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ABSTRACT
An active stream of research is devoted to the design of
polynomial approximation algorithms for the fair allocation
of indivisible goods. Central to this field is the MaxMin Al-
location problem, for which there is a significant gap be-
tween known approximation and inapproximability results.
Closing this gap is a stimulating challenge.

To this end, we consider a regular version of MaxMin Al-
location where each agent must receive exactly k goods,
for a given integer k. We call this problem k-division. The
analysis of this problem allows us to highlight two interest-
ing features of the classical MaxMin Allocation problem.
First, we show a close connection of the problem with ma-
troid theory. This connection provides us an exact algorithm
for a special case of k-division and a 1/k-approximation al-
gorithm for general inputs. Moreover, we show that the dif-
ficulty of the MaxMin Allocation may be caught by an
apparently simpler problem, namely the k-division problem
in which an agent’s utility for a single good can only take
one value out of three.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences – Economics; I.2.11 [ Distributed Artificial Intel-
ligence]: Multiagent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Computational social choice, Fairness, Approximation

1. INTRODUCTION
The problem of fairly allocating a given set of items to

a given set of agents is very old, and it is treated in many
fields including political science, economics (social science in
particular) and, more recently, theoretical computer science.
Numerous variants of the problem exist. Are the items goods
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or chores? Are they divisible (e.g. lands) or indivisible (e.g.
jobs)? Is it possible to make monetary compensations? Even
for the notion of fairness, the context leads to distinct, and
still significant, formulations. For example, one can require
that no agent finds her share less valuable than the share
of another one; this is commonly known as envy-freeness.
However, it is sometimes possible to satisfy a criterion of
fairness and make a poor utilization of the resources at the
same time. Hence, efficiency comes naturally into play.

Several concepts which capture efficiency and fairness at
the same time have been defined. Here we focus on one of
these, known as maxmin, whose goal is to maximize the wel-
fare of the least happy agent. The typical problem concern-
ing the maxmin concept has been named MaxMin alloca-
tion [4, 8, 2]. Here, we are given a set A of n agents, a set R
of m indivisible resources and a binary relation E ⊆ A× R
where (i, r) ∈ E means that resource r is available to agent
i. There are non-negative utilities ui(r) for each i ∈ A and
r ∈ R such that (i, r) ∈ E. A feasible solution is an allo-
cation of the resources R = (R1, . . . , Rn) where Ri are the
resources received by agent i, such that Ri ∩ Rj = ∅ and
(i, Ri) = {(i, r) : r ∈ Ri} ⊆ E for each 1 ≤ i, j ≤ n. The
goal is to maximize u(R) = mini∈A ui(Ri) where ui(Ri) is
defined as

∑
r∈Ri

ui(r) (some variants in which ui(Ri) is

not additive have been also studied; see e.g. [8]). A lot of
work has been devoted to the MaxMin allocation prob-
lem (see the related work section). It is indeed known that
the problem is hard to solve and several approximation algo-
rithms have been proposed. Nevertheless, a large gap exists
between the best inapproximability bound and the approx-
imation ratio of the best known approximation algorithm.

In order to gain insight on the nature of this gap, we
consider a special restriction of the MaxMin allocation
problem. Specifically, we consider a set A of n agents, a setR
of kn indivisible resources and a binary relation E ⊆ A×R.
Moreover, each agent i ∈ A has a non negative utility ui(r)
for resource r ∈ R which is available to her. We want to find
an allocation of the resources R = (R1, . . . , Rn) such that
|Ri| = k, Ri∩Rj = ∅, (i, Ri) ⊆ E for each 1 ≤ i, j ≤ n. The
goal is to maximize u(R) = mini∈A ui(Ri) where ui(Ri)
is defined as above. Hence, this problem, that we name
as the k-division problem, is just constraining MaxMin
Allocation to assign exactly k items per agent.1

1Note that this constraint has a severe effect on the role
of the binary relation E. Indeed, for the MaxMin Al-
location problem, any instance with E ⊂ A × R can
be reduced to an equivalent instance (A,R,E′, (u)i∈A) for
which the relation E′ is complete (that is each resource is
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Even if this restricted problem has been introduced for
getting an insight in the original problem, it turns out to be
interesting on its own. Indeed, giving to each agent a fixed
number of items is a basic additional notion of fairness. One
can think of n kids making a joint celebration of their birth-
day. Their presents are gift-wrapped and it is preferable
that the number of parcels, which is a kid’s first estimation,
is exactly the same for everyone. Another example comes
from program committees: here reviewers are usually asked
to express preferences about the papers they prefer to re-
view and there are constraints on the possible assignments
(e.g., a reviewer cannot have a close connection with the as-
signed paper’s authors). Nevertheless, the committee must
assign the same number of papers to any reviewer and this
assignment should be fair with respect to the expressed pref-
erences. This application also motivates a limitation of our
problem to the case in which utility may assume only few
values: indeed, preferences are usually expressed through
forms allowing only a limited set of inputs.

Related work. The literature on social welfare optimiza-
tion in multi-agent resource allocation with fairness con-
straints is vast and we refer the interested reader to the
survey by Nguyen et al. [11]. Here we focus on the previ-
ous work about approximation algorithms for the MaxMin
Allocation problem, where an algorithm is ρ-approximate
if APX(I)/OPT (I) ≥ ρ holds for any instance I (APX(I)
and OPT (I) being the values returned by the approximation
and the optimal algorithms, respectively).

Bezáková and Dani consider the MaxMin allocation
problem in which m indivisible goods are distributed to n
agents [4]. They give two deterministic approximation algo-
rithms with a priori incomparable ratios. The first one is
matching-based and it has a ratio of 1/ (m− n+ 1). The
second consists of modeling the problem with an integer lin-
ear program (ILP). An appropriate rounding of the optimum
of the relaxed ILP provides an approximate solution. The
approximation ratio is the optimal value of the relaxed ILP
minus the largest value an agent can have for a single item.

