s, F2 = (Us

2—
)† U

2—
s, (5)

where (†) denotes the pseudoinverse, and for a matrix

X =

[
X1

...
XL1

]
∈ CL1L2×N , with Xk ∈ CL2×N ,

matrices X
1—
,X

1—
∈ C(L1−1)L2×N , X

2—
,X

2—
∈ CL1(L2−1)×N

are defined as

X
1—

=

[
X1

...
XL1−1

]
,X

1—
=

[
X2

...
XL1

]
,X

2—
=

 X1

...
XL1

,X2—
=

 X1

...
XL1

,
where · (resp. ·) removes the last (resp. first) row.

• Compute a diagonalizing matrix T from a linear combi-
nation K=βF1+(1−β)F2 (β is a user parameter):

K = T Diag(η)T−1. (6)

• Apply the transformation T to F1 and F2:

Da = T−1F1T and Db = T−1F2T. (7)

• Extract ar, br from diag(Da) and diag(Db).
The 2-D ESPRIT method does not require a pairing step.
Indeed, the (r, r) element of Diag(a) corresponds to the same
2-D signal component as the (r, r) element of Diag(b). Hence,
2-D ESPRIT can estimate the parameters in the presence of
identical modes in the dimensions.

III. ANALYSIS OF THE 2-D ESPRIT METHOD

A. Perturbation of signal subspace Us

The SVD of the noiseless HbH matrix H is given by:

H = UsΣsV
H
s + UnΣnVH

n

where Σn = 0. The perturbed H̃ is expressed as

H̃ = H + ∆H,

whose subspace decomposition is given by

H̃ = ŨsΣ̃sṼ
H
s + ŨnΣ̃nṼH

n (8)

We use the following lemma on the first-order approximation.

Lemma 1 ( [11] and [12]): The perturbed signal subspace
is Ũs = Us+ ∆Us, Ṽs = Vs+ ∆Vs and Σ̃s = Σs+ ∆Σs.
A first order approximation of the perturbation is given by

∆Us = UnUH
n∆H VsΣ

−1
s (9)

∆VH
s = Σ−1s UH

s∆H VnVH
n (10)

∆Σs = UH
s∆H Vs (11)

B. Perturbations of the matrices F1,F2 and K

From (5), we have Ũ
1—

F̃1 = Ũ
1—

, which is written also as

(U
1—

+ ∆U
1—

)(F1 + ∆F1) = (U
1—

+ ∆U
1—

). By canceling U
1—

F1

and U
1—

, and neglecting ∆U
1—

∆F1, we get

∆F1 = U
1—
†(∆U

1—
−∆U

1—
F1) (12)

Similarly, the first-order perturbation ∆F2 is given by:

∆F2 = U
2—
†(∆U

1—
−∆U

2—
F2) (13)

and matrix K defined in the previous section eventually takes
the form: ∆K = β∆F1 + (1− β)∆F2.

C. Perturbations of the modes: the general case

First, we calculate perturbations of eigenvectors tr (the
columns of matrix T). After some simplifications, we get
∆tf =

∑R
i=1,i6=r γirti where

γir =
τT
i ∆K tr
λr − λi

, i 6= r

where T−1
def
= [τ1, . . . , τR]T. Then we get

∆tr =

R∑
i=1,i6=r

1

ηr − ηi
tiτ

T
i ∆Ktr (14)

= T Ξ(r) T−1∆K tr (15)

where Ξ(r) is a diagonal matrix with Ξii(r) = 1
ηr−ηi , for

i 6= r and Ξrr(r) = 0. Finally, the perturbations of the mode
estimates is computed using (7){

∆ar = τT
r ((arI− F1)∆tr −∆F1 tr)

∆br = τT
r ((brI− F2)∆tr −∆F2 tr)

(16)

IV. SINGLE-TONE CASE

In this section, we calculate the perturbations of the param-
eter estimates for the signal y(m1,m2) = cam1bm2 .

A. Basic expressions

Let u be the left singular vector of the signal subspace.
Then (5) is rewritten as

F1 = u
1—
† u

1—
, F2 = u

2—
† u

2—
. (17)

Since, for a single tone, F1 and F2 are just scalars, we have
that a = F1 and b = F2, from which it follows that∆a = 1

‖u
1—
‖2 u

1—
H(∆ u

1— − a∆ u
1—

),

∆b = 1
‖u

2—
‖2 u

2—
H(∆ u

2— − b∆ u
2—

).
(18)
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Let c = |c|ej2πφ. Then an SVD of H, σuvH, is given by

σ = |c|
√
huhv,

u =
ej2πφ√
hu

(
a(L1) � b(L2)

)
,v =

1√
hv

(
a∗(K1) � b∗(K2)

)
,

hu = ‖a(L1)‖2‖b(L2)‖2, hv = ‖a(K1)‖2‖b(K2)‖2,

where for x ∈ C we define x(L) = [1, x, . . . , x(L−1)]T, (∗)
denotes the elementwise conjugation, and � is the Kronecker
product of matrices ( vectors are one-column matrices).