On the negative side, Bezáková and Dani show that, fol-
lowing a reduction of 3-Matching, no ρ-approximation al-
gorithm with ρ > 1

2
exists, unless P=NP [4]. This means

that the problem is computationally hard, and even a poly-
nomial algorithm that produces a solution arbitrarily close
to the optimum is unlikely. A similar result, with a different
reduction, is given independently by Golovin [8]. Two other
1
2
-inapproximability results for a restricted case where each

item has a nonzero value for at most two agents exist [6, 3].
Golovin [8] proposes an algorithm that builds an alloca-

tion for which a 1 − 1/p fraction of the agents has utility
at least a p−1 fraction of the optimum. Bansal and Sviri-
denko [2] study a restricted case in which ui(r) ∈ {0, pr}.
They provide an LP relaxation, referred to as configura-

available to each agent) simply by setting utility zero for
each (i, r) ∈ E′ \ E. This equivalence does not hold in
the k-division problem. To see this, consider two agents
A = {1, 2}, four resources r1, . . . , r4 (so, k = 2) and
E = {(1, r1), (1, r2), (2, r2), (2, r3), (2, r4)}. Let u1(r1) =
u2(r2) = M > 2 while u1(r2) = u2(r3) = u2(r4) = 1. There
is a unique feasible allocation, namely R = (R1, R2) with
R1 = {r1, r2} and R2 = {r3, r4}, of value u(R) = 2. If
we complete this instance as described above, then the in-
stance R∗ = (R∗1, R

∗
2) with R∗1 = {r1, r3} and R∗2 = {r2, r4}

becomes feasible. But u(R∗) = M > u(R).

tion LP, from which they derive an approximation algo-
rithm with factor Ω(log log log n/ log log n). An even more
restricted case, called “Big goods/Small goods”, is shown
Ω(1/

√
n)-approximable in [8]. Khot and Ponnuswami [10]

and Asadpour and Saberi [1] provide approximation algo-
rithms for the general MaxMin Allocation problem with
ratios (2n− 1)−1 and Ω

(
1/
(√
n log3 n

))
, respectively. Note

that these algorithms improve on the original 1
m−n+1

bound
only for m sufficiently large. The last developments are
due to Chakrabarty et al. [6] who give a quasi-polynomial

Ω̃(1/nε)-approximation algorithm, for any ε ≤ log logm
logm

.

Our contribution. The analysis of k-division highlights in-
teresting features of the MaxMin allocation problem.

First, we show there exists a close connection between the
problem and matroid theory (also in [9], matroid theory is
linked to the allocation of indivisible goods with the aim
to build solutions with worst case guarantees for agents).
Indeed, we depart from previous techniques (e.g. linear pro-
gramming) and, drawing on matroid theory, we propose an
approximation algorithm with ratio 1/k.

Next, we investigate instances in which the agents’ utili-
ties for the items can take a limited number of values. In
particular, we provide an exact algorithm for the k-division
problem in which an agent’s utility for a resource can only
take two values. This algorithm will be useful also for im-
proving the approximation ratio for instances in which the
agent’s utility can take more than two values. These im-
proved ratios turns out to be far from being tight, even for
only three utility values. However, we highlight that clos-
ing the approximation gap for this apparently simple prob-
lem may be a breakthrough shading a completely new light
on the long-standing gap in the approximation ratio of the
MaxMin allocation problem.

2. PRELIMINARY RESULTS
Checking if an instance (A,R,E, (ui)i∈A) of the k-division

problem contains a feasible solution can be done in polyno-
mial time. Indeed, the problem is equivalent to finding a
flow of value kn in the network G = (V,E) such that the
set of vertices V contains a source vertex s, a target vertex
t, a vertex vi for each agent i ∈ A and a vertex wr for each
resource r ∈ R, and the set of edges E contains an edge
(s, vi) for each i ∈ A, an edge (vi, wr) for each (i, r) ∈ E,
and an edge (wr, t) for each r ∈ R, each of capacity one.

Moreover, finding the max-min allocation among the fea-
sible ones can be done in polynomial time if k = 1. Indeed,
the problem is equivalent to finding the bottleneck weighted
matching in a bipartite graph B = ((A,R), E) where the
edge (i, r) weights ui(r). Unfortunately, next theorem shows
that it is not possible to extend this result to higher k.

Theorem 1. For any k ≥ 2, the k-division problem is
strongly NP-complete even if E is complete and there is B ≥
0 such that for every resource r ∈ R,

∑
i∈A ui(r) = B.

Proof. For k = 2, we reduce the 2-numerical match-
ing with target sums (2NMTS in short) problem. The
inputs of 2NMTS is a sequence a1, . . . , an of n positive in-
tegers with

∑n
i=1 ai = n(n + 1) and 1 ≤ ai ≤ 2n for i =

1, . . . , n. We want to decide if there are two permutations
f and g of the integers {1, . . . , n} such that f(i) + g(i) = ai
for i = 1, . . . , n. 2NMTS is strongly NP-complete [13].
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Consider an instance (ai)i of 2NMTS. We build an in-
stance (A,R, (ui)i∈A) of the 2-division problem as follows:
there are n agents A = {1, . . . , n} and 2n resources R =
{rj , r′j : j = 1, . . . , n}. For j = 1, . . . , n, the utility of agent
i ∈ A for resources rj , r

′
j ∈ R is given by ui(rj) = ui(r

′
j) =

n+j− ai
2

. This construction can be done within polynomial
time. In particular, the utilities are polynomially bounded,
since 0 < ui(r) < 2n for every r ∈ R and every i ∈ A.

We claim that a1, . . . , an is a yes-instance for the 2NMTS
problem if and only if there is an allocation of the resources
R = (R1, . . . , Rn) with |Ri| = 2 such that u(R) ≥ 2n.

Clearly, if there are two permutations f and g of {1, . . . , n}
such that f(i) + g(i) = ai for i = 1, . . . , n, then by setting
Ri = {rf(i), r′g(i)} for i = 1, . . . , n, we obtain an allocation
R = (R1, . . . , Rn), with |Ri| = 2, such that ui(Ri) = 2n +
f(i) + g(i)− ai = 2n for any agent i. Hence, u(R) ≥ 2n.

Conversely, let R = (R1, . . . , Rn) with |Ri| = 2 be an allo-
cation of the resources such that u(R) ≥ 2n. Since ui(rj) =
ui(r

′
j) for any i, j ∈ {1, . . . , n} we can assume without loss

of generality that in any allocation R′ = (R′1, . . . , R
′
n), any

agent takes a resource from {r1, . . . , rn} and a resource from
{r′1, . . . , r′n}, i.e., for any i ∈ {1, . . . , n}, |R′i∩{r1, . . . , rn}| =
1 and |R′i ∩ {r′1, . . . , r′n}| = 1. Thus, given R, we define f(i)
as the index of the unique element in Ri ∩ {r1, . . . , rn} and
g(i) as the index of the unique element in Ri ∩ {r′1, . . . , r′n},
i.e. f(i) = j for j such that rj ∈ Ri ∩ {r1, . . . , rn} and
g(i) = j for j such that r′j ∈ Ri ∩ {r′1, . . . , r′n}. Observe
that, since a resource is assigned to exactly one agent, the
functions f and g are partitions. Moreover, we can rewrite
the utility of agent i for R as ui(Ri) = 2n+ f(i) + g(i)− ai.
Since

∑n
i=1 ai = n(n + 1), it follows that

∑
i∈A ui(Ri) =∑

i∈A (2n+ f(i) + g(i)− ai) = n2. Thus, 2n ≤ u(R) ≤
1
n

∑n
i=1 ui(Ri) = 2n, that is u(R) = 2n and, consequently,

ui(Ri) = 2n for each i ∈ A. It follows that f(i) + g(i) = ai
for i = 1, . . . , n, and thus a1, . . . , an is a yes-instance.

For k ≥ 3, the proof is similar. In fact, we add a set R′

of (k − 2)n new resources and we set ui(r
′) = 3n for each

agent i ∈ A and for each new resources r′ ∈ R′. It is then
easy to see that a1, . . . , an is a yes-instance for 2NMTS if
and only if there exists an allocation R = (R1, . . . , Rn) of
R ∪R′ such that |Ri| = k and u(R) ≥ 2n+ 3(k − 2)n.

3. MATROIDS & K-DIVISION
In this section we show an interesting relationship existing

between the k-division problem and matroid theory.

Matroid theory. A matroid M = (X,F) consists of a finite
set of n elements X and a collection F of subsets of X such
that: (i) ∅ ∈ F ; (ii) if F2 ⊆ F1 and F1 ∈ F , then F2 ∈ F ;
(iii) for every pair F1, F2 ∈ F such that |F1| < |F2|, there
exists e ∈ F2 \F1 such that F1∪{e} ∈ F . The elements of F
are called independent sets. We refer the interested reader
to [12] for more details on matroid theory.

For an example of matroid, consider an undirected graph
G = (V,E) and considerM = (X,F) such that X = E and
the independent sets represent all possible forests (acyclic
sets of edges) of G. Observe that the graph G∅ = (V, ∅) is
a forest and, hence, ∅ ∈ F . Moreover, if the graph G1 =
(V, F1) is a forest, then for each F2 ⊆ F1 the graph G2 =
(V, F2) is also a forest and hence F2 ∈ F . Finally, if both
G1 = (V, F1) and G2 = (V, F2) are forests and |F1| < |F2|,
then G2 has fewer connected components; hence we have

that there is a component C ⊆ V in G2 that corresponds to
two or more components of G1; then, along any path in C
such that the endpoints belong to different components of
G1, there must be an edge e ∈ F2 whose endpoints are in
different components; thus adding this edge to F1 produces a
forest with more edges and hence also condition (iii) above
is satisfied. Then, we can conclude that M is a matroid,
that is usually called the graphic matroid of G.

Other useful examples are the partition and the laminar
matroids. (E,F) is a partition matroid if given ` non nega-
tive integers b1, . . . , b` and ` disjoint sets E1, . . . , E`, we have
E = ∪`i=1Ei and F = {F ⊆ E : |F ∩ Ei| ≤ bi, i = 1, . . . , `}.
(E,L) is a laminar matroid if, given ` non negative integers
b1, . . . , b` and ` sets E1, . . . , E` such that for any pair i, j,
one of the following three cases occurs: Ei ⊆ Ej , Ej ⊆ Ei
or Ei ∩ Ej = ∅, we have E = ∪`i=1Ei and L = {L ⊆
E : |L ∩ Ei| ≤ bi, i = 1, . . . , `}. Note that the partition
matroid is a special case of the laminar matroid.

Several optimization problems have been considered for
matroids. A classical problem consists of computing, given
an assignment of weights w(e) ∈ R+ to each element e ∈ X,
a base B ∈ F that maximizes

∑
e∈B w(e). It is known that

this problem can be solved by an algorithm polynomial in
|E| [12]. Another optimization problem considers matroids
M1 = (X,F1) andM2 = (X,F2) defined over the same set
of elements X and an assignment of weights w(e) ∈ R+ to
each element e ∈ X, and consists in finding the set F of
maximum weight in F1 ∩ F2. Even this problem is known
to be solvable in time polynomial in |E| [12].

k-division as the intersection of two matroids. Now we
model k-division as an optimization problem on matroids.

For an instance (A,R,E, (ui)i∈A) of the k-division prob-
lem, we can denote by Ai ⊆ R the relations that state which
resources are available to agent i, i.e. Ai = {(i, r) ∈ E}
for every i ∈ A. Similarly, we denote by Rj the rela-
tions that state to which agents the resource j is avail-
able, i.e. Rj = {(a, j) ∈ E} for every j ∈ R. It is not
difficult to see that both (A1, . . . , An) and (R1, . . . , Rkn)
form a partition of E. We can then consider two parti-
tion matroids M1 = (E,F1) and M2 = (E,F2) such that
F1 = {F ⊆ E : |F ∩ Ai| ≤ k, i ∈ A} and F2 = {F ⊆
E : |F ∩ Rj | ≤ 1, j ∈ R}. Then it is straightforward to
see that (A,R,E, (u)i∈A) admits a feasible solution (i.e. ex-
actly k resources are allocated to every agent) if there exists
a set F of size kn in the intersection of these matroids, i.e.
F ∈ F1 ∩ F2. Indeed, from the first matroid we know that
an agent gets at most k resources; from the second matroid
we know that a resource is allocated to at most one agent.

Note that, since it is possible to compute the maximal
intersection of two matroids in polynomial time, this gives
an alternative way for checking in polynomial time if an
instance of k-division admits at least one feasible allocation.
We next show that modeling the problem with matroids
allows us to achieve new interesting results. For the sake
of presentation, from now on, we always suppose that the
given instances admit at least one feasible allocation.

k-division with two utilities. Consider the restriction of
the k-division problem in which an agent’s utility for a re-
source can only take two values υ1 or υ2, with 0 ≤ υ1 < υ2.
Matroid theory allows us to solve this problem.
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Theorem 2. There exists a polynomial time algorithm
that solves the k-division problem when the agent’s utility
assumes only values υ1 or υ2, with 0 ≤ υ1 < υ2.

Proof. Let (A,R,E, (ui)i∈A) be an instance of the prob-
lem and let us denote by u∗ the utility of the least happy
agent. We have that there exists a unique integer b such that
u∗ = bυ1 + (k − b)υ2. Thus, in order to guarantee that the
utility of the least happy agent is at least u∗, it is sufficient
to guarantee that every agent receives k resources, and for
at most b of them the utility is υ1.

Remember the definition of Ai given above. For every
agent i, we consider A1

i ⊆ Ai that contains any element
(i, r) ∈ Ai such that ui(r) = υ1. Then, for each b = 0, . . . , k
we can define a laminar matroid Mb

1 = (E,F ′1) where

F ′1 = {F ⊆ E : |F ∩A1
i | ≤ b, |F ∩Ai| ≤ k, i ∈ A}.

Then any agent receives k resources, and for at most b of
them the utility is υ1 if and only if the intersection between
Mb

1 and the matroid M2 defined above is not empty (and
this can be checked in polynomial time). By iterating on
b ∈ {0, . . . , k}, we then find an allocation where the utility
of the least happy agent is u∗.

Note that the k-division problem cannot be solved, even
for only two utility values, by the approach of allocating
every item to the agent who likes it the most, that instead
works in similar but not equivalent settings [5].

Approximating the k-division problem. Matroid theory
turns out to help to design also approximate algorithms.

Theorem 3. For any k ≥ 1, there exists a polynomial
time algorithm that 1

k
-approximates the k-division problem.