B. Expressions for the first-order perturbations
Now, by replacing expressions in (18) by the first-order

perturbation (9), we obtain

∆a =
1

σ‖u
1—
‖2

u
1—

H(( I
1—
− a I

1—
)UnUH

n∆Hv)

=
1

σ‖u
1—
‖2
(

u
1—

H( I
1—

(I− uuH)− a I
1—

(I− uuH))∆Hv
)

=
1

σ‖u
1—
‖2
(

u
1—

H( I
1—
− u

1—
uH − a I

1—
+ u

1—
uH)∆Hv

)
=

1

σ‖u
1—
‖2
(

u
1—

H( I
1—
− a I

1—
)∆Hv

)
,

where I is the L1L2 × L1L2 identity matrix.
Next, the matrices I

1—
and I

1—
can be first expressed as

I
1—

= IL1
� IL2

and I
1—

= IL1
� IL2

,

where under- and over-bars are defined in Section II. Hence,
in particular

u
1—

=
ej2πφ√
hu

(a(L1−1) � bL1).

Second, since ∆H is a Hankel-block-Hankel matrix for the
noise term e(m1,m2), the product ∆Hv can be written as
the two-dimensional convolution, which yields

∆Hv =
1√
hv

(G
(L1,K1)
a∗ � G

(L2,K2)
b∗ )e,

where e is the vectorized noise term
e = [e(0, 0), . . . , e(0,M2 − 1), . . . ,

e(M1 − 1, 0), . . . , e(M1 − 1,M2 − 1)]T,

and for x, the matrix G
(L,K)
x is the convolution matrix

G(L,K)
x =

[
1 x ··· xK−1

. . . . . . . . . . . .
1 x ··· xK−1

]
∈ CL×(K+L−1),

where the blank elements denote zeros. Hence,

∆a =
‖a(L1)‖2ej2πφ

σ
√
hv‖aL1−1‖2

(a(L1−1) � bL1)H√
hu

(IL1
� IL2

)T·

· (IL1
� IL2

− aIL1
� IL2

)(G
(L1,K1)
a∗ � G

(L2,K2)
b∗ )e

=
‖a(L1)‖2

σ
√
huhv‖a(L1−1)‖2((

(a(L1−1))H(IL1
−aIL1

)G
(L1,K1)
a∗

)
�
(
(b(L1))HG

(L2,K2)
b∗

))
e.

C. Expressions for the moments of the perturbations
Since e is zero-mean, we have that E {∆a} = 0. Next, since

E
{
eeH

}
= IM1M2

, the variance of ∆a can be expressed as

E
{
|∆a|2

}
=

σ2
e

|c|2
f(L1,M1, a)g(L2,M2, b), (19)

where the functions f(L,M, x) and g(L,M, x) are defined as

f(L,M, x) =
‖(x(L−1))H(IL − xIL)G

(L,K)
x∗ ‖2

‖x(K)‖4‖x(L−1)‖4
,

g(L,M, x) =
‖(x(L))HG

(L,K)
x∗ ‖2

‖x(L)‖4‖x(K)‖4
,

and K = M − L+ 1. Similarly, we get

E
{
|∆b|2

}
=

σ2
e

|c|2
f(L2,M2, b)g(L1,M1, a). (20)

It can be verified that the variances of the frequencies and
the damping factors are deduced by:

var(∆ωa) = var(∆αa) =
E
{
|∆a|2

}
2|a|2

(21)

var(∆ωb) = var(∆αb) =
E
{
|∆b|2

}
2|b|2

. (22)

D. Closed form expressions
Our next goal is to give closed-form expressions of

f(L,M, x) and g(L,M, x). It is easy to see that

(x(L))HG
(L,K)
x∗ = [1, 2x∗, 3x∗2, . . . , L2∗x

∗(L∗−1), . . . ,

L∗x
∗(M−L∗), (L∗ − 1)x∗(M−L∗+1), . . . , 2xM−2, 1].

where L∗ = min(L,K). Next, we have that

[(x(L−1))H(IL − xIL)G
(L,K)
x∗ ]i =

(i(1− |x|2)− |x|2)x∗(i−1), i = 0, . . . , L∗∗ − 1

L∗∗(1− |x|2)x∗(i−1), i = L1∗, . . . ,M − L∗∗ − 1

((M − i)(1− |x|2) + |x|2)x∗(i−1), i = M − L∗∗, ..,M − 1

where L∗∗ = min(L − 1,K). In the damped case (|x| 6= 1),
after tedious calculations, Eq. (25) and (26) can be obtained
for f(L,M, x) and g(L,M, x). In the undamped case the
expressions are much simpler and are given in (23) and (24).
We notice that the functions f and g are symmetric with
respect to L = M

2 + 1 and L = M+1
2 , respectively.