Proof. Let (A,R,E, (ui)i∈A) be an instance of the prob-
lem. We denote by U the set of all possible utilities an agent
can have for a single resource. Note that there are at most
n2k such distinct values, thus |U| ≤ n2k.

Remember the definition of Ai for each agent i ∈ A and of
Rj for each resource j ∈ R. Moreover, for every agent i and
w ∈ U , let Awi = {(i, r) ∈ Ai : ui(r) < w}. We clearly have
Awi ⊆ Ai. Then, given w ∈ U , we can define the laminar
matroid Mw

1 = (E,Fw1 ) where

Fw1 = {F ⊆ E : |F ∩Awi | ≤ k − 1, |F ∩Ai| ≤ k, i ∈ A}.

As previously stated, we can find in polynomial time the
independent set Iw of maximum cardinality in the inter-
section of Mw

1 and M2 defined above. Observe that if
|Iw| = kn then the instance of k-division admits a feasi-
ble allocation, i.e. each agent gets k resources, and for at
least one of these, her utility is at least w.

Let w] be the largest value in U such that |Iw] | = kn. One
can find w] and the corresponding independent set Iw] by an
exhaustive search in U . Since every step is polynomial and
the number of steps is polynomial, so is the whole algorithm.

Thus, we are only left with proving that Iw] is a 1/k-
approximate solution. Let R∗ = (R∗1, . . . , R

∗
n) be an optimal

allocation. Denote by p the least happy agent, i.e. up(R
∗
p) ≤

ui(R
∗
i ) for all i. Let w′ = up(R

∗
p)/k. Every agent i has at

least one resource r in R∗i such that ui(r) ≥ w′, otherwise
ui(R

∗
i ) < kw′ = up(R

∗
p). Since w′ may not belong to U ,

let us define w′′ as min{w ∈ U : w ≥ w′}. We have that
every agent i has at least one resource r in R∗i such that

ui(r) ≥ w′′ ≥ w′ and w′′ ∈ U . Thus in Fw
′′

1 ∩F2 there is an
independent set Iw′′ of cardinality |kn|. Then the returned
solution has value at least w] ≥ w′′ ≥ w′ ≥ up(R

∗
p)/k =

u(R∗)/k where R∗ is the optimal allocation.

We now show how the above algorithm works.

Example 1. Let (A,R,E, (u)i∈A) be an instance of 2-
division such that |A| = n, |R| = 2n and E is complete,
i.e. (i, r) ∈ E for each agent i ∈ A and resource r ∈ R.
We assume n is even. We partition the set of resources R
in quadruples of resources (r1i , r

2
i , r

3
i , r

4
i ) for i = 1, . . . , n

2
.

As for the utility functions, for agents i = 1, . . . , n
2

, we set

ui(r
1
i ) = 1, ui(r

2
i ) = 1 and ui(r) = 0 for any other resource

r ∈ R; for agents i = n
2

+ 1, . . . , n, we set ui(r
3
i−n/2) = 2,

ui(r
2
i−n/2) = 1 and ui(r) = 0 for any other resource r ∈ R.

The optimal assignment is then R∗ = (R∗i )i=1,...,n where
R∗i = (r1i , r

2
i ) for each i = 1, . . . , n

2
, whereas for i = n

2
+

1, . . . , n, we have R∗i = (r3i−n/2, r
4
i−n/2). Note that each

agent obtains at least utility 2, so u(R∗) = 2.
As for the approximation algorithm described above, U =
{0, 1, 2}. Since a feasible solution exists, it costs at least 0.

The algorithm then checks if there is an assignment in
which each agent receives exactly two resources and for at
least one of these her utility is at least 1. Since such an
assignment exists (e.g., R∗), then the test must be successful.

Next, the same work is done with the last element in U .
Unluckily, no assignment such that each agent receives at
least one resource for which her utility is at least 2 exists
(for agents i = 1, . . . , n

2
no resource has utility at least 2).

Thus the largest value in U for which the test has been
successful is 1 and hence the approximation algorithm re-
turns an allocation with at least this value, that is a 1

k
-

approximation of the optimal solution.

4. THE THREE UTILITY CASE
One can wonder if the algorithms presented in the previ-

ous section and based on the relation between the k-division
problem and matroid theory are optimal. In this section,
we try to answer this question. It is interesting to note that
this “tentative” answer highlights an interesting relation be-
tween a long-standing problem about the MaxMin Allo-
cation problem and the apparently more simple problem of
k-division in which the agent’s utility for an item can only
take one value out of three. These values are denoted by
υ1, υ2 and υ3 and they satisfy 0 ≤ υ1 < υ2 < υ3.

Inapproximability with three utilities. We start by show-
ing that Theorem 2 is tight. That is, the restriction to two
distinct utilities is necessary if one seeks a polynomial algo-
rithm (unless P = PN). Actually, we show an even stronger
result: there is no polynomial algorithm that ρ-approximate
the k-division problem in which the agents’ utilities take
only three values, for some constant ρ which depends on
(υ1, υ2, υ3). The proof of this result resembles a similar one
given in [4]. However, we give here a full exposition because
it involves peculiarities that are not present in [4]. Moreover,
the insight provided by this proof will be useful later.

Theorem 4. For any k ≥ 2, ε > 0 and three values, 0 ≤
υ1 < υ2 < υ3, unless P=NP, there is no polynomial time
algorithm that (ρ + ε)-approximate the k-division problem
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with three distinct utility values, where

ρ =
υ2 + (k − 1)υ1

min{2υ2, υ1 + υ3}+ (k − 2)υ1
.

The theorem holds even if E is complete.

Proof. We give a gap-introducing reduction of the 3-
Dimensional Matching (3DM in short) problem. An in-
stance of 3DM consists of a subset C = {e1, . . . , en} ⊆
X × Y × Z of n triples, where X,Y, Z are 3 pairwise dis-
joint sets of size ` with X = {x1, . . . , x`}, Y = {y1, . . . , y`}
and Z = {z1, . . . , z`}. A matching is a subset M ⊆ C such
that no two elements in M agree in any coordinate. The
goal of 3DM is to decide if there exists a perfect matching
M on C, that is, a matching of size `. This problem is known
to be NP-complete (problem [SP1] in [7]).

Let (C, X, Y, Z) be an instance of 3DM. For i = 1, . . . , `,
let Mi be the indices of the triples for which the third coor-
dinate corresponds to zi, i.e. Mi represents the set

{j ∈ {1, . . . , n} : ∃x ∈ X, y ∈ Y s.t. ej = (x, y, zi) ∈ C}.

Note that (Mi)i∈{1,...,`} is a partition of {1, . . . , n}.
We build an instance of the k-division problem as follows.

There are n agents A = {1, . . . , n} (one per triple in C)
and kn resources partitioned in three blocks BR1, BR2 and
BR3. BR1 = BRX1 ∪ BRY1 with BRX1 = {rX1 , . . . , rX` } and
BRY1 = {rY1 , . . . , rY` } corresponding to the elements of X
and Y , respectively. BR2 = ∪`i=1BR

i
2 where BRi2 is a set of

|Mi|−1 new resources. BR3 consists of (k−1)n− ` dummy

resources. Observe that |BR1| = 2`, |BR2| =
∑`
i=1 |BR

i
2| =

n− `. Hence, the instance has kn resources, as desired. We
suppose that E is complete, and for any agent i ∈ A, we set:
for rXj ∈ BRX1 , ui(r

X
j ) = υ2 if ei = (xj , y, z) ∈ C for some

y ∈ Y , z ∈ Z, and ui(r
X
j ) = υ1 otherwise; for rYj ∈ BRY1 ,

ui(r
Y
j ) = υ2 if ei = (x, yj , z) ∈ C for some x ∈ X, z ∈ Z,

and ui(r
Y
j ) = υ1 otherwise; for r ∈ BR2, ui(r) = υ3 if

r ∈ BRj2 and i ∈Mj for some j ∈ {1, . . . , `}, and ui(r) = υ1
otherwise; for r ∈ BR3, ui(r) = υ1. Thus, the utilities can
only take values in {υ1, υ2, υ3} as desired.

We claim that there exists a subset J ⊆ {1, . . . , n} with
|J | = ` such that MJ = {ej : j ∈ J} is a perfect matching
if and only if there is an allocation R = (R1, . . . , Rn) such
that |Ri| = k and ui(Ri) ≥ min{2υ2, υ1 + υ3} + (k − 2)υ1
for each i = 1, . . . , n.

Suppose there is J ⊆ {1, . . . , n} with|J | = ` such that
MJ = {ej : j ∈ J} is a perfect matching (thus (C, X, Y, Z)
is a yes-instance of 3DM). We build R = (R1, . . . , Rn) as
follows. For j ∈ J , Rj contains resources rXp and rYq such
that ej = (xp, yq, z) for some z ∈ Z and k − 2 dummy
resources. The set Rj of resources assigned to an agent j /∈ J
contains one resource from BRi2 where i is such that j ∈Mi

and k − 1 resources from BR3. It is not hard to check that
this assignment is feasible and that each agent takes either
two resources that she values υ2 plus k− 2 resources valued
υ1, or one resource valued υ3 plus k− 1 resources valued υ1.
Thus, u(R) = min{2υ2, υ1 + υ3}+ (k − 2)υ1.

Conversely, consider an allocation R = (R1, . . . , Rn) with
|Ri| = k, i = 1, . . . , n, such that u(R) ≥ min{2υ2, υ1 +υ3}+
(k−2)υ1. Observe thatRmust allocate at most k−1 dummy
resources per agent, since they are valued υ1. Similarly, if
R allocates exactly k − 1 dummy resources to an agent i,
then agent i must have utility υ3 for her remaining resource.
Since the only resources valued υ3 are the resources in BR2,

it follows that at most |BR2| = n − ` agents receive k − 1
dummy resources. Moreover, note that R must allocate to
an agent i at least k − 2 dummy resources. Indeed, since
there are |BR3| = (k−1)n− ` dummy resources, if an agent
receives at most k−3 of these resources, it must be necessary
either to assign k − 1 dummy resources to more than n −
` agents, or to assign k dummy resources to some agent,
in both cases a contradiction. A similar contradiction is
reached if the number of agents that can receive k−2 dummy
resources is less than `.

Thus, we showed that there are at least ` agents with
k− 2 dummy resources but at most n− ` agents with k− 1
of these resources and no agent with a different number of
these resources. Hence there exists a set J ⊂ {1, . . . , n},
with |J | = `, such that Ri for i /∈ J contains k− 1 resources
that she values υ1 and one resource valued υ3. For i ∈ J , Ri
contains k− 2 resources valued υ1 and two resources valued
at least υ2. Since all resources in BR2 are used by the agents
not in J , each agent i ∈ J must take her two non-dummy
resources from BR1. Let us say that these resources are rXp
and rYq . Since agent i values both of them υ2, it must be
the case that ei = (xp, yq, z) for some z ∈ Z.

We finally show that given two triples e′j = (x′, y′, z′)
and ej′′ = (x′′, y′′, z′′) with j′, j′′ ∈ J , j′ 6= j′′, it must be
z′ 6= z′′. For the sake of contradiction, suppose z′ = z′′

for some pair of triples. Then, there exists zj? ∈ Z such
that zj? /∈ ZJ , where ZJ = {z ∈ Z : ∃x ∈ X, y ∈ Y, j ∈
J s.t. ej = (x, y, z)}. Now let us focus on the set of agents
in Mj? : for all but one of these agents we can assign a

resource from BRj
?

2 . For the remaining agent, no resource

from BRj
?

2 is available (since |BRj
?

2 | = |Mj? | − 1), and this
is the case also for the resources of BR1 (by assumption).
However, this agent has value υ1 for any other resource.
Then, her utility must be kυ1, a contradiction.

Thus, MJ = {ej : j ∈ J} is a perfect matching and then
(C, X, Y, Z) is a yes-instance of 3DM. This proves that it is
NP-hard to distinguish if u(R) ≥ min{2υ2, υ1 + υ3}+ (k −
2)υ1 or u(R) < min{2υ2, υ1 +υ3}+ (k− 2)υ1. By observing
that the last condition is equivalent to u(R) ≤ υ2+(k−1)υ1,
the desired inapproximability result is obtained.

Observe that the approximation ratio tends, as expected,
to one when υ1 is close to υ2 or when υ2 is close to υ3. On the
other hand, the above approximation ratio is always lower-
bounded by 1

2
, with the worst-case obtained when υ1 = 0

and 2υ2 ≤ υ3. Hence, we have the following corollary.

Corollary 1. For any k ≥ 2 and ε > 0, unless P=NP,
there is no polynomial time algorithm that 1

2
+ε-approximates

the k-division problem, even if E is complete and there are
only three distinct utility values.

More accurate approximation with three utilities. The-
orem 4 highlights that the approximation algorithm given in
Theorem 3 may not be tight even if the agents’ utilities can
only take three values. For this reason, we propose a new
algorithm that exploits this restriction to possibly achieve
better approximations. This algorithm repeatedly uses the
existence of a polynomial algorithm for the k-division prob-
lem when the agents’ utilities can only take two values.

Theorem 5. For any k ≥ 2, there exists a polynomial
time algorithm that ρ-approximates to the k-division prob-
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lem when the agents’ utilities assume only values υ1, υ2 and
υ3, with 0 ≤ υ1 < υ2 < υ3, where

ρ =

{
υ2+(k−1)υ1

kυ2
, if 2υ2 ≤ υ1 + υ3;

υ1+(k−1)υ2
υ1+(k−1)υ3

, otherwise.

Proof. Consider an instance I = (A,R,E, (u)i∈A) of the
problem. Our approximation algorithm mainly merges two
consecutive utilities in different ways and solves the resulting
instances using the algorithm described in Theorem 2.