f(L,M, x)=

{
2

K2(L−1) , if L− 1 ≤ M
2 and |x| = 1

2
K(L−1)2 , if L− 1 ≥ M

2 and |x| = 1
(23)

g(L,M, x)=


1
K

(
1− L2−1

3LK

)
, if L ≤ M+1

2 and |x| = 1

1
L

(
1− K2−1

3LK

)
, if L ≥ M+1

2 and |x| 6= 1

(24)

f(L,M, x) = (1− |x|2)3×
1+|x|2K

(1−|x|2K)2(1−|x|2(L−1))
, if L− 1 ≤ M

2 and |x| 6= 1

1+|x|2(L−1)

(1−|x|2K)(1−|x|2(L−1))
2 , if L− 1 ≥ M

2 and |x| 6= 1

(25)
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g(L,M, x) = (1− |x|2)×


−2L(1−|x|2)(|x|2K+|x|2L)

(1−|x|2L)2(1−|x|2K)2
+ (1+|x|2K)(1+|x|2)

(1−|x|2L)(1−|x|2K)2
, if L ≤ M+1

2 and |x| 6= 1

−2K2(1−|x|2)(|x|2L+|x|2K)
(1−|x|2L)2(1−|x|2K)2

+ (1+|x|2L)(1+|x|2)
(1−|x|2L)2(1−|x|2K)

, if L ≥ M+1
2 and |x| 6= 1

(26)
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Fig. 1. Behavior of function f(L,M, x) as a function of L for different
values of M and damping factors.
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Fig. 2. Behavior of function g(L,M, x) as a function of L for different
values of M and damping factors.

E. Optimal values for L1 and L2

In [13], the optimal value of L has been obtained so as to
minimize the variances of estimated parameters. In the case
of 2-D ESPRIT, there are two variables, L1 and L2, but they
separate in the expressions of variances. Therefore, the optimal
values of L1 and L2 are simply given by minimal values of
each function, namely f and g.

As discussed in [13], the optimal L for f(L,M, x) lies
between M/3 and M/2 and approaches M/2 as the damping
factor of x increases (or if M tends to ∞). These results
are shown in Figure 1. Regarding function g(L,M, x), it
can be seen from Figure 2 that the minimum is reached
for small L. Therefore, the optimal values of L1 and L2

minimizing var(∆ωa) (resp. var(∆ωb)) lie between M/3 and
M/2 for L1 (resp. L2) and are small for L2 (resp. L1). This
is illustrated by typical examples in Figure 3 (resp. Figure 4).
As in [7], the total Mean Square Error (tMSE) is taken to be
MSE = var(∆ωa) + var(∆ωb); the tMSE corresponding to
Figures 3-4 is plotted in Figure 5.
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Fig. 3. Variance of ∆ωa as a function of L1 and L2
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Fig. 4. Variance of ∆ωb as a function of L1 and L2

V. SIMULATIONS

We consider a 2-D damped single-tone signal with param-
eters (αa, ωa) = (−0.1, 0.2π) and (αb, ωb) = (−0.1, 0.4π).
The SNR is fixed to 40 bB. Figure 6 shows the sample MSE
and its theoretical value for ω1 obtained from 200 Monte Carlo
trials with (M1,M2) = (30, 30). Since it is difficult to see the
difference between the two curves in a 3-D plot, we show only
one slice of the 3-D plot corresponding to L2 = 4. We can
observe that the theoretical MSEs are close to the estimated
ones. In the second example, we repeat the same experience
with (M1,M2) = (100, 100) using the fast SVD method. The
obtained results are reported in Figure 7, where it can bee seen
that theoretical MSEs are again close to the estimated ones.

In the third example, the same parameters of the modes
are used but the SNR is varying. The parameters (L1, L2) are
set to (4, 4). The obtained results are depicted in Figure 8.
We observe that the theoretical results are almost equal to
empirical ones beyond a threshold, which is here -5 dB.

To compute 2D-ESPRIT estimates, we use the fast meth-
ods for partial SVD of Hankel-block-Hankel matrices [14,
Sec. 6], where only the first R singular values/vectors are
computed. The overall complexity of 2D-ESPRIT becomes
O(FM logM) flops, compared with the complexity O(L2K)
of the naive implementation (where K = K1K2, L = L1L2
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(M1,M2) = (100, 100), SNR = 40 dB.
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Fig. 8. Theoretical and empirical tMSEs for 2-D ESPRIT versus SNR.
(L1, L2) = (4, 4). (αa, ωa) = (−0.1, 0.2π), (αb, ωb) = (−0.1, 0.4π),
(M1,M2) = (10, 10).

and M = M1M2). Hence, optimal or near-optimal values of
parameters (for example, (L1, L2) = (M1/2,M2/2)) can be
used for large signals.

VI. CONCLUSION

The 2-D ESPRIT algorithm is implemented by storing
the M1 × M2 data matrix into a HbH matrix with L1L2

lines. A perturbation analysis has been carried out, which led
to a closed form expression of the variances of parameters
(damping factors and frequencies). It has then been shown
that variables L1 and L2 separate in each of these variances.
Our conclusion is that, for applications where damping factors
are known to be less than 0.1, the optimal values of Li should
be chosen in the interval [Mi/4,Mi/2]. In the general case,
i.e., in the absence of a priori on damping factors, the optimal
values of Li may be chosen in [2,Mi/2].
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