Specifically, we build three instances of the k-division
problem in which the agents’ utilities just take two values,
namely I ′ = (A,R,E, (u′)i∈A), I ′′ = (A,R,E, (u′′)i∈A) and
I ′′′ = (A,R,E′′′, (u)i∈A), where u′, u′′ and E′′′ are defined
as follows: concerning u′, for any agent i ∈ A and any re-
source r ∈ R such that (i, r) ∈ E, we set u′i(r) = υ1 if
ui(r) = υ1 and u′i(r) = υ2 otherwise; as for u′′, for any
agent i ∈ A and any resource r ∈ R such that (i, r) ∈ E,
we set u′′i (r) = υ3 if ui(r) = υ3 and u′′i (r) = υ1 other-
wise; finally, we have that E′′′ discards for any agent the
resources she values υ1, i.e., E′′′ = {(i, r) ∈ E : ui(r) > υ1}.
Note that instance I ′′′ may not contain any feasible solution
(i.e., some agent may receive less than k resources) but we
have previously highlighted that this case can be checked in
polynomial time. Our algorithm is then the following:

Algorithm 1 Approximation algorithm for 3 utilities

Require: A,R,E, (u)i∈A with |A| = n and |R| = kn.
1: if I ′′′ admits feasible solutions then
2: Solve I ′′′ and let R′′′ be the returned solution.
3: end if
4: Solve I ′ and evaluate the returned solution R′ in I.
5: Solve I ′′ and evaluate the returned solution R′′ in I.
6: return The best solution among R′, R′′ and R′′′.

Now we evaluate the approximation ratio of this algo-
rithm. Let R∗ = (R∗1, . . . , R

∗
n) be an optimal allocation

for instance I with value opt. The utility of agent i in the
assignment R∗ is ui(R

∗
i ) = aiυ1 + biυ2 + ciυ3, for ai, bi, ci ∈

{0, . . . , k} such that ai + bi + ci = k. Observe that if
opt = kυ1, then any feasible solution is optimal and so
will be also the solution returned by Algorithm 1. Thus,
from now on we consider opt > kυ1.

Let us first focus on the case 2υ2 ≤ υ1 + υ3. If opt ≥
(k − 1)υ3 + υ2, then we must have ai = 0 for each agent
i ∈ A. Hence, R∗ is feasible and optimal also for instance
I ′′′. Thus, Algorithm 1 finds the optimal solution.

Since 2υ2 ≤ υ1 + υ3, the largest value that opt can take
below (k−1)υ3+υ2 is opt = (k−1)υ3+υ1. If 2υ2 6= υ1+υ3
(ie, 2υ2 < υ1 + υ3) we must have ci ≥ k − 1 for each agent
i ∈ A. Indeed, opt = (k − 1)υ3 + υ1 > (k − 2)υ3 + 2υ2.
Hence, if by contradiction ci′ ≤ k− 2 for some agent i′ ∈ A,
then opt ≤ ui′(R

∗) ≤ (k − 2)υ3 + 2υ2. Thus, u′′i (R∗i ) =
ciυ3 + (k− ci)υ1 = ci(υ3−υ1) +kυ1 ≥ (k−1)υ3 +υ1 = opt
for each i ∈ A. Then u′′(R∗) = u(R∗) and thus the optimal
assignment for I ′′ returned by our algorithm is exactly R∗.

Thus, we are interested in the behavior of our algorithm
when kυ1 < opt ≤ (k− 2)υ3 + 2υ2, that is equivalent to say
that opt ∈ [(k − 1)υ1 + υ2, (k − 2)υ3 + 2υ2]. We split this
interval in the subintervals S1 = [(k − 1)υ1 + υ2, kυ2] and
Sj = [(j − 1)υ3 + (k + 1 − j)υ1, (j − 1)υ3 + (k + 1 − j)υ2]
for j = 2, . . . , k − 1. Note that the subintervals Sj are not
decreasing. They may not be disjoint, but opt ∈ ∪k−1

j=1Sj ,

since υ3 + (k − 1)υ1 is less than or equal to the smallest
value above kυ2 and, similarly, jυ3 + (k − j)υ1 is less than
or equal to the smallest value above (j−1)υ3 +(k+1− j)υ2
for j = 2, . . . , k − 2.

Now, suppose that opt ∈ S1. Consider the solution R′
produced on instance I ′. Since u′i(r) ≤ ui(r), we have
u(R′) ≥ u′(R′). Since u′(R′) is optimal for I ′, then u′(R′) ≥
u′(R∗). Now, we evaluate R∗ in instance I ′. Since opt ≥
(k− 1)υ1 +υ2, we have that ai ≤ k− 1 for any i ∈ A. Thus,
u′i(R

∗
i ) = aiυ1 + (k − ai)υ2 = kυ1 + (k − ai)(υ2 − υ1) ≥

(k−1)υ1 +υ2 for any i ∈ A. Thus, u′(R∗) ≥ (k−1)υ1 +υ2.
From opt ≤ kυ2, we then get

u(R′) ≥ u′(R′) ≥ u′(R∗)

≥ (k − 1)υ1 + υ2 ≥
(k − 1)υ1 + υ2

kυ2
opt.

Then our algorithm (k−1)υ1+υ2
kυ2

-approximates the optimum.
Suppose instead that opt ∈ Sj for some j = 2, . . . , k −

1 and opt /∈ Sj−1 (this is possible since the sets Sj are
not decreasing). Consider the solution R′′ produced on the
instance I ′′. Since u′′i (r) ≤ ui(r), we deduce that u(R′′) ≥
u′′(R′′). By construction, u′′(R′′) is optimal for I ′′, thus
u′′(R′′) ≥ u′′(R∗). Now, we evaluate solution R∗ in the
instance I ′′. Since opt ≥ (j−1)υ3 +(k+1−j)υ1 (by opt ∈
Sj) and opt > (j−2)υ3 +(k+2− j)υ2 (by opt /∈ Sj−1), we
deduce that ci ≥ j−1 for any agent i ∈ A. Hence, u′′i (R∗i ) =
(k−ci)υ1+ciυ3 = ci(υ3−υ1)+kυ1 ≥ (j−1)υ3+(k+1−j)υ1
for every i ∈ A. Thus, u′′(R∗) ≥ (j − 1)υ3 + (k + 1− j)υ1.
Then, since opt ≤ (j − 1)υ3 + (k + 1− j)υ2, we have

u(R′′) ≥ u′′(R′′) ≥ u′′(R∗) ≥ (j − 1)υ3 + (k + 1− j)υ1

≥ (j − 1)υ3 + (k + 1− j)υ1
(j − 1)υ3 + (k + 1− j)υ2

opt

≥ (j − 1)υ2 + (k + 1− j)υ1
kυ2

opt,

where the last inequality follows from the mapping being
increasing in υ3 and υ3 > υ2. Now, since (j − 1)υ2 ≥ υ2 +
(j− 2)υ1 (since j ≥ 2) we obtain that our algorithm returns

at least an (k−1)υ1+υ2
kυ2

-approximation to the optimum.

Now consider the case 2υ2 > υ1 + υ3. If opt ≥ (k −
2)υ3 + 2υ2, then we must have ai = 0 for each agent i ∈ A.
Hence,R∗ is feasible and optimal also for instance I ′′′. Thus,
Algorithm 1 finds the optimal solution.

As a consequence, we are interested in the behavior of
our algorithm when kυ1 < opt < (k − 2)υ3 + 2υ2, that is
equivalent to say that opt ∈ [(k− 1)υ1 + υ2, (k− 1)υ3 + υ1]
because (k−2)υ3+2υ2 > (k−1)υ3+υ1 > (k−2)υ3+υ2+υ1.
We split this interval in the subintervals Sj = [(k − j)υ1 +
jυ2, (k − j)υ1 + jυ3] for j = 1, . . . , k − 1. As previously, the
sets Sj are not decreasing and opt ∈ ∪k−1

j=1Sj .
Suppose that opt ∈ Sj for some j = 1, . . . , k−1 and opt /∈

Sj−1 (this is possible since the sets Sj are not decreasing).
Consider solution R′ produced on instance I ′. Since u′i(r) ≤
ui(r), we deduce that u(R′) ≥ u′(R′). By construction,
u′(R′) is optimal for I ′, thus u′(R′) ≥ u′(R∗). Now, we
evaluate solution R∗ in the instance I ′. Since opt ≥ (k −
j)υ1 +jυ2 (by opt ∈ Sj) and opt > (k+1−j)υ1 +(j−1)υ3
(by opt /∈ Sj−1 if j > 1 and by hypothesis otherwise), we
deduce that ai ≤ k−j for each agent i ∈ A. Hence, u′i(R

∗
i ) =

aiυ1 + (k−ai)υ2 = kυ1 + (k−ai)(υ2−υ1) ≥ (k− j)υ1 + jυ1
for any i ∈ A. Thus, u′(R∗) ≥ (k − j)υ1 + jυ2. Then, since
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opt ≤ (k − j)υ1 + jυ3, we have

u(R′) ≥ u′(R′) ≥ u′(R∗) ≥ (k − j)υ1 + jυ2

≥ (k − j)υ1 + jυ2
(k − j)υ1 + jυ3

opt ≥ υ1 + (k − 1)υ2
υ1 + (k − 1)υ3

opt,

where the last inequality follows from the mapping being
decreasing in j and j ≤ k − 1. That is, our algorithm
υ1+(k−1)υ2
υ1+(k−1)υ3

-approximates the optimum.

Let us give an example of how the algorithm works.

Example 2. Consider the instance of the problem de-
scribed in Example 1. This instance uses exactly three dis-
tinct utilities: 0, 1 and 2.

By applying Algorithm 1 to this instance, we first observe
that there is no feasible solution in I ′′′, i.e. no solution
in which each agent receives exactly two resources that she
values 1 or 2. Indeed, there are only 2`+(n−`) = n+` < 2n
of these resources.

As for I ′, we observe that allocation R′ = (R′i)i=1,...,n

with R′i = (r1i , r
3
i ) for i = 1, . . . , n

2
and R′i = (r2i−n/2, r

4
i−n/2)

for i = n
2

+ 1, . . . , n has value u′(R′) = 1 and it is optimal
for I ′. Indeed, as stated above, for any feasible allocation
R = (Ri)i=1,...,n there is at least one agent i who gets at
least one resource valued 0. Hence, u′(R) ≤ u′(R′). Thus,
allocation R′ can be returned at step 4 of Algorithm 1 and
its value in I is u(R′) = 1.

Let us finally consider instance I ′′. We observe that al-
location R′′ = (R′′i )i=1,...,n such that R′′i = (r2i , r

3
i ) for i =

1, . . . , n
2

and R′′i = (r1i−n/2, r
4
i−n/2) for i = n

2
+ 1, . . . , n has

value u′′(R′′) = 0 and it is optimal for I ′′. Indeed, for each
feasible allocation R = (Ri)i=1,...,n there is at least one agent
i who does not get any resource valued 2 (e.g., each agent
j = 1, . . . , n

2
values a resource at most 1). Thus, for any

allocation there is at least one agent i such that u′′i (Ri) = 0.
and, hence, u′′(R) = 0 = u′′(R′′). Then, allocation R′′,
whose valuation in I is u(R′′) = 0, can be returned at step 5
of Algorithm 1.

Since our algorithm returns the allocation that has the best
valuation in I among R′, R′′ and, if defined, R′′′, in our ex-

ample it will return R′ of value 1, that is an 1
2

= υ2+(k−1)υ1
kυ2

-
approximation of the optimum.

At this point some remarks should be made. Observe
that when k = 2, the approximation ratio of Algorithm 1
matches the bounds given in Theorem 4. For any k ≥ 2 and
2υ2 ≤ υ1+υ3, the approximation ratio is larger than 1

k
, with

the worst case achieved when υ1 = 0. Note that 1/k is the
approximation ratio given in Theorem 3. On the other side,

if 2υ2 > υ1 + υ3, then υ1+(k−1)υ2
υ1+(k−1)υ3

is strictly larger than 1
2
.

This is noteworthy because Corollary 1 states that it is not
possible to provide such a guarantee for all instances.

It is also interesting to note that the approximation ratio
of Algorithm 1 tends to 1 when υ2 is close to υ1 or to υ3. This
is expected, since in this case we are close to the two-utility
case which can be solved in polynomial time (Theorem 2).

However, it may look surprising that the approximation
ratio of Algorithm 1 does not depend on υ3 when 2υ2 ≤
υ1 + υ3. Similarly, we have that in the opposite case, the
approximation ratio in practice depends only on υ2 and
υ3. However, these observations can be easily explained:
if 2υ2 ≤ υ1 + υ3, then v3 − v2 ≥ v2 − v1, i.e. υ2 cannot be
close to υ3 more than how much it is close to v1. Thus it is

the distance between υ1 and υ2 that measures the gap from
having only two utility values. Similarly, if 2υ2 > υ1 + υ3,
then v3−v2 < v2−v1, so now the gap from having only two
utility values should be measured by the distance between
υ2 and υ3. Note that in the lower bound given in Theorem 4
we observe the same dichotomy: if 2υ2 ≤ υ1 + υ3, then the
bound does not depend on υ3, whereas if 2υ2 > υ1+υ3, then
the bound depends in practice only on υ2 and υ3.

We also observe that the idea exploited in Algorithm 1,
that is merging two utilities and solve the corresponding
“rounded” instances, can be extended to the case of more
than three different utilities (at the cost of making the anal-
ysis of the algorithm more complex). However we skip this
extension since the three-utility case has already interesting
connections with long-standing problems in the area.

Closing the gap? The MaxMin Allocation obstacle.
Unfortunately, the algorithm described in Theorem 5 does
not match the inapproximability result given in Theorem 4.
Indeed, if for 2υ2 > υ1 + υ3 the upper and the lower bounds
almost match, for the opposite case they diverge since the
lower bound is never worse than one half, whereas the up-
per bound tends to 1

k
. For this reason, we assume from now

on that 2υ2 ≤ υ1 + υ3 and we wonder if we can improve
the corresponding approximation ratio. The next theorem
suggests that this may not be possible.

Theorem 6. For any k ≥ 2 and any v satisfying 2υ2 +
(k − 2)υ1 ≤ v ≤ kυ2, unless P=NP, there is no polynomial
time algorithm that can decide if the k-division problem with
three distinct utility values admits a feasible allocation R
such that u(R) ≥ v.

Proof. We assume without loss of generality that v =
aυ1 + bυ2 + cυ3 for a, b, c ∈ {0, . . . , k} such that a + b +
c = k. We distinguish two cases depending on whether
v = 2υ2 + L or not, where L = aLυ1 + bLυ2 + cLυ3 for
aL, bL, cL ∈ {0, . . . , k − 2} such that aL + bL + cL = k − 2.

If v = 2υ2 +L, then we apply exactly the same reduction
as in the proof of Theorem 4, except that now we partition
the set BR3 of dummy items in n + 1 subsets BRi3, for
i = 0, . . . , n. Each set BRi3 for i = 1, . . . , n contains bL +
cL resources, whereas the set BR0

3 contains any remaining
resource. Moreover, for each agent i ∈ A we set utilities for
resources in BRi3 so that for bL of these resources we have
ui(r) = υ2 and for cL of these resources we have ui(r) = υ3.
The utility of agent i for any other resource remains the
same as stated in the reduction of Theorem 4.

By mimicking the proof of Theorem 4, we then have that
an instance (C, X, Y, Z) of 3DM has a perfect matching if
and only if the instance the k-division problem with three
distinct utility values resulting from the reduction admits a
feasible allocation R such that u(R) ≥ v.

If v cannot be written as 2υ2 + L, then we let v? be the
smallest value above v such that v? = 2υ2 + L?. We now
consider exactly the same reduction as above with v? in place
of v. This proves that an instance (C, X, Y, Z) of 3DM has
a perfect matching if and only if the instance the k-division
problem with three distinct utility values resulting from the
reduction admits a feasible allocation R with u(R) ≥ v?.

Therefore the theorem follows by showing that u(R) ≥ v
implies u(R) ≥ v?. Indeed, suppose for the sake of con-
tradiction that u(R) ≥ v but there is an agent i such that
ui(Ri) = v. It is not hard to check that v? = v− 2υ1− υ3 +
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3υ2. Hence, R has to allocate to agent i each resource in
BRi3 except a resource r that she values υ2. Note that this
resource r is valued υ1 by any other agent. Thus, any agent
receiving this resource should compensate it with a resource
that she values υ3. It follows then, by a pigeon-hole-principle
argument, that there will be an agent j unable to compen-
sate and, consequently, uj(Rj) < v, a contradiction.

We say that an approximation algorithm for k-division is
a meta-search algorithm if: (i) a subset V of size polynomial
in the input consisting of possible allocation values is con-
sidered; (ii) for each v ∈ V one tests if a feasible allocation
of value at least v exists; (iii) the allocation corresponding
to the largest v for which the test is successful is returned.
Note that the two approximation algorithms presented in
this work are meta-search algorithms. This is immediate
for the algorithm given in Theorem 3; for Algorithm 1, any
test corresponds to running the algorithm described in The-
orem 2 and evaluating the returned solution for I.

Then, we obtain the following corollary to Theorem 6.

Corollary 2. For any k ≥ 2 and ε > 0, unless P=NP,
there is no meta-search algorithm that (ρ+ ε)-approximates
the k-division problem with three distinct utilities, where

ρ =
υ2 + (k − 1)υ1

kυ2
.

Proof. A meta-search algorithm with a better approx-
imation ratio contradicts Theorem 6. Indeed, there must
exist υ2 +(k−1)υ1 < v ≤ kυ2 for which it is able to check if
there exists a feasible allocation of cost at least v. Otherwise,
given an instance of k-division with opt = kυ2, the algo-
rithm can only return an instance with cost υ2 + (k − 1)υ1,
failing to improve the approximation ratio.

Thus, Algorithm 1 is optimal in its class of algorithms,
that is it gives the best possible approximation ratio among
the ones allowed for a meta-search algorithm. But can we
do better? Which kind of algorithms we should consider for
trying to improve the approximation ratio?

Note that Theorem 6 states that no algorithm is able to
decide if there exists an allocation of value v for some 2υ2 +
(k − 2)υ1 ≤ v ≤ kυ2 for any input. However, there may
exist a polynomial algorithm A that takes this decision for
only many input. For example, an algorithm A may be able
to decide if there exists an allocation of value v when the
input is an instance whose optimal value is greater than v
but unable to decide this for any instance whose optimal
value is v. Such an algorithm would allow to improve the

approximation ratio to min
{
υ2+(k−1)υ1

v
, v
kυ2

}
> 1/k.

So the question becomes: does Algorithm A exist? Unfor-
tunately, the answer to this question appears related to the
long standing gap between 1

2
and 1

m−n+1
regarding the ap-

proximation ratio of the MaxMin Allocation problem for
sufficiently small values of m. Indeed, the latter problem can
be easily reduced to k-division for k = m−n+ 1 by adding
sufficiently many dummy resources. Thus, by showing that
A does not exist it follows that, even with only three util-
ity values, MaxMin Allocation cannot be approximated

within a better ratio than υ2+(m−n)υ1
(m−n+1)υ2

≥ 1
m−n+1

, matching

the best known approximation algorithm for this problem.
On the other side, if Algorithm A exists, this will shade
a new and probably definitive light on the MaxMin Al-
location problem, since also for this problem any known

algorithm is a meta-search algorithm. Thus, this apparently
simpler problem, namely k-division with only three utility
values, may catch the entire difficulty in closing this long-
standing problem about MaxMin Allocation.

5. CONCLUSION & OPEN PROBLEMS
The analysis of the k-division problem provided us with

several insights in the problem of MaxMin Allocation.
First, we devised an interesting connection between the

maxmin objective and matroid theory. We showed how this
connection allows to design exact or approximate algorithms
for the k-division problem. It would be interesting to un-
derstand at which extent matroids can help in the agenda
of tightening the approximation ratios for these problems.

Then, we showed that the difficulty in closing the approx-
imability gap of MaxMin Allocation may be caught by
an apparently simpler problem. Can this simplicity help us
to close or at least to tighten this gap?

We also take a step in this direction, by ruling out the
possibility to improve the approximation ratio through a
meta-search algorithm. Thus, it is natural to ask whether
there exists an algorithm that does not belong to this class.
